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This paper deals with the determination of the frequency response function of
a cantilevered Bernoulli}Euler beam which is viscously damped by a single damper. The
beam is simply supported in-span and carries a tip mass. The frequency response function is
obtained through a formula that was established for the receptance matrix of discrete linear
systems subjected to linear constraint equations, by considering the simple support as
a linear constraint imposed on generalized co-ordinates. The comparison of the numerical
results obtained via a boundary value problem formulation justi"es the approach used here.

� 2002 Published by Elsevier Science Ltd.
1. INTRODUCTION

The "rst author recently established a formula for the receptance matrix of viscously
damped discrete systems subjected to several constraint equations [1]. The reliability of the
formula derived was tested on an academic example of a spring}mass system with three
degrees of freedom, the co-ordinates of which were assumed to be subjected to a constraint
equation. In order to put forward the applicability of the method better, the formula was
applied in reference [2] to a more complex but practical system. The system was made up of
a cantilevered beam simply supported at a given distance from the "xed end. It was desired
to determine the amplitude distribution of the beam due to harmonically varying vertical
force acting at a given point.
A further study [3] dealt with the same system as in reference [2], the di!erence being,

that viscous damping of the beam was included by introducing a single viscous damper. The
present study is concerned with a more general system than in reference [3] because, here,
the vibrating beam also carries a tip mass. Through the attachment of a tip mass, the system
under consideration could be viewed as a more accurate and realistic model of some
physical systems. The aim is to determine the amplitude distribution of the beam due to
a harmonically varying vertical force acting at a given point. The problem posed is to "nd
the frequency response function of the beam described above.

2. THEORY

The problem can best be stated referring to the cantilevered beam shown in Figure 1. The
Bernoulli}Euler beam, damped by a viscous damper with damping constant c at x"�¸ is
assumed to be simply supported at a distance s*"�¸ from the "xed end. The beam is
0022-460X/02/$35.00 � 2002 Published by Elsevier Science Ltd.



Figure 1. Viscously damped cantilevered beam simply supported in-span and carrying a tip mass, subject to
a harmonically varying force.
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carrying a tip massM. At the distance x"�¸, a harmonically varying forceF (t ) is acting on
the beam. Now it is desired to determine the amplitude distribution of the beam due to this
force. This problem can also be posed as "nding the frequency response function of the
beam.

2.1. APPLICATION OF THE FORMULA IN REFERENCE [1]

Consider with the mechanical system in Figure 1 where it is "rst assumed that the support
does not exist. The equation of the motion of the beam is [4}6]

EIw �� (x, t)#mwK (x, t)#MwK (x, t)� (x!¸)#cwR (x, t) � (x!�¸)"F (t)� (x!�¸ ) (1)

the exciting force being

F (t)"F
�
ei�t, (2)

where the primes and overdots denote partial derivatives with respect to x and time t,
respectively, and i is the imaginary unit. EI is the bending rigidity and m is the mass per unit
length of the beam. � (x) denotes the Dirac function, c denotes the viscous damping
coe$cient and M represents the tip mass.
The corresponding boundary conditions are

w (0, t)"w� (0, t )"w�� (¸, t)"w��� (¸, t)"0. (3)

An approximate series solution of the di!erential equation (1) can be taken in the form

w (x, t)+
�
�
���

w
�
(x)�

�
(t), (4)

where w
�
(x) are the orthogonal eigenfunctions of the bare clamped-free beam, normalized

with respect to the mass density and �
�
(t) are the generalized co-ordinates. Through

application of the Galerkin procedure, (After substitution of expression (4) into the
di!erential equation (1), both sides of the equation are multiplied by the sth eigenfunctions
w
�
(x) and integrated over the beam length ¸. Then, the orthogonality property of the

eigenfunctions is used.) the system of modal equations, i.e., the system of di!erential
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equations for the �
�
(t), is obtained as [6]

�G
�
(t)#Mw

�
(¸)

�
�
���

w
�
(¸ )�K

�
(t)#cw

�
(�¸)

�
�
���

w
�
(�¸)�R

�
(t)#��

�
�
�
(t )"N

�
(t)

(i"1,2,n), (5)

where [7]

��
�
"(�

�
¸ )�

EI

m¸�
, �M

�
"�

�
¸"1)875104068712, �M

�
"�

�
¸"4)694091132974,

N
�
(t)"F (t)w

�
(�¸ ). (6)

The system of di!erential equations in equation (5) can be written in matrix notation as

M�K (t)#D�� (t)#��� (t)"N (t), (7)

where

� (t)"[�
�
(t)2�

�
(t)]�, ��"diag (��

�
), N (t)"N	 ei�t, N	 "F

�
w (�¸),

M"I#Mw(L)w�(L), D"cw (�¸)w� (�¸), w (x)"[w
�
(x)2w

�
(x)]�, (8)

�
�
(i"1,2, n) are the eigenfrequencies of the bare cantilever beam.
Substitution of

� (t)"�
 ei�t (9)

into the matrix di!erential equation (7) yields

�
 "H (� )N	 , (10)

where the receptance matrix is in the form

H (�)"�!��[I#Mw (¸)w� (¸)]#i�D#���	�. (11)

Considering equation (8), it can be arranged as

H (�)"(K�#u�v��)	�, (12)

where

K�"��!��[I#Mw(¸ )w� (¸)], u�"i�cw (�¸), v��"w� (�¸). (13)

Using the Sherman}Morrison formula which gives the inverse of the sum of a regular
matrix and a dyadic product [8]

(K#uv� )	�"K	�!K	�u(1#v�K	�u)	�v�K	�, (14)
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the receptance matrix can be written as follows:

H (�)"K�	�!

K�	�i�cw (�¸)w� (�¸)K�	�

[1#w� (�¸)K�	�i�cw (�¸)]
. (15)

Matrix K� de"ned in equation (13) can be expressed as

K�"K#uv� (16)

with

K"��!��I, u"!��Mw(¸), v�"w� (¸ ). (17)

Making use of formula (14) and noting that

K	�"diag�
1

��
�
!��� , (18)

K�	�"diag�
1

��
�
!���#

diag (1/(��
�
!�� ))��Mw (¸ )w� (¸) diag (1/(��

�
!��))

1!w� (¸ ) diag (1/(��
�
!�� ))��Mw (¸ )

(19)

is obtained. This can further be arranged as

K�	�"diag�
1

��
�
!��� �I#

��Mw(¸ )w� (¸ ) diag (1/(��
�
!��))

1!w� (¸) diag (1/(��
�
!��))��Mw (¸)� . (20)

Finally,

K�	�"

1

��
�

diag�
1

�M �
�
!�*��G* (21)

is obtained where the following de"nitions are introduced:

�*"

�

�
�

, ��
�
"

EI

m¸�
, �

�
"

M

m¸

, ��
�
"��

�
�M �

�

w� (x)"
1

�m¸

a� (x)"
1

�m¸

[a
�
(x)2a

�
(x)],

a
�
(x)"cosh�M

�

x

¸

!cos�M
�

x

¸

!�N *
� �sinh�M

�

x

¸

!sin �M
�

x

¸� ,

�N *
i

"

(cosh�M
�
#cos�M

�
)

(sinh�M
�
#sin�M

�
)
, cN "

c

m¸�
�

,

G*"I#
�
�

�*�a (¸ )a�(¸) diag (1/(�M �
�
!�*� ))

1!�
�

�*�a�(¸) diag (1/(�M �
�
!�*�)) a (¸)

. (22)
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Substituting equation (21) and considering equation (22), the receptance matrix in equation
(15) can be expressed as

H (�* )"
1

��
�

diag�
1

�M �
�
!�*��G*R*, (23)

where

R*"I!
icN �*a (�¸)a� (�¸) diag (1/(�M �

�
!�*�))G*

1#icN �*a� (�¸) diag (1/(�M �
�
!�*�)) a (�¸)

(24)

is introduced.
Now return to the actual system with the support at x"�¸. The introduction of the

support leads to the constraint equation

�
�
���

w
�
(s* )�

�
(t)"0, (25)

which can be written compactly as

a�
�
�"0, (26)

where

a�
�
"w� (s* )"[w

�
(s* )2w

�
(s*)]�, s*"�¸. (27)

The amplitude vector �
 in the constrained case can be written from equation (10)
analogously as

�
 "H
����

(�* )N	 , (28)

where from reference [1] the receptance matrix of the constrained system reads as

H
����

(�* )"H(�*)�I!
w (s* )w�(s*)H (�* )

w� (s*)H(�* )w (s* )� , (29)

I being the n�n unit matrix.
Therefore, the displacements of the constrained (i.e., supported) beam can be written by

using equation (9) as

w
����

(x, t)"wN
����

(x) e i�t, (30)

where

wN
����

(x)"
�
�
���

w
�
(x)�N

�
. (31)

It is easy to show that the above expression can be reformulated as

wN
����

(x)"(w� (x)H
����

(�*)w (�¸))F
�
, (32)
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which in turn, after some rearrangements, leads to

wN
����

(x)

F
�
/(EI/¸
)

"a� (x) diag�
1

�M �
�
!�*��G*R*S*a (�¸ ) (33)

with

S*"I!
a (s*)a� (s* ) diag (1/(�M �

�
!�*�))G*R*

a� (s* ) diag (1/(�M �
�
!�*�) )G*R*a (s* )

. (34)

In the special case �
�

"0, i.e., no tip mass, it is easy to show that expression (33) reduces to
that of reference [3].
Noting that according to equation (30), the real part of wN

����
(x) e i�t represents the physical

displacements, the amplitude distribution A(x) along the supported beam subject to the
harmonic force is obtained as

A (x)"�wN �
����

(x)
��

#wN �
����

(x)
��
. (35)

In the case F
�
"1, the right side of equation (35) represents nothing else but the frequency

response function of the beam in Figure 1.

2.2. SOLUTION THROUGH THE BOUNDARY VALUE PROBLEM FORMULATION

In order to prove the validity of expression (35) along with equations (34) and (33), the
only way is to compare this with the results of a boundary value problem formulation.
The bending vibrations of the four beam portions shown in Figure 1 are governed by the

partial di!erential equations

EIw ��
�
(x, t)#mwK

�
(x, t)"0 (i"1, 2, 3, 4) (36)

with the following boundary and matching conditions:

w
�
(0, t)"w�

�
(0, t)"0, w

�
(s*, t)"w

�
(s*, t)"0, w�

�
(s*, t)"w�

�
(s*, t),

w��
�
(s*, t)"w��

�
(s*, t), w

�
(�¸, t)"w



(�¸, t), w�

�
(�¸, t)"w�



(�¸, t),

w��
�
(�¸, t)"w��



(�¸, t), EIw���

�
(�¸, t)!EIw���



(�¸, t)!cwR

�
(�¸, t )"0,

w


(�¸, t)"w

�
(�¸, t), w�



(�¸, t)"w�

�
(�¸, t), w��



(�¸, t)"w��

�
(�¸, t),

w��
�
(¸, t)"0, EIw���

�
(¸, t)!MwK

�
(¸, t)"0,

EIw���


(�¸, t)!EIw���

�
(�¸, t)#F

�
ei�t

"0. (37)

If harmonic solutions of the form

w
�
(x, t)"=

�
(x) ei�t (38)
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are substituted into equation (36), the following ordinary di!erential equations are obtained
for the amplitude functions =

�
(x):

= ��
�
(x)!�M �=

�
(x)"0 (i"1, 2, 3, 4), (39)

where

�M �"

m��

EI
. (40)

In the expressions above, both w
�
(x, t) and=

�
(x) represent complex-valued functions. The

essential point here is to imagine the actual bending displacements w
�
(x, t) as the real parts

of some complex-valued functions, for which the same notation is used for the sake of
briefness.
The corresponding boundary and matching conditions now read as

=
�
(0)"=�

�
(0), =

�
(s*)"=

�
(s*)"0, =�

�
(s*)"=�

�
(s*),

=��
�
(s*)"=��

�
(s*), =

�
(�¸)"=



(�¸), =�

�
(�¸)"=�



(�¸),

=��
�
(�¸)"=��



(�¸), =���

�
(�¸)!=���



(�¸)!

ic�

EI
=

�
(�¸)"0,

=


(�¸)"=

�
(�¸), =�



(�¸)"=�

�
(�¸), =��



(�¸)"=��

�
(�¸),

=��
�
(¸)"0, EI=���

�
(¸)#M��=

�
(¸)"0, =���



(�¸)!=���

�
(�¸)#

F
�

EI
"0. (41)

The general solutions of the di!erential equations (39) are

=
�
(x)"c

�
sin�M x#c

�
cos�M x#c



sinh�M x#c

�
cosh�M x,

=
�
(x)"c

�
sin�M x#c



cos�M x#c

�
sinh�M x#c

�
cosh�M x,

=


(x)"c

�
sin�M x#c

��
cos�M x#c

��
sinh�M x#c

��
cosh�M x,

=
�
(x)"c

�

sin�M x#c

��
cos�M x#c

��
sinh�M x#c

�

cosh�M x, (42)

where c
�
to c

�

are unknown integration constants to be determined which can be complex

in general.
Substitution of expressions (42) into conditions (41) yields, after rearrangement, the

following set of 16 inhomogeneous equations for the determination of the coe$cients c
�
:

Ac"b. (43)

The expression of the (16�16) coe$cient matrix A is given in Appendix A. The vectors
c and b are de"ned as

c�"[c
�
c
�2c

�

],

b�"�020!

F
�

EI�M 

0 0� , (44)

where only the 14th element of the (16�1) vector b is non-zero.
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Lengthy expressions of the elements c
�
of the vector c, which were obtained by

MATHEMATICA via symbolic computation, are not given here due to space limitations.
They are, however, in the database in JSV#[9]. It is important to note that the vector
c and, therefore, the amplitude functions=

�
(x) (i"1, 2, 3, 4) in equations (42) contain the

common factor F
�
/(EI/¸
) which has the dimension of length.

Having obtained =
�
(x) (i"1, 2, 3, 4), it is possible to determine the steady state

amplitude at any point x of the beam, due to the harmonic force at a point x"�¸. Noting
that according to equation (38) the real part of =

�
(x) ei�t represents the physical

displacements, the amplitudes distribution AM (x) along the supported beam subjected to the
harmonically varying vertical force at x"�¸ is obtained as

AM (x)"�=�
�
(x)

��
#=�

�
(x)

��
. (45)

In the case F
�
"1, the right side of the above equation represents the frequency response

function of the beam in Figure 1.

3. NUMERICAL APPLICATIONS

This section is devoted to the numerical evaluations of the formulae established in the
preceding sections. In these examples, �*"5 and cN "0)5 are chosen. These mean that

a harmonically varying vertical force of the radian frequency 5�EI/m¸� is acting at the
location x"�¸, shown in Figure 1, and the non-dimensionalized damping value is 0)5.
In the "rst example, the following data �"0)75, �"1)0 and �

�
"1)0 are chosen which

means that the damper and the harmonic force act at the points x"0)75¸ and at the tip,
respectively, and the tip mass is equal to the mass of the beam.
The displacement amplitudes at various sections of the beam, non-dimensionalized by

dividing by F
�
/(EI/¸
) are given in Table 1. � represents the non-dimensional position of

the support, whereas xN "x/¸ denotes the non-dimensional position of the point, the
vibrational amplitude of which we are interested in. The values in the "rst columns are
TABLE 1

Dimensionless vibration amplitudes at various sections of the beam due to the harmonic forcing

F
�
ei�t at �"1)0. �"5�EI/m¸� , �"0)75 and �

�
"1)0 are chosen

�

0)25 0)50 0)75

XM Present theory B}E theory Present theory B}E theory Present theory B}E theory

0)1 0)000297 0)000297 0)000955 0)000960 0)001053 0)001054
0)2 0)000397 0)000395 0)002865 0)002878 0)003558 0)003558
0)3 0)000853 0)000858 0)004292 0)004312 0)006526 0)006529
0)4 0)003865 0)003877 0)003810 0)003828 0)008992 0)008993
0)5 0)008313 0)008342 0 0 0)009988 0)009993
0)6 0)013847 0)013909 0)008128 0)008174 0)008590 0)008592
0)7 0)020142 0)020256 0)019929 0)020051 0)003882 0)003878
0)8 0)026907 0)027099 0)034368 0)034593 0)004981 0)004982
0)9 0)033911 0)034200 0)050457 0)050817 0)017478 0)017489
1)0 0)040996 0)041394 0)067314 0)067825 0)031803 0)031829



TABLE 2

Dimensionless vibration amplitudes at various sections of the beam due to the harmonic forcing

F
�
ei�t at �"1)0. �"5�EI/m¸� , �"0)25 and �

�
"1)0 are chosen

�

0)25 0)50 0)75

XM Present theory B}E theory Present theory B}E theory Present theory B}E theory

0)1 0)000297 0)000297 0)000297 0)000297 0)000297 0)000297
0)2 0)000398 0)000396 0)000398 0)000396 0)000397 0)000395
0)3 0)000855 0)000858 0)000855 0)000858 0)000853 0)000858
0)4 0)003875 0)003878 0)003877 0)003878 0)003865 0)003877
0)5 0)008342 0)008343 0)008345 0)008343 0)008313 0)008342
0)6 0)013910 0)013912 0)013912 0)013912 0)013847 0)013909
0)7 0)020260 0)020261 0)020259 0)020261 0)020142 0)020256
0)8 0)027105 0)027105 0)027100 0)027105 0)026907 0)027099
0)9 0)034208 0)034208 0)034199 0)034208 0)033911 0)034200
1)0 0)041404 0)041401 0)041389 0)041402 0)040996 0)041394

FREQUENCY RESPONSE OF A CANTILEVER 497
values obtained from formula (35), i.e., the present theory, where n"15 is taken in the series
expansion (4) and �M

�
to �M

��
in equation (22) taken from reference [7] are correct up to 12

decimal places. These explanations are also valid for Tables 2}4. The values in the second
columns are &&exact&& values (45), obtained by the direct solution of the boundary value
problem outlined in Section 2.2, i.e., Bernoulli}Euler theory, indicated in the Tables as B}E
theory.
In Table 1, as expected, the vibration amplitudes of the beam on the left side of the

support are increasing while the location of the support is approaching towards the tip
while the other parameters are kept constant.
The second example is based on the data �"0)25, �"1)0 and �

�
"1)0 which in turn

mean that the beam is supported at x"0)25¸ and the harmonic force acts again at the tip.
The tip mass is again equal to the beam mass. The non-dimensionalized vibration
amplitudes at various sections of the beam are given in Table 2 for three di!erent
attachment points of the viscous damper to the beam: x"0)25¸, 0)50¸ and 0)75¸. The
values in the "rst and second columns are again values obtained from equations (35) and (45).
The e!ect of the location of the viscous damper on the vibration amplitudes on various

sections of the beam is small, as seen from Table 2. In case of �"0)75, �"0)75, �"1)0 and
�
�

"1)0 as shown in the third column of Table 1, the displacement amplitudes at the tip of
the beam increase as expected as compared with the case of �"0)25, �"0)25, �"1)0 and
�
�

"1)0, which is given in the "rst column of Table 2.
The third example is concerned with �"0)25, �"0)50 and �

�
"1)0, i.e., the beam is

supported at x"0)25¸ and the damper attachment point is the midpoint of the beam. Tip
mass is again equal to the beam mass. The non-dimensionalized amplitudes at various
beam sections are given in Table 3 for three acting points of the harmonic force on to the
beam: x"0)50¸, 0)75¸ and ¸. The "rst columns are values obtained from equation (35),
whereas those of the second columns are determined by equation (45).
As � gets larger, i.e., the location of the harmonic force approaches the tip of the beam, the

vibration amplitudes at the tip and in the vicinity of the tip increase as shown in Table 3.
And "nally, the fourth example is concerned with �"0)25, �"0)50 and �"1)0, i.e., the

beam is supported at x"0)25¸, the damper is attached to the midpoint of the beam, the



TABLE 3

Dimensionless vibration amplitudes at various sections of the beam due to the harmonic forcing

F
�
ei�t at three acting points. �"5�EI/m¸� , �"0)25, �"0)50 and �

�
"1)0 are chosen

�

0)50 0)75 1)00

XM Present theory B}E theory Present theory B}E theory Present theory B}E theory

0)1 0)000113 0)000113 0)000029 0)000029 0)000297 0)000297
0)2 0)000152 0)000150 0)000039 0)000039 0)000398 0)000396
0)3 0)000311 0)000313 0)000091 0)000090 0)000855 0)000858
0)4 0)001117 0)001118 0)000554 0)000554 0)003877 0)003878
0)5 0)001521 0)001523 0)001630 0)001628 0)008345 0)008343
0)6 0)000927 0)000929 0)003594 0)003592 0)013912 0)013912
0)7 0)000595 0)000593 0)006732 0)006732 0)020259 0)020261
0)8 0)002807 0)002804 0)011322 0)011320 0)027100 0)027105
0)9 0)005467 0)005464 0)017168 0)017168 0)034199 0)034208
1)0 0)008345 0)008343 0)023634 0)023638 0)041389 0)041402

TABLE 4

Dimensionless vibration amplitudes at various sections of the beam due to the harmonic forcing

F
�
ei�t at �"1)0. �"5�EI/m¸� , �"0)25 and �"0)50 are chosen

�
�

0)50 1)50 2)50

XM Present theory B}E theory Present theory B}E theory Present theory B}E theory

0)1 0)000616 0)000615 0)000196 0)000196 0)000116 0)000116
0)2 0)000824 0)000820 0)000262 0)000261 0)000156 0)000155
0)3 0)001772 0)001778 0)000564 0)000565 0)000335 0)000336
0)4 0)008033 0)008037 0)002555 0)002555 0)001519 0)001519
0)5 0)017289 0)017292 0)005500 0)005498 0)003270 0)003269
0)6 0)028825 0)028834 0)009169 0)009167 0)005451 0)005450
0)7 0)041976 0)041994 0)013351 0)013352 0)007938 0)007938
0)8 0)056151 0)056179 0)017860 0)017862 0)010619 0)010619
0)9 0)070861 0)070901 0)022538 0)022542 0)013400 0)013402
1)0 0)085759 0)085811 0)027277 0)027283 0)016218 0)016220
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harmonic force acts at the tip of the beam. The non-dimensionalized amplitudes at various
beam sections are given in Table 4 for three di!erent tip mass ratios: �

�
"0)50, 1)50 and

2)50. The "rst columns are values obtained from equation (35), whereas those of the second
columns are determined by equation (45).
As seen in Table 4, for larger �

�
ratios, (i.e., for heavier end masses), smaller vibration

amplitudes at the various sections of the beam are observed while the other parameters are
kept constant.
The agreement of the values in both columns in Table 1}4 justi"es expression (35) along

with equations (33) and (34), obtained on the basis of a formula established for the
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receptance matrix of viscously damped discrete systems subject to several constraint
equations. It is worth noting that the agreement of the numbers in both columns becomes
excellent if many more decimal places are considered in �M

�
values.

4. CONCLUSIONS

This study is concerned with the determination of the frequency response function of
a viscously damped, cantilevered Bernoulli}Euler beam, which is simply supported in-span
and carries a tip mass. The frequency response function is obtained through a formula,
which was established for the receptance matrix of discrete systems subjected to linear
constraint equations. The comparison of the numerical results obtained with those via
a boundary value problem formulation justi"es the approach used here.
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APPENDIX

he matrix A in equation (43):

0 1 0 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0

sin�M �¸ cos�M �¸ sinh�M �¸ cosh�M �¸ 0 0 0 0 0 0

0 0 0 0 sin�M �¸ cos�M �¸ sinh�M �¸ cosh�M �¸ 0 0

cos�M �¸ !sin�M �¸ cosh�M �¸ sinh�M �¸ !cos�M �¸ sin�M �¸ !cosh�M �¸ !sinh�M �¸ 0 0

!sin�M �¸ !cos�M �¸ sinh�M �¸ cosh�M �¸ sin�M �¸ cos�M �¸ !sinh�M �¸ !cosh�M �¸ 0 0

0 0 0 0 sin�M �¸ cos�M �¸ sinh�M �¸ cosh�M �¸ !sin�M �¸ !cos�M �¸

0 0 0 0 cos�M �¸ !sin�M �¸ cosh�M �¸ sinh�M �¸ !cos�M �¸ sin�M �¸

" 0 0 0 0 !sin�M �¸ !cos�M �¸ sinh�M �¸ cosh�M �¸ sin�M �¸ cos�M �¸

0 0 0 0 A
�

A
�

A
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