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Free and forced vibration analyses for initially stressed functionally graded plates in
thermal environment are presented. Material properties are assumed to be temperature
dependent, and graded in the thickness direction according to a simple power law
distribution in terms of the volume fractions of the constituents. Theoretical formulations
are based on Reddy’s higher order shear deformation plate theory and include the thermal
effects due to uniform temperature variation. The plate is assumed to be clamped on two
opposite edges with the remaining two others either free, simply supported or clamped.
One-dimensional differential quadrature technique, Galerkin approach, and the modal
superposition method are used to determine the transient response of the plate subjected to
lateral dynamic loads. Comprehensive numerical results for silicon nitride/stainless-steel
rectangular plates are presented in dimensionless tabular and graphical forms. The roles
played by the constituent volume fraction index, temperature rise, shape and duration of
dynamic loads, initial membrane stresses as well as the character of boundary conditions are
studied. The results reveal that, when thermal effects are considered, functionally graded
plates with material properties intermediate to those of isotropic ones do not necessarily
have intermediate natural frequencies and dynamic responses.

© 2002 Elseiver Science Ltd. All rights reserved.

1. INTRODUCTION

Functionally graded materials (FGMs) are usually made from a mixture of metals and
ceramics through powder metallurgy processes. They have been regarded as one of the
advanced inhomogeneous composite materials in many engineering sectors due to their
flexible properties that can be tailored to different applications and working environments
[1, 2]. This can be achieved by gradually varying the volume fraction of constituent
materials so that the mechanical properties exhibit a smooth and continuous change from
one surface to the other. FGMs have now been developed as important structural
components mainly used in high-temperature conditions and have been receiving
considerably more attention in recent years.

Numerous studies on free and forced vibration for isotropic and composite multilayered
plates with or without initial thermal and/or mechanical in-plane loads have been reported,
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see, for example, references [3-14]. However, investigations on the free vibration and
transient response of FGM structures are limited in number. Among those, Tanigawa et al.
[15] examined transient thermal stress distribution of FGM plates induced by unsteady
heat conduction. Reddy and Chin [16] discussed a wide range of problems in FGM
cylinders and plates including thermo-mechanical coupling effects, among which transient
response of the plate due to heat flux was one of the topics addressed. Finite element
solutions were given for simply supported rectangular plates by using the first order shear
deformation plate theory (FSDPT). Loy et al. [17] presented Rayleigh-Ritz solutions for
free vibration of simply supported FGM cylindrical shells. Gong et al. [ 18] investigated the
transient response of FGM cylindrical shells under low-velocity impact. He et al. [19] gave
finite element formulations for the shape and vibration control of FGM thin plates with
integrated piezoelectric sensors and actuators. In references [17-19], material properties
were considered as a function of temperature, but the results were only for a fixed
temperature environment. Praveen and Reddy [20], also based on FSDPT, analyzed the
non-linear static and dynamic response of functionally graded ceramic-metal plates in
a steady temperature field and subjected to lateral dynamic loads by the finite element
method. Reddy [21] developed both theoretical and finite element formulations for thick
FGM plates according to the higher order shear deformation plate theory, and studied the
non-linear dynamic response of FGM plates subjected to suddenly applied uniform
pressure. However, they assumed that the material properties were temperature
independent. It should also be noted that none of the aforementioned analyses [15-21]
considered the effect of initial membrane stresses. To the best of authors’ knowledge, there
are no results in the open literature concerning the vibration as well as transient response of
shear deformable FGM plates subjected to lateral dynamic load combined with initial
in-plane actions and in thermal environments. This is the subject of the present work.

In this paper, we assume that the functionally graded plates are made from two
constituent materials, whose material properties are non-linear functions of temperature
and graded in the thickness direction according to a power-law distribution of material
composition. The plate may be initially stressed by in-plane actions and has two opposite
edges clamped with the remaining two others either free, simply supported or clamped.
Both movable and immovable in-plane boundary conditions are considered. Reddy’s higher
order shear deformation plate theory (HSDPT) [22] is used to predict the dynamic response
of FGM plates due to arbitrary dynamic loading. A semi-analytical approach is then
developed, which makes use of differential quadrature approximation, Galerkin technique,
and the modal superposition method. Comprehensive numerical results for the natural
frequencies and dynamic response of silicon nitride/stainless-steel rectangular plates are
presented. A parametric study is also carried out, highlighting the effects of material
composition, initial thermal and/or mechanical in-plane loads on the transient response
characteristics. The numerical results presented herein for FGM plates are not available in
the literature, and therefore, should be of interest to the engineering community.

2. THEORETICAL FORMULATIONS

2.1. FGM MATERIAL PROPERTIES

Here we consider an FGM rectangular plate of length a, width b and thickness &, which is
made from a mixture of ceramics and metals. We assume that the composition is varied
from the top to the bottom surface, i.e., the top surface (Z = h/2) of the plate is ceramic-rich,
whereas the bottom surface (Z = — h/2) is metal-rich. In such a way, the effective material
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properties P, such as Young’s modulus E, the Poisson ratio v, mass density p, and coefficient
of thermal expansion o can be expressed as

P:PthJf_Pme: (1)

where subscripts “t” and “b” refer to the top and bottom surfaces of the plate, respectively;
V.and V,, are the ceramic and metal volume fractions and are related by

V.+V, =1 (2

The ceramic volume fraction V, is assumed to follow a simple power distribution as [16]

VC=<ZZ+h>”’ 3)

2h

where volume fraction index n dictates the material variation profile through the plate
thickness and may be varied to obtain the optimum distribution of component materials.
From equations (1)-(3), the effective Young’s modulus E, the Poisson ratio v, mass density
p and thermal expansion coefficient « of an FGM plate can be written as

27Z + h\"
E=(E - E) 2 ") +E, (4a)
2h
2Z + h\"
v= (- vb)< = ) v, (4b)
2Z + h\"
p=(p — pb)< T > + Pb, (40)

(4d)

2Z + h\"
o= (o, — atp) T op -

For functionally graded materials in high operating temperature, significant variations in
thermal and mechanical properties of the materials are to be expected. Accurate prediction
of the mechanical response requires accounting for this temperature dependency. Therefore,
E,, Ey, v, vy, s, Pp, o, and o, are functions of temperature, as will be shown in section 4, so
that E, v, p and o are both temperature and position dependent.

Thermal force resultants, thermal moment resultants and higher order thermal moment
resultants due to temperature rise AT are defined by

Nt ™% P} e | Ax
N} MI P} :J Ay |(1,Z,2%) AT dZ, (5)
NY, MY, P} " a
XY XY XY XY
where
Ax Q11 Q1z Qs (|1 O »
Ay = - Q12 Q22 Q26 0 1 |:oc:| (6)
Axy Q16 Q26 Qos 0 0
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and

E vE E
1 —2° Q12:1_v27 Q16:Q26=Oa Q44:Q55:Q66:m~

()

Q11 = sz =

The various plate inertias may be calculated by

W2 27 + h\"
(Ila12a139149157[7)=J. {(pt_pb)<2—h> +pb}(1nzyzznzsyz4zz6)dz' (8)
—h/2

2.2. GOVERNING EQUATIONS

Suppose the plate is initially stress free at temperature T, and is then subjected to
thermo-mechanical loads, which include a uniform temperature rise AT, a uniform lateral
dynamic load q(X, Y, t) combined with in-plane edge loads py in X direction and py in
Y direction.

Let ¢t be time, Q be the natural frequency of the plate, U, V and W be the plate
displacements parallel to a right-hand set of co-ordinates (X, Y, Z), ¥y and ¥y be the
mid-plane rotations of transverse normals about the Y- and X-axis respectively. By
introducing the stress function F (X, Y) for the stress resultants (Ny = F yy, Ny = F xx and
Nxy = — F xy), the equations of motion for an FGM rectangular plate can be derived as

follows:

Lyi(W) = Lia(Py) — L3 (Py) + Lia(F) = Lys(N") — Ly6(M")

. (0P, 0P
=q—L17(W)—15<ﬁ+W>, )
Loy (F) + Lya(Px) + Ly (Py) — Lyy(W) — L,5(NT) =0, (10)

L o D OW
L3y (W) + L3>(Px) — L33 (Py) + L34(F) — Lys(N") — L36(ST) = —I3q’x+155, (11)

o wOW
Lyy(W) — Lay(Px) + Loz (Py) + Laa(F) — Lys(NT) — Ly (ST) = _I/3'PY+I,56—Y, (12)

where the operators L;;( ) and L;,( ) are defined as

- o* o* o* o*w o*wW
L11()=C1|:F’1k1 (FT2+F§1+4F§6)W+F§2W:|—<P + by >,

ax+ Y ox? oY?
~ - [ 0* 0?
L17():II+I7<W+W> (13)

and all other operators are defined as in reference [23], and
Iy =13 —2¢,ds + cil; — (I, — ey du)?/14, (14a)
Is=c[Is —cil7 — 14(I; — cyl4)/14], (14b)

Ih=ciI3/, —1,), Is=Is+1Is, I,=15—1Is. (14c—c)
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In the above equations c; = 4/3h%, ST = M" — ¢, P, and the reduced stiffness matrices
[A4%], [BE], [DEL, [EE]L, [FE], [HE] (i, j = 1, 2, 6) are determined through relationship [23,
24]

A*—A"!, B*—=_A'B, D*=D-BA 'B, E*= —A'E
F*—F—FEA 'B, H*=H—FA'E, (15)
in which
h/2
(AijaBijs Dij’Eij9Fij’ Hij) = w2 Qij(l,Z, Zza Z39 Z4, Zé)dz (laJ = la 23 6)’ (163)
h2
(Aij, Dij, Fij) = J 0,(1,2%,29dZ (i,j=4,5) (16b)
2

It is noted that, because of equation (5), L;5(NT) = L,5(NT) = L35(NT) = Ly5(NT) = 0.

The plate is assumed to be clamped on two opposite edges (at Y =0,b) and the
remaining two edges may be free, simply supported or clamped, so that the boundary
conditions are

X=0,a

Simply supported (S):

W:TY:MXZFX:NXYZO, (173)
b
f NxdY + pxb = 0 (movable) or U = 0 (immovable). (17b)
0
Clamped (C):
_ _ oW _
W='1UX=5UY=§=NXY=0, (170)
b —_— —
J NxdY + pxb = 0 (movable) or U = 0 (immovable). (17d)
0
Free (F):
_ _ _ _ _ _ oP oP _
My = Px = Mxy — ¢1 Pxy = Qx — 2Ry — ¢4 | ) aXY = Nxy =0, (17¢)
0X Y
b
J NxdY + pyxb =0. (171f)
0
Y=00b
_ _ oW _
W:TX:TY:a—Y:NXY:O, (183)
J NydX + pya =0 (movable) or V =0 (immovable), (18b)
0

where My, Myy denote the bending moments per unit width of the plate, Qy is the
transverse shear force, Py, Pyy and Ry are the higher order moment and shear force.
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Definition of these stress resultants was given in reference [22] and will not be repeated here
for brevity.

Following Shen [24], the immovable in-plane boundary conditions are fulfilled on the
average sense as

b (fa ATT a (*b N[/
fj%dXdeO at X =0,a ffa—VdeXzo at Y =0,b. (19a, b)

(] 06 0 OaY

The average end-shortening relationships are

a ab ]y Jo 0X
1 (* (e 0°F 0°F oy oY
= —Ef f {|:AT1W+AT2W+(BT1 —ciEfy) aXX‘f‘(Bikz—C’fE’fz) 6YY
0Jo
;W PW . .
— Cq ETlW‘i‘Ele —(ATlNX‘i‘A’lkzNy) dXdY, (203)
Ay_ 1 (? aanXdY
b B ab 0 06
1 ([ 0°F 0°F ' b4
= _a_bL L{[Aikzw+l4’fzm+(3m C1E21)a—;+(33kz C1Ezz)a—YY
. oew . 2w J—— J——
— Cq EZIW-FEZZW —(AlzNX+A22Ny) dXdY (20b)

The following dimensionless quantities are introduced:
x=X/a, y=Y/h, P=a/b, t=1t/D}/I/a*>, o= Qda*/I,/D},,
A = (D} D%,4%, A%,)'%, W =W/A4, F = F/(D},D%,)"?, Y. %)= (Px, Py) a/4,
A= qa*/D¥, 4, 714 = [D3,/DF,]"2, 724 = [AF1/45,]"2, 7s = — Af2/A%,,
(11:712) = (A%, AY) a*/(DF D%,)'?,
(M, M,, M, M;T:) = (Mx, My, M%, My)a®/D¥, 4,

(Px’Py’Pl,P;l;) = Cl(pX’pYap}-(,P}:)az/DTlA, (IEK,I?,I#) :(1139 /5,1{7)/612[1,

(2 2y) = (pxb?, pya®)/(DF,1D%)'%, (0,9,) = (Ax/a, 4y/b)b?/4, (21)

where Ay ( = A}) are defined by

AY hz Ay
Ay -n2 LAy
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Equations of motion (9-12) can then be written in dimensionless form as

Liy(W)— Li>(¥y) — Li3(¥,) + y1aLlia(F) — Lis(M")

.. (0P, oy
=;Lq—L17(W)_1=;< + Y>

0x ay

Ly (F) + 724L25 (V) + 724L53(¥,) — 724L04 (W) =0,

L3y (W) + L35(¥y) — L3z (¥,) + p1aLaa(F) — Lig(ST) = =I5V, + It —,

.. ow
Ly (W) — Las (W) + Las(¥)) + y1aLaa(F) — Ly(ST) = — I5Y, + 1% E’

64 64 64 aZW aZW
Lis( )_ylloa 7+ 21128 26 3+ 71ap? dy ~a V14ﬁ2< W+’1y8—y2>,
o° 3
L12( ):y120ﬁ+'))122ﬁ2 W’

3 N 53
Li3()=71318 2ay+7)133ﬁ PIEE
4 4 a4

Lis ) = P10 g + 11028
14/ —V14oa4 V142 262 /144ay4,

02 02 02
Lio(M") = 55 (M3) + 28 55 (M) + % 55 (M),
02 02

L17():1 F;(axz*'ﬁz >

ot o* o*
Ly ()= ox 4+V212ﬁ ax23y 2+V214ﬁ oy S

3 53 3 3

0
Lyy() = “/220@ + 7222 axdy2’ Lys() = “/2315@ + y233ﬂ3a—ya,

4 4 64

0
Lya( ) = V240 23 o + 724287 26 5 + + V244 B* ﬁ_y‘“

Ly )= i_p 6_3+ [;26_3
31 —V31ax /3loax3 V312 axayz’

02 02
L3x( ) =731 — V32033 ox2 )’322ﬁ 5 a2

585

(23)

(24)

(25)

(26)
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0? 0 0
L3s( ) =73318 5= L3a( ) =Lys(), L3s(S) === (S) + = (S,
0x0y 0x Jy
L) = 701 B ot a Bt e L, Laa() = Las()
41 = Va1 dy Va11 X2 V413 0)/3’ 42 = L3zl ),
0? 0?
Lis( ) =741 — V430 33 V432ﬁ S 2 Lya( )= Las(),
ox? dy
0 ot T
L46(S ) - (Sxy) + ﬁ (S )

The boundary conditions of equations (17) and (18) become

x=0,1:

Simply supported (S):

Lo*F
f o7 dy + 2, = 0 (movable)

Clamped (C):

ow

W=, =, =
X

Lo*F
J o7 dy + 2, = 0 (movable)

Free (F):
0P, oP 0°F
M,=P.,=M _ pL= ) = -
* x = = Q- R C<<3>c+ 0y> 0x0y
Lo2F
Jazdy—F)Lx—O
y=0,1
Wy W _PF
ST Y gy oxay

L o*F
J e dx + 4, = 0 (movable)

~ oxdy

or 0, =0 (immovable).

0*F
~ ox 6y ’

or 0, =0 (immovable).

or ¢, =0 (immovable)

(27)

(28a)

(28b)

(28¢c)

(28d)

(28e)

(281)

(29a)

(29b)
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and the end-shortening relationships become

([t 0°F 0*F oV, oY,
b=~y N AL ( " >
V24ﬁ2 Jl) Jo {|:/24ﬂ 0)/2 Vs Xz V2a\ V511> ox V2338 —=— 3y

Ea % OPwW
- "/24<V611 o + V2448 oy? )} + P34yt — Vs”/rz)AT}dx dy, (30a)
0*F oY, oY,
0y = Vz4ﬁ2 —5 — 7sp? oy =7 T V24| V220 5 ox oy
2w OPwW
— V24</24o o2 + 76228° ay? >:| + (12 — VSVTl)AT} dxdy. (30b)

In equations (27) and (30), all other dimensionless quantities y;; are defined as in
references [23, 24] and will not be repeated here for the sake of brevity.

3. SOLUTION METHODOLOGY

3.1. SEMI-ANALYTICAL DIFFERENTIAL QUADRATURE METHOD

This section extends our previous work [25,26] to predict the transient response of FGM
rectangular plates. Solutions of W, ¥, ¥, and F are constructed as

W= T aOmlxsl = 3 b)) G1a, b
¥, = Z Cn(O)Yym(X, y) (31c)
F= =307+ X2+ Y du(0) fulx, ). (31d)

According to differential quadrature technique, w,,, Y, ¥yn and f,, are approximated
along x-axis in terms of their function values at a number of pre-selected sampling points by

{Wma me, lpymafm} = Z lj(x) {ija lpxjma lpyjm’fjm}a (32)

where [;(x) is the Lagrange interpolation polynomial, and w;,, = W, (X, ), Wxjm = Yam (X, V),
Wyjm = Wym(Xj, ), fim = fu(x;, ¥). Further, their rth partial derivatives with respect to x at
a sampling point x; (i = 1,...,N) are expressed as

6r N
w {Wms lpxms lpym’fm}|x:x; = Z C(r){wjm’ wxjm» wyjm»f;m} (33)
j=1

Recursive formula for weighting coefficient Cf;) is available in reference [27]. Its value

depends on the choice of the interpolation function and the sampling point system, which in
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the present analysis is designed as

1 j— 2
X1 = 00, Xy = 00001, Xj = 5 |:1 — COS TE](\‘]]_ 3):|, XN-—1= 09999, XN = 1-0. (34)

For the plate clamped at y = 0,1, W}y, Wxjm» ¥yjm and f;, are modelled by

Wiy = sino,y — sinh o,y — €, (cos o,y — cosh o, ), (35a)
fim = sina,,y — sinh a,,y — &,,(cos &,y — cosh ), (35b)
Vi = SIN(MTY), W = sin () (35¢)
where
¢ = (sina, — sinh a,,)/(cos o, — cosha,,), o, =(2m + 1)7/2. (35d)

It should be pointed out that, although our present work focuses on initially stressed
FGM plates clamped at y =0, 1, it is equally applicable to deal with FGM plates simply
supported at y = 0, 1 only if initial in-plane actions are absent and wj,,, Y jm, W m and f;, are
assumed as

Wj, = sin(mmy), (36a)
fim = sina,,y — sinha,,y — &,,(cos a,y — cosh a,,), (36b)
Yyjm = sin(mny), Yy, = cos(mny). (36¢)

Application of equations (31-33) to the equations of motion (23-26) produces 4N sets of
ordinary differential equations. Finally, substituting equation (35) or (36) into these
equations and then applying the Galerkin procedure leads to

[K1{8(1)} + [G1{5(1)} = {R(1)}, (37)

where [K] and [G] are constant matrices, {R(t)} is the dynamic load vector, {8(t)} is
a column vector comprising of a;,(t), b, (t), c;(t) and d;,(t) at each nodal line.

If, in equation (37), the lateral load vector {R(r)} vanishes, a linear eigenvalue problem is
then produced, from which vibration characteristics of the FGM plate can be readily
determined

([K] — »?[G]) {8} = {0}. (38)

3.2. MODAL SUPERPOSITION APPROACH FOR TRANSIENT RESPONSE

Now we try to solve equation (37) and assume that

B} = 89T (39)
k=1

in which T™®(¢) is the kth order principal modal co-ordinate, and 8® is the modal shape
function associated with the kth order natural frequency parameter w®. Substituting
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TABLE 1

Temperature-dependent coefficients of elastic modulus E (GPa), the Poisson ratio v, mass
density p(kg/m3) and linear thermal expansion «(1/K) ceramics and metals
(from reference [16])

Material P_, Py Py P, P;
E Siz;N, 0 348:43¢9 —3070e — 4 2:160e-7 —8946¢ — 11
SUS304 0 201-04€9 3:079¢ — 4 —6534e — 7 0
Ti-6Al1-4V 0 122-56€9 —4-586¢ — 4 0 0
Aluminum oxide 0 349-55¢9 —3-853¢ —4  4027¢e —7 —1:673¢ — 10
y SizN, 0 0-2400 0 0 0
SUS304 0 0-3262 —2.002¢ —4 3.797¢ -7 0
Ti-6A1-4V 0 0-2884 1.121e — 4 0 0
Aluminum oxide 0 0-26 0 0 0
0 Siz;N, 0 2370 0 0 0
SUS304 0 8166 0 0 0
Ti-6A1-4V 0 4429 0 0 0
Aluminum oxide 0 3750 0 0 0
o SizNy 0 5.8723e — 6 9.095¢ — 4 0 0
SUS304 0 12.330e — 6 8.086¢ — 4 0 0
Ti-6A1-4V 0 7.5788e — 6 6.638¢ — 4 —3.147¢ — 6 0
Aluminum oxide 0 6.8269%¢ — 6 1-838¢ — 4 0 0

equation (39) into equation (37), we get

Y ([[KI{8®}T®(0) + [G1{8W} T(1) = {R(1)}. (40)
k=1
Making use of orthogonality properties of the modal shape functions yields

T®@) + (@) TO(t) = RO(1)/G® (41)
in which
RP@) = {8W}T{R(®)}, G¥={8"}T[G]{8"]. (42)

If zero-valued initial conditions prevail, the solution of equation (41) can be obtained as

1 ! .
T®(¢) = G L R®(1)sin[w®(t — 1)d1. (43)

Re-substituting T® (¢) into equation (39) yields a transient response at any given time.

4. NUMERICAL RESULTS AND DISCUSSION

This section consists of three parts: (1) accuracy and convergence studies of present
formulations; (2) free vibration analysis with comprehensive information on the natural
frequency parameters of FGM rectangular plates; and (3) numerical results for the transient
response of FGM rectangular plates. Silicon nitride and stainless steel are chosen to be the



Natural frequencies (Hz) of simply supported aluminum oxide/ Ti-6Al-4V square plates

TABLE 2

Source Mode sequence

n=0 1 2 3 4 5 6 7 8 9 10
NxM=9x5 14399 360-10 360-10 569-44 699-36 719-81 91877 91877 128131 1791-33
NxM=11x5 143-96 360-06 360-06 568-85 718-55 718-22 91676 91676 120713 1221-67
NxM =13x5 14396 360-07 360-07 568-87 71822 71822 91640 91640 1207-13 120713
NxM=15x6 143-96 360-07 360-07 56888 718-22 718-22 916-40 916-40 1207-09 1207-09
He et al. [19] 144-66 360-53 360-53 569-89 720-57 720-57 919-74 919-74 122572 122572
n = 2000

NxM=9x5 261-50 653-18 654-04 1045-31 1261-77 130479 167290 169609 221441 231221
NxM=11x5 261-46 653-10 653-10 1044-27 1303-60 1303-60 1693-83 1694-94 221441 2269-67
NxM =13x5 261-46 653-13 65313 1044-30 130479 130479 1694-98 169498 221441 221441
NxM=15x6 261-46 653-14 653-14 1044-31 1304-79 1304-79 1694-98 1694-98 2214-34 2214-34
He et al. [19] 268-92 669-40 669-40 1052-49 1338-52 1338-52 1695-23 1695-23 2280-95 2280-98

065

NHHS 'S“"H ANV DNVA [



VIBRATION AND TRANSIENT RESPONSE OF FGM PLATES 591

W/h
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——: Present
—a—: Praveen & Reddy [20
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qa/E h'

Figure 1. Comparisons of dimensionless central deflection versus load for SSSS FGM square plates under
uniform lateral pressure.
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Figure 2. Effect of material composition on the dynamic response of CCCC FGM square plates subjected to
a suddenly applied lateral load: (a) central deflection versus time; (b) central bending moment versus time.

constituent materials of the FGM plate, referred to as SizN,/SUS304, in the present
analysis. Their material properties P, such as Young’s modulus E, the Poisson ratio v,
coefficient of thermal expansion o and mass density p can be expressed as a non-linear
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TABLE 3

Frequency parameter w* = (Qb*/n?)/1o/Dy for initially stressed CCCC FGM square plates
(b/h =10, Ty = 300K, AT = 300, movable edges)

Mode sequences

Material
(Axs 2y) composition 1 2 3 4 5 6 7 8

Without in-plane load

0, 0) SisN, 72881  14:0406 14-0406 19-9234 22-:3000 23-5294 27-4326 28-5645
n=02 56087 10-8110 10-8110 153407 17-0530 18-1203 21-0162 219918
n=20 39680 76201  7-6201 10-7972 121600 12-7314 14-9223 154456
n=>50 36104 69116 69116 9-7777 110655 11-5138 13-5468 139563
n=100 34832 66610 66610 94180 106792 11-0853 13-0622 13-4329
SUS304  3-1703 6:0764 60764 85985 96632 10-1307 11-8541 122786

Under uniaxial in-plane loads

0, —5) SizN, 89507 14-9389 17-4802 22:3730 24-0521 269978 30-2916 31-3337
n=02 68833 114980 13-4452 17-2119 18-:5196 20-6879 23-3074 24-0241
n=20 48841 81184 9-5244 12-1599 13:0229 147428 164127 170761
n=>50 44521 7-3715 86657 110367 117833 13-4302 14-8534 155244
n =100 42980 7-1068 83601 10-6388 11:3467 129642 14-3039 14-9750
SUS304 39050 64762 76041 9-6913 103646 11-7401 13-0542 13-5842

©, 5) SisN, 49417 9:6267 13-0631 15-8552 171023 22-6390 22:9755 241620
n=02 38156 74414 100643 119073 13-1883 17-2554 17-6977 181990
n=20 26655 51597 70763 86897 92216 12:3076 12-4212 13-2759
n=>50 24061 46319 64084 79372 83173 111660 11-2254 12:1914
n=100 23149 44481 6:1727 76751 80003 10-7669 10-8050 11-8306
SUS304  2:1239 40997 56399 68394 73334 97404 9-8817 104131

Under biaxial in-plane loads

(=5, =95 SizN,  10-3562 180354 18:0354 24-4867 27-4436 282317 32-8375 336531
n=02 79634 138711 13-8711 188288 21-0303 21-7116 251754 258714
n=20 56546 9-8269  9:8269 13-3304 149883 15-3474 17-9095 18-2868
n=>50 51573 89417 89417 12-1147 13:6549 139304 162918 16-5864
n=100 49797 8:6266 86266 116828 13-1813 134284 157181 159847
SUS304  4-5226 7-8456  7-8456 10-6291 119368 12-2277 14-2520 14-5556

5,9 SisN, 41264 80910 80910 13-8397 15-0218 17-5560 20-3600 22-2890
n=02 35310 62684 62684 10-7029 11-2573 13-5674 15-5005 17-2184
n=20 30857 42971 42971 73903 82294 9-3830 11-0399 119147
n=>50 21872 3-8272 38272 6:6123 7-5132 84022 99946 10-6675
n=100 2:0820 3:6652  3-6652 63428 72645 80625 9-6316 10-2354
SUS304 1-8524 34201 34201 58607 64662 74406 87179 9-4426

function of temperature, see reference [28], as
P:P0(P71T_1+1+P1T+P2T2+P3T3) (44)

in which T =T, + AT and T, = 300 K (room temperature), Py, P_4, P;, P, and P; are
the coefficients of temperature T (K) and are unique to the constituent materials. Typical
values for silicon nitride and stainless steel are listed in Table 1 (from reference [16]).

A uniform lateral dynamic pressure q(X,Y,t) = ¢oF (_t_) is applied on the top surface of

the plate, in which g, is the maximum amplitude and F (¢) is a dynamic load shape function
in time domain. Three sets of lateral loads, namely, suddenly applied load (Case 1),
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TaBLE 4

Frequency parameter w* = (Qb*/n?)/IoD, for FGM rectangular plates with immovable
inplane constraints on all edges (1, =0, 4, =0, b/h =10, T, = 300K, 4T = 300K)

Mode sequences

Boundary
condition p n 1 2 3 4 5 6 7 8
CCCC 05 02 132966 16:8384 21:7947 29-5710 299195 30-4560 32-4340 36-4854
2:0 92196 11:6913 152957 204667 21-2323 21-4468 22-4853 25-4461
100 79839 101219 13-3088 17-6295 18-3727 189066 19:3778 219914
1:0 02 52968 104371 104371 149290 16:5741 177034 20-5278 21-5468
2:0 36638 72545 7-2545 103924 117056 12-:3207 14:4521 15-0049
1000 3-1835 63001 6:3001 90171 102372 10-6781 12:6015 129948
15 02 39765 61040 95486 9-5486 11-3705 14-0829 14-3854 157688
2:0 27373 42236 66331 66331 79088 9-8122 10-0191 11-1492
1000 23753 36692 57618 57618 68690 85206 86979 9-7598
CsccC 05 02 104436 149271 205267 263159 29-2684 29-5666 29-7938 34-:2248
2:0 72700 10-3909 14-4520 18:3203 20-6030 20-7767 21-0353 23-9649
1000 63045 9-0158 12:6007 15-8335 17-8142 179830 18-:5759 20-7626
1:0 02 46631 91716 102161 141166 161116 164120 19-9868 19-9868
2:0 32130 63768 7-1005 9-8347 112403 115963 14-:0890 14-0890
1000 27875 55432 61677 85402 97597 10-1457 122956 12-2956
15 02 37925 55711 87758 94673 110884 130969 13-8702 157197
20 26055 38464 60993 65763 77126 91348 9-6646 11-1159
1000 22589 3-3394 53034 57124 66996 79411 83942 97315
CSCS 05 02 80435 133985 19-5039 229349 269062 28-7000 29-0742 32-0506

20 56274 93391 137657 16:0523 18:8195 20-3041 20-6723 22-5310
100 48601 81143 12:0203 13-9352 16:3154 17-5880 18-2817 19-5699
1:0 02 42154 80126 99887 13-3987 145651 16:2614 192150 19-5020
20 2:8949 55639 69416 9-3387 10-1822 11-4954 13-4275 13:7617
10-0  2-:5069 4-8386 60299 81141 8:8554 10-0600 11-6601 12-:0190
15 02 36645 51178 80131 94005 10-8442 12-1363 13-3988 15:6765
2:0 25148 3-5238 55646 65295 7-5421 84704 9-3387 11-0866
100 21791  3-0565 4-8389 56718 6:5521 73709 81141 9:7065

sinusoidal load (Case 2), and exponential load (Case 3), are considered in the present
analysis, whose pulse shapes are defined as

Case 1:
F(t) = 1. (45a)

Case 2:
F() = {(S;’n (mt/to), Z_i Z_Z (45b)

Case 3:
F(ry=e¢ 9. (45¢)

In the following numerical illustrations, the initial stress-free temperature is set at
T, =300 K. Dy and I, are chosen to be the values of D;; and I, of a stainless-steel plate of
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TABLE 5

Frequency parameter w* = (2b*/n*)/IoDo for FGM square plates under three sets of
thermal environments (n = 2-0, T, = 300K, immovable)

Mode sequences
AT  Boundary
(K) condition  b/h 1 2 3 4 5 6 7 8

0 CCCC 10 41062 78902 7-8902 11-1834 12:5881 13-1867 15-4530 16:0017
5 68757 121576 12-1576 165854 189362 19-2780 22-5928 22-7898

CSCC 10 36705 7-0131 77426 10-6189 12:0942 12-4766 15-0828 15:1834

5 62670 112265 12-:0465 160202 179957 19-1341 21-8714 22-4638

CSCS 10 33564 62058 75814 10-1160 11-0243 12-:3740 14-3955 147487

5 57918 102959 11-8412 154864 17-0128 19-0295 21-1590 22-1571

300 CCCC 10 36636 72544 7-2544 10-3924 117054 12:3175 14-4520 15-0019
5 64638 114980 114980 157253 179744 18-3085 21-4681 21-6633

CSCC 10 32130 63768 7-1005  9-8347 11-2403 11-5963 140890 14-2002

5 58653 10-5940 113852 15-1786 170657 181691 20-7717 21:3492

CSCS 10 28949 55639 69416  9-3387 10-1822 114954 13-4275 13-7617

5 54004 96876 11-1862 14-6624 16:1151 18-:0682 20-0842 21-0538

500 CCCC 10 32357 6:6281 6:6281  9:5990 10-8285 11-4350 13-4412 139756
5 60369 107959 107959 147982 16-9321 17-2601 20-2414 20-4373

CSCC 10 27712 57598 64707  9:0547 10:3862 10-7235 13:0899 13-:2002

5 54556 99297 10-6839 142760 16:0647 17-1274 19-5771 20-1384

CSCS 10 24499 49479 63157 85709 93539 106255 12:4519 127736

5 50067 90575 104933 13-7829 15-1583 17-0315 189217 19-8575

b/h = 10. E, and p, serve, respectively, as the reference values of elastic modulus and mass
density, and are selected to be the Young’s modulus and mass density of stainless steel. The
above reference parameters are all evaluated at T,,. Dimensionless in-plane loads are
expressed as (1, 4,) = (px, p,)a’/n*D¥;. For the sake of brevity, a clockwise notation
starting from y = 0 is employed. Symbol “CSCF”, for example, identifies a plate clamped at
y =0, 1, simply supported at x = 0, and free at x = 1. A program was developed for the
purpose and many examples were solved numerically, including the following.

4.1. CONVERGENCE AND ACCURACY STUDIES

To validate the present method for FGM plates, two test examples are first examined. By
varying the number of N and M, convergence study has been undertaken in Table 2 for the
first 10 natural frequencies of simply supported aluminum oxide/Ti-6Al-4V square plates
(a=b=04m, h =0005m, n =0, 2000) together with the solutions given by He et al. [19]
for direct comparison. The plates are purely aluminum oxide at the top surface and purely
Ti-6Al1-4V at the bottom surface with the material properties evaluated at Ty = 300 K. It is
observed that the present method converges well enough to obtain results in good
agreement with those in reference [19], when N > 13 and M > 5. Thus, N x M = 13 x 5 has
been used in all the following computations.

As another part of validation, static bending of simply supported aluminum/zirconia
square plates (axbxh=02mx02mx0-:01m) under uniform Ilateral pressure is
considered. Results are compared in Figure 1 with the finite element solutions of Praveen
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TABLE 6

Frequency parameter w* = (Qb%/n?)/I,Dy for FGM square plates having free edge(s) at
x = 0 and/or 1 and immovable constraints at y =0, 1 (A, =0, 1, =0, n =2:0, T, = 300K)

Mode sequences

AT Boundary
(K) condition  b/h 1 2 3 4 5 6 7 8

0 CCCF 10 27939 45380 69679 83109 86828 11-8089 120395 13-4111
5 48453 75422 109235 13:0657 133379 17-8871 18:1978 20-0965

CSCF 10 27342 40710 69364 74410 83963 114629 11-7852 12:6117

5 47422 69144 108773 121021 13-0115 17-2953 18:1726 191323

CFCF 10 26040 3:0576 49221 67622 7-3815 87630 9-3925 11-:6084

5 45404 52263 82485 10-6181 11-5263 13-9973 14-3996 179293

300 CCCF 10 25382 42903 64864 79788 81917 11-1014 11-4873 12-6845
5 45849 72213 10-3821 12:5715 12:7370 17-1537 17-3552 19-3437

CSCF 10 24773 3-8289 64553 71343 79097 109254 11-0783 12-1487

5 44842 66121 103376 11-6442 12-4209 16-:5830 17-3312 184299

CFCF 10 23420 2-8072 4-6683 62807 68960 84183 88879 10-9029

5 42857 49570 79084 10-0844 109669 13-4772 13-7671 17-0946

500 CCCF 10 22929 40328 60081 7-6050 7-6830 10-3901 10-8847 11-9330
5 43098 68602 97950 11:9949 12:0669 16-:3131 16:4287 18:3906

CSCF 10 22317 3:5822 59778 67930 74089 103428 10-3675 11:6120

5 42129 62753 97527 11-1121 117643 157685 164059 17-6013

CFCF 10 20929 2:5621 4-3996 5-8054 64057 80275 83553 10-1962

5 40206 46664 7-5214 9-5084 10-3526 12:8685 13-0531 16:1787
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Figure 3. Effect of material composition on the dynamic response of CSCS FGM square plates subjected to
a suddenly applied lateral load: (a) central deflection versus time; (b) central bending moment versus time.
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Figure 4. Effect of temperature rise 4T on the dynamic response of CCCC FGM plates subjected to a suddenly
applied lateral load: (a) central deflection versus time; (b) central bending moment versus time.

and Reddy [20]. In this comparison the material properties are assumed to be
temperature-independent, i.e., E,, = 70 GPa, v,, = 0-3, E, = 151 GPa, v, = 0-3. They show
that the present results agree well with those in reference [20].

4.2. NUMERICAL RESULTS FOR FREE VIBRATION

Dimensionless natural frequency parameters w* = (Qb?/n?)./Io/Do of SizN,/SUS304
rectangular plates are given in a tabular form. Table 3 gives the natural frequencies of
pre-stressed CCCC FGM square plates (b/h = 10) with different material compositions and
under thermal environmental condition AT =300K. In Table 3, movable in-plane
boundary conditions are considered. The fully SizN, and SUS304 cases correspond to
isotropic plates in nature, while the other four cases (n = 0-2, 2, 5, 10) are for the graded
plates with two constituent materials. It is evident that, from Table 1, the bending stiffness is
the maximum for the ceramic plate, the minimum for the metallic plate, and degrades
gradually as the volume fraction index n increases. Five sets of initial in-plane loading
conditions are considered. 4, = 4, = 0 denotes no in-plane loads. 4, = 0 and 4, = — 5 (or
5) denote unixial stretching or compression, and 4, = A, = — 5 (or 5) denotes equal biaxial
stretching or compression. As demonstrated by the results, w* decreases as material
composition varies from pure silicon nitride to pure steel. It is also observed that, for the
fixed material mixtures, with the same increase in temperature, o* increases by increasing
initial in-plane tension and decreases by increasing initial edge compression.
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Figure 5. Effect of free boundary condition on the dynamic response of FGM square plates with immovable
edges at Y =0, b and subjected to a suddenly applied lateral load: (a) central deflection versus time; (b) central
bending moment versus time.

Table 4 gives frequencies of FGM rectangular plates (f = 0-5, 1-0, 1-5) with volume
fraction index n ( = 0-2, 2, 10) and with different boundary conditions (CSCS, CSCC and
CCCC), under thermal environmental condition AT = 300 K. Immovable in-plane
boundary conditions are considered. The results show that the CCCC rectangular plate has
the highest, whereas the CSCS plate has the lowest natural frequency values, implying that
the plate with greater support rigidity will have higher vibrating frequencies. Meanwhile,
w* decreases dramatically as f§ increases from 0-5 to 1-5, and decrease as n increases from
0-2 to 10.

To show the effects of thermal environments, transverse shear deformation and rotary
inertia on vibration characteristics of FGM plates, dimensionless frequencies for CCCC,
CSCC and CSCS FGM square plates (n = 2:0) with different values of b/h (=5, 10) are
given in Table 5. Three sets of thermal environments, i.e., AT = 0, 300 and 500K are taken
into consideration. As expected, w* decreases as AT increases. This is because Young’s
modulus usually decreases with rising temperatures. It can be seen that, due to the effects of
transverse shear deformation and rotary inertia, the frequencies of FGM plates increase as
b/h varies from 10 to 5.

In Table 6, we examine the vibration characteristics of an FGM square plate (n = 2-0)
with immovable edges at y=0, 1 and free edge(s) at x =0 and/or 1. The
results show that the CCCF plate has the maximum value, and the CFCF plate has the
minimum value of w*.
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Figure 6. Effect of initial membrane stress on the dynamic response of CCCC FGM square plates subjected to
a suddenly applied lateral load: (a) central deflection versus time; (b) central bending moment versus time.

4.3, NUMERICAL RESULTS FOR TRANSIENT RESPONSE

Parametric studies have been performed to study the transient response of FGM plates
subjected to a uniform lateral dynamic load combined with initial membrane stresses under
thermal environments. Typical results are plotted in Figures 2-8. It should be appreciated
that in all these figures, t* =t./Eo/poa®, wo = W.Eoh®/qgoa* and M., = My./qoa®
represent the dimensionless forms of, respectively, time, deflection and bending moment at
the point (X, Y) = (a/2, b/2).

We begin by examining the effect of material composition on the transient response of
CCCC and CSCS SizN,/SUS304 square plates subjected to a suddenly applied lateral load,
under thermal environmental condition 4T = 300K. Figures 2 and 3 show, respectively,
the deflections and bending moments as functions of varying volume fraction index n. For
the CCCC plate, the higher the bending rigidity is, the lower will be the peak value of
deflections. However, the minimum dynamic deflection of the CSCS plate occurs when
n = 0-2, but not in the case of an isotropic silicon nitride plate, indicating that the dynamic
response of graded plates do not necessarily lie between those of isotropic metal and
ceramic plates.

It is noted that, in both Figures 2 and 3, bending moments of plates with graded material
composition are much higher than those of purely metallic and ceramic plates. This is due
to the fact that, the thermal expansion at the top surface is lower than that at the bottom
surface, uniform high temperature change results in a downward deflection and initial
bending moments of the FGM plate.



VIBRATION AND TRANSIENT RESPONSE OF FGM PLATES 599

e
(=3
vy

a: movable pg=1-0; b/h=10
Fb: immovable 1: n=0-2; 2:n=2-0

<
(=}
=

e
S
@

dimensionless deflection, w,
o
(=}
3]

001
0-00
T,=300K; AT=300K
-0-01 L L L
0 2 4 6, 8
(a) dimensionless time, ¢
= 0-00

B=1-0; b/h=10 a: movable
1: n=0-2; 2:n=2-0 b: immovable
2

<
—_
"

1b

/j\/\/

0FT=300K; AT=300K b

P NG

0 2 4 6 8
(b) dimensionless time, ¢

<
%

dimensionless bending moment,
Py \ X
'S
W

Figure 7. Effect of in-plane boundary constraints on the dynamic response of CCCC FGM square plates
subjected to a suddenly applied lateral load: (a) central deflection versus time; (b) central bending moment versus
time.

Figure 4 shows the effect of thermal environments on the dynamic response of a CCCC
FGM rectangular plate subjected to a suddenly applied lateral load, under thermal
environmental conditions AT =0 and 300K. It can be seen that both deflections and
bending moments increase dramatically with increasing AT.

Figure 5 gives the dimensionless central deflection and bending moment as functions of
time for FGM square plates with free edge(s) at x = 0 and/or 1 (CFCF, CCCF and CSCF).
Results show that the plate with two opposite free edges, namely, the CFCF plate, produces
much more deflections and much less bending moments than the CCCF and CSCF plates.
It is also observed that the greater the volume fraction index n is, the greater will be the
thermally induced initial bending moments, and the plates with free edge will have more
bending moments than those without free edges.

Figure 6 shows the effects of initial membrane stresses on the dynamic response of
a CCCC FGM square plate with movable in-plane boundary conditions, subjected to
a suddenly applied lateral load and under thermal environmental condition AT = 300 K.
The results reveal that, although no initial deflections are induced by membrane stresses,
application of in-plane compression will result in considerable increase in both deflections
and bending moments.

Figure 7 compares the dynamic response of CCCC FGM square plates with movable and
immovable in-plane boundary conditions under the same loading condition of Figure 6. It
is seen that both dynamic deflection and bending moment in an immovable CCCC plate are
greater than those in a movable CCCC plate.
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Figure 8. Effect of dynamic load shape on the dynamic response of CCCC FGM square plates under thermal
environments: (a) central deflection versus time; (b) central bending moment versus time.

Figure 8 compares the dynamic response of a CCCC FGM square plate under load cases
1-3,1.e., suddenly applied load, sinusoidal load and exponential load, as defined in equation
(45). Here, the values used in the computations are dimensionless duration of the load
tox/Eo/poh = 6 and & = 4.

In Figures 4-8, the volume fraction index is chosen to be n = 0-2 and 2-0, and in Figures
2-4 and 8§, all the results are for the FGM plate with immovable in-plane boundary
conditions on all edges.

5. CONCLUDING REMARKS

Free vibration and the dynamic response of functionally graded rectangular plates
subjected to impulsive lateral loads combined with initial in-plane actions and under
thermal environments are investigated by using a semi-analytical approach. The present
formulations are based on Reddy’s higher order shear deformation plate theory to account
for the rotary inertia and parabolic distribution of the transverse shear strains through the
plate thickness. Non-linear temperature-dependency of material properties is also taken
into account. The plate under consideration is clamped on two opposite edges and may be
either free, simply supported or clamped on the remaining two others. Natural frequency
parameters and dynamic response for silicon nitride/stainless-steel rectangular plates are
presented in tabular and graphical format respectively. Numerical results show that, when
thermal effects are included, the plates with intermediate material properties do not
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necessarily have intermediate dynamic response. They also confirm that the vibration
characteristics and dynamic responses are significantly influenced by material composition,
temperature rise, the character of in-plane and out-of-plane boundary conditions, initial
membrane stresses, as well as dynamic load shape.
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