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Free and forced vibration analyses for initially stressed functionally graded plates in
thermal environment are presented. Material properties are assumed to be temperature
dependent, and graded in the thickness direction according to a simple power law
distribution in terms of the volume fractions of the constituents. Theoretical formulations
are based on Reddy's higher order shear deformation plate theory and include the thermal
e!ects due to uniform temperature variation. The plate is assumed to be clamped on two
opposite edges with the remaining two others either free, simply supported or clamped.
One-dimensional di!erential quadrature technique, Galerkin approach, and the modal
superposition method are used to determine the transient response of the plate subjected to
lateral dynamic loads. Comprehensive numerical results for silicon nitride/stainless-steel
rectangular plates are presented in dimensionless tabular and graphical forms. The roles
played by the constituent volume fraction index, temperature rise, shape and duration of
dynamic loads, initial membrane stresses as well as the character of boundary conditions are
studied. The results reveal that, when thermal e!ects are considered, functionally graded
plates with material properties intermediate to those of isotropic ones do not necessarily
have intermediate natural frequencies and dynamic responses.

� 2002 Elseiver Science Ltd. All rights reserved.
1. INTRODUCTION

Functionally graded materials (FGMs) are usually made from a mixture of metals and
ceramics through powder metallurgy processes. They have been regarded as one of the
advanced inhomogeneous composite materials in many engineering sectors due to their
#exible properties that can be tailored to di!erent applications and working environments
[1, 2]. This can be achieved by gradually varying the volume fraction of constituent
materials so that the mechanical properties exhibit a smooth and continuous change from
one surface to the other. FGMs have now been developed as important structural
components mainly used in high-temperature conditions and have been receiving
considerably more attention in recent years.
Numerous studies on free and forced vibration for isotropic and composite multilayered

plates with or without initial thermal and/or mechanical in-plane loads have been reported,
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.
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see, for example, references [3}14]. However, investigations on the free vibration and
transient response of FGM structures are limited in number. Among those, Tanigawa et al.
[15] examined transient thermal stress distribution of FGM plates induced by unsteady
heat conduction. Reddy and Chin [16] discussed a wide range of problems in FGM
cylinders and plates including thermo-mechanical coupling e!ects, among which transient
response of the plate due to heat #ux was one of the topics addressed. Finite element
solutions were given for simply supported rectangular plates by using the "rst order shear
deformation plate theory (FSDPT). Loy et al. [17] presented Rayleigh}Ritz solutions for
free vibration of simply supported FGM cylindrical shells. Gong et al. [18] investigated the
transient response of FGM cylindrical shells under low-velocity impact. He et al. [19] gave
"nite element formulations for the shape and vibration control of FGM thin plates with
integrated piezoelectric sensors and actuators. In references [17}19], material properties
were considered as a function of temperature, but the results were only for a "xed
temperature environment. Praveen and Reddy [20], also based on FSDPT, analyzed the
non-linear static and dynamic response of functionally graded ceramic}metal plates in
a steady temperature "eld and subjected to lateral dynamic loads by the "nite element
method. Reddy [21] developed both theoretical and "nite element formulations for thick
FGM plates according to the higher order shear deformation plate theory, and studied the
non-linear dynamic response of FGM plates subjected to suddenly applied uniform
pressure. However, they assumed that the material properties were temperature
independent. It should also be noted that none of the aforementioned analyses [15}21]
considered the e!ect of initial membrane stresses. To the best of authors' knowledge, there
are no results in the open literature concerning the vibration as well as transient response of
shear deformable FGM plates subjected to lateral dynamic load combined with initial
in-plane actions and in thermal environments. This is the subject of the present work.
In this paper, we assume that the functionally graded plates are made from two

constituent materials, whose material properties are non-linear functions of temperature
and graded in the thickness direction according to a power-law distribution of material
composition. The plate may be initially stressed by in-plane actions and has two opposite
edges clamped with the remaining two others either free, simply supported or clamped.
Bothmovable and immovable in-plane boundary conditions are considered. Reddy's higher
order shear deformation plate theory (HSDPT) [22] is used to predict the dynamic response
of FGM plates due to arbitrary dynamic loading. A semi-analytical approach is then
developed, which makes use of di!erential quadrature approximation, Galerkin technique,
and the modal superposition method. Comprehensive numerical results for the natural
frequencies and dynamic response of silicon nitride/stainless-steel rectangular plates are
presented. A parametric study is also carried out, highlighting the e!ects of material
composition, initial thermal and/or mechanical in-plane loads on the transient response
characteristics. The numerical results presented herein for FGM plates are not available in
the literature, and therefore, should be of interest to the engineering community.

2. THEORETICAL FORMULATIONS

2.1. FGM MATERIAL PROPERTIES

Here we consider an FGM rectangular plate of length a, width b and thickness h, which is
made from a mixture of ceramics and metals. We assume that the composition is varied
from the top to the bottom surface, i.e., the top surface (Z"h/2) of the plate is ceramic-rich,
whereas the bottom surface (Z"!h/2) is metal-rich. In such a way, the e!ective material
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propertiesP, such as Young's modulus E, the Poisson ratio �, mass density �, and coe$cient
of thermal expansion � can be expressed as

P"P
�
<

�
#P

�
<

�
, (1)

where subscripts &&t'' and &&b'' refer to the top and bottom surfaces of the plate, respectively;
<

�
and <

�
are the ceramic and metal volume fractions and are related by

<
�
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�
"1. (2)

The ceramic volume fraction <
�
is assumed to follow a simple power distribution as [16]
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where volume fraction index n dictates the material variation pro"le through the plate
thickness and may be varied to obtain the optimum distribution of component materials.
From equations (1)}(3), the e!ective Young's modulus E, the Poisson ratio �, mass density
� and thermal expansion coe$cient � of an FGM plate can be written as
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For functionally graded materials in high operating temperature, signi"cant variations in
thermal and mechanical properties of the materials are to be expected. Accurate prediction
of the mechanical response requires accounting for this temperature dependency. Therefore,
E
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, �
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, �

�
, �
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and �

�
are functions of temperature, as will be shown in section 4, so

that E, �, � and � are both temperature and position dependent.
Thermal force resultants, thermal moment resultants and higher order thermal moment

resultants due to temperature rise �¹ are de"ned by
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The various plate inertias may be calculated by
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2.2. GOVERNING EQUATIONS

Suppose the plate is initially stress free at temperature ¹
�
, and is then subjected to

thermo-mechanical loads, which include a uniform temperature rise �¹, a uniform lateral
dynamic load q (X, >, tM ) combined with in-plane edge loads p

�
in X direction and p

�
in

> direction.
Let tM be time, � be the natural frequency of the plate, ;M , <M and =M be the plate

displacements parallel to a right-hand set of co-ordinates (X, >, Z), �M
�
and �M

�
be the

mid-plane rotations of transverse normals about the >- and X-axis respectively. By
introducing the stress function FM (X, >) for the stress resultants (NM

�
"FM
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and
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), the equations of motion for an FGM rectangular plate can be derived as
follows:
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where the operators I̧
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and all other operators are de"ned as in reference [23], and
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In the above equations c
�
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It is noted that, because of equation (5), I̧
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The plate is assumed to be clamped on two opposite edges (at >"0, b) and the
remaining two edges may be free, simply supported or clamped, so that the boundary
conditions are
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where MM
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��
denote the bending moments per unit width of the plate, QM

�
is the

transverse shear force, PM
�
, PM
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and RM
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are the higher order moment and shear force.
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De"nition of these stress resultants was given in reference [22] and will not be repeated here
for brevity.
Following Shen [24], the immovable in-plane boundary conditions are ful"lled on the

average sense as
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The following dimensionless quantities are introduced:
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Equations of motion (9}12) can then be written in dimensionless form as
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The boundary conditions of equations (17) and (18) become
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and the end-shortening relationships become
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In equations (27) and (30), all other dimensionless quantities 	
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are de"ned as in
references [23, 24] and will not be repeated here for the sake of brevity.

3. SOLUTION METHODOLOGY

3.1. SEMI-ANALYTICAL DIFFERENTIAL QUADRATURE METHOD

This section extends our previous work [25, 26] to predict the transient response of FGM
rectangular plates. Solutions of =, �



, �

�
and F are constructed as

="

�
�

���

a
�
(t)w

�
(x, y), �



"

�
�

���

b
�
(t)�


�
(x, y) (31a, b)

�
�
"

�
�

���

c
�
(t)�

��
(x, y) (31c)

F"!�
�
(y��



#x��

�
)#

�
�

���

d
�
(t) f

�
(x, y) . (31d)

According to di!erential quadrature technique, w
�
, �


�
, �

��
and f

�
are approximated

along x-axis in terms of their function values at a number of pre-selected sampling points by

�w
�
, �


�
, �

��
, f

�

"

�
�
���

l
�
(x) �w

��
,�


��
, �

���
, f

��

 , (32)

where l
�
(x) is the Lagrange interpolation polynomial, and w

��
"w

�
(x

�
, y), �


��
"�


�
(x

�
, y),

�
���

"�
��
(x

�
, y), f

��
"f

�
(x

�
, y). Further, their rth partial derivatives with respect to x at

a sampling point x


(i"1,2,N) are expressed as

��

�x�
�w

�
,�


�
,�

��
, f

�

�

�



"

�
�
���

C ���

�

�w
��
, �


��
,�

���
, f

��

. (33)

Recursive formula for weighting coe$cient C ���

�

is available in reference [27]. Its value
depends on the choice of the interpolation function and the sampling point system, which in
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the present analysis is designed as

x
�
"0)0, x

�
"0)0001, x

�
"

1

2 �1!cos
� ( j!2)

N!3 �, x
���

"0)9999, x
�
"1)0. (34)

For the plate clamped at y"0,1, w
��
, �


��
, �

���
and f

��
are modelled by

w
��

"sin �
�
y!sinh �

�
y!�

�
(cos �

�
y!cosh �

�
y), (35a)

f
��

"sin �
�
y!sinh �

�
y!�

�
(cos �

�
y!cosh �

�
y), (35b)

�

��

"sin (m�y), �
���

"sin (m�y), (35c)

where

�
�
"(sin �

�
!sinh �

�
)/(cos �

�
!cosh�

�
), �

�
"(2m#1)�/2. (35d)

It should be pointed out that, although our present work focuses on initially stressed
FGM plates clamped at y"0, 1, it is equally applicable to deal with FGM plates simply
supported at y"0, 1 only if initial in-plane actions are absent andw

��
, �


��
, �

���
and f

��
are

assumed as

w
��

"sin (m�y), (36a)

f
��

"sin �
�
y!sinh �

�
y!�

�
(cos �

�
y!cosh �

�
y), (36b)

�

��

"sin (m�y), �
���

"cos (m�y). (36c)

Application of equations (31}33) to the equations of motion (23}26) produces 4N sets of
ordinary di!erential equations. Finally, substituting equation (35) or (36) into these
equations and then applying the Galerkin procedure leads to

[K] ��(t)
#[G]�
G (t)
"�R (t)
, (37)

where [K] and [G] are constant matrices, �R (t)
 is the dynamic load vector, ��(t )
 is
a column vector comprising of a

��
(t), b

��
(t), c

��
(t) and d

��
(t) at each nodal line.

If, in equation (37), the lateral load vector �R (t)
 vanishes, a linear eigenvalue problem is
then produced, from which vibration characteristics of the FGM plate can be readily
determined

([K]!��[G]) ��
"�0
. (38)

3.2. MODAL SUPERPOSITION APPROACH FOR TRANSIENT RESPONSE

Now we try to solve equation (37) and assume that

�� (t )
" �
���

�� ���
¹ ��� (t) (39)

in which ¹ ��� (t) is the kth order principal modal co-ordinate, and � ��� is the modal shape
function associated with the kth order natural frequency parameter � ���. Substituting



TABLE 1

¹emperature-dependent coe.cients of elastic modulus E (GPa), the Poisson ratio �, mass
density � (kg/m�) and linear thermal expansion � (1/K) ceramics and metals

( from reference [16])

Material P
��

P
�

P
�

P
�

P
�

E Si
�
N

�
0 348)43e9 !3)070e!4 2)160e-7 !8)946e!11

SUS304 0 201)04e9 3)079e!4 !6)534e!7 0
Ti}6Al}4V 0 122)56e9 !4)586e!4 0 0

Aluminum oxide 0 349)55e9 !3)853e!4 4)027e!7 !1)673e!10

� Si
�
N

�
0 0)2400 0 0 0

SUS304 0 0)3262 !2.002e!4 3.797e!7 0
Ti}6Al}4V 0 0)2884 1.121e!4 0 0

Aluminum oxide 0 0)26 0 0 0

� Si
�
N

�
0 2370 0 0 0

SUS304 0 8166 0 0 0
Ti}6Al}4V 0 4429 0 0 0

Aluminum oxide 0 3750 0 0 0

� Si
�
N

�
0 5.8723e!6 9.095e!4 0 0

SUS304 0 12.330e!6 8.086e!4 0 0
Ti}6Al}4V 0 7.5788e!6 6.638e!4 !3.147e!6 0

Aluminum oxide 0 6.8269e!6 1)838e!4 0 0
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equation (39) into equation (37), we get

�
���

([K]�� ���
¹ ���(t)#[G]�� ���
¹G ��� (t))"�R (t)
. (40)

Making use of orthogonality properties of the modal shape functions yields

¹$ ���(t)#(� ���)�¹ ���(t)"R ���(t )/G ��� (41)

in which

R ��� (t)"�� ���
��R (t)
, G ���"�� ���
�[G]�� ���
 . (42)

If zero-valued initial conditions prevail, the solution of equation (41) can be obtained as

¹ ��� (t)"
1

� ���G ��� �
�

�

R ��� (�) sin [� ��� (t!�) d�. (43)

Re-substituting ¹ ��� (t) into equation (39) yields a transient response at any given time.

4. NUMERICAL RESULTS AND DISCUSSION

This section consists of three parts: (1) accuracy and convergence studies of present
formulations; (2) free vibration analysis with comprehensive information on the natural
frequency parameters of FGM rectangular plates; and (3) numerical results for the transient
response of FGM rectangular plates. Silicon nitride and stainless steel are chosen to be the



TABLE 2

Natural frequencies (Hz) of simply supported aluminum oxide/¹i}6Al}4< square plates

Source Mode sequence

n"0 1 2 3 4 5 6 7 8 9 10

N�M"9�5 143)99 360)10 360)10 569)44 699)36 719)81 918)77 918)77 1281)31 1791)33
N�M"11�5 143)96 360)06 360)06 568)85 718)55 718)22 916)76 916)76 1207)13 1221)67
N�M"13�5 143)96 360)07 360)07 568)87 718)22 718)22 916)40 916)40 1207)13 1207)13
N�M"15�6 143)96 360)07 360)07 568)88 718)22 718)22 916)40 916)40 1207)09 1207)09
He et al. [19] 144)66 360)53 360)53 569)89 720)57 720)57 919)74 919)74 1225)72 1225)72

n"2000

N�M"9�5 261)50 653)18 654)04 1045)31 1261)77 1304)79 1672)90 1696)09 2214)41 2312)21
N�M"11�5 261)46 653)10 653)10 1044)27 1303)60 1303)60 1693)83 1694)94 2214)41 2269)67
N�M"13�5 261)46 653)13 653)13 1044)30 1304)79 1304)79 1694)98 1694)98 2214)41 2214)41
N�M"15�6 261)46 653)14 653)14 1044)31 1304)79 1304)79 1694)98 1694)98 2214)34 2214)34
He et al. [19] 268)92 669)40 669)40 1052)49 1338)52 1338)52 1695)23 1695)23 2280)95 2280)98

590
J.
Y
A
N
G

A
N
D

H
.-S

.S
H
E
N



Figure 1. Comparisons of dimensionless central de#ection versus load for SSSS FGM square plates under
uniform lateral pressure.

Figure 2. E!ect of material composition on the dynamic response of CCCC FGM square plates subjected to
a suddenly applied lateral load: (a) central de#ection versus time; (b) central bending moment versus time.
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constituent materials of the FGM plate, referred to as Si
�
N

�
/SUS304, in the present

analysis. Their material properties P, such as Young's modulus E, the Poisson ratio �,
coe$cient of thermal expansion � and mass density � can be expressed as a non-linear



TABLE 3

Frequency parameter �*"(�b�/��)�I
�
/D

�
for initially stressed CCCC FGM square plates

(b/h"10, ¹
�
"300K, �¹"300, movable edges)

Material
Mode sequences

(�


, �

�
) composition 1 2 3 4 5 6 7 8

=ithout in-plane load
(0, 0) Si

�
N

�
7)2881 14)0406 14)0406 19)9234 22)3000 23)5294 27)4326 28)5645

n"0)2 5)6087 10)8110 10)8110 15)3407 17)0530 18)1203 21)0162 21)9918
n"2)0 3)9680 7)6201 7)6201 10)7972 12)1600 12)7314 14)9223 15)4456
n"5)0 3)6104 6)9116 6)9116 9)7777 11)0655 11)5138 13)5468 13)9563
n"10)0 3)4832 6)6610 6)6610 9)4180 10)6792 11)0853 13)0622 13)4329
SUS304 3)1703 6)0764 6)0764 8)5985 9)6632 10)1307 11)8541 12)2786

;nder uniaxial in-plane loads
(0, !5) Si

�
N

�
8)9507 14)9389 17)4802 22)3730 24)0521 26)9978 30)2916 31)3337

n"0)2 6)8833 11)4980 13)4452 17)2119 18)5196 20)6879 23)3074 24)0241
n"2)0 4)8841 8)1184 9)5244 12)1599 13)0229 14)7428 16)4127 17)0761
n"5)0 4)4521 7)3715 8)6657 11)0367 11)7833 13)4302 14)8534 15)5244
n"10)0 4)2980 7)1068 8)3601 10)6388 11)3467 12)9642 14)3039 14)9750
SUS304 3)9050 6)4762 7)6041 9)6913 10)3646 11)7401 13)0542 13)5842

(0, 5) Si
�
N

�
4)9417 9)6267 13)0631 15)8552 17)1023 22)6390 22)9755 24)1620

n"0)2 3)8156 7)4414 10)0643 11)9073 13)1883 17)2554 17)6977 18)1990
n"2)0 2)6655 5)1597 7)0763 8)6897 9)2216 12)3076 12)4212 13)2759
n"5)0 2)4061 4)6319 6)4084 7)9372 8)3173 11)1660 11)2254 12)1914
n"10)0 2)3149 4)4481 6)1727 7)6751 8)0003 10)7669 10)8050 11)8306
SUS304 2)1239 4)0997 5)6399 6)8394 7)3334 9)7404 9)8817 10)4131

;nder biaxial in-plane loads
(!5, !5) Si

�
N

�
10)3562 18)0354 18)0354 24)4867 27)4436 28)2317 32)8375 33)6531

n"0)2 7)9634 13)8711 13)8711 18)8288 21)0303 21)7116 25)1754 25)8714
n"2)0 5)6546 9)8269 9)8269 13)3304 14)9883 15)3474 17)9095 18)2868
n"5)0 5)1573 8)9417 8)9417 12)1147 13)6549 13)9304 16)2918 16)5864
n"10)0 4)9797 8)6266 8)6266 11)6828 13)1813 13)4284 15)7181 15)9847
SUS304 4)5226 7)8456 7)8456 10)6291 11)9368 12)2277 14)2520 14)5556

(5, 5) Si
�
N

�
4)1264 8)0910 8)0910 13)8397 15)0218 17)5560 20)3600 22)2890

n"0)2 3)5310 6)2684 6)2684 10)7029 11)2573 13)5674 15)5005 17)2184
n"2)0 3)0857 4)2971 4)2971 7)3903 8)2294 9)3830 11)0399 11)9147
n"5)0 2)1872 3)8272 3)8272 6)6123 7)5132 8)4022 9)9946 10)6675
n"10)0 2)0820 3)6652 3)6652 6)3428 7)2645 8)0625 9)6316 10)2354
SUS304 1)8524 3)4201 3)4201 5)8607 6)4662 7)4406 8)7179 9)4426
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function of temperature, see reference [28], as

P"P
�
(P

��
¹��#1#P

�
¹#P

�
¹�#P

�
¹� ) (44)

in which ¹"¹
�
#�¹ and ¹

�
"300 K (room temperature), P

�
, P

��
, P

�
, P

�
and P

�
are

the coe$cients of temperature ¹ (K) and are unique to the constituent materials. Typical
values for silicon nitride and stainless steel are listed in Table 1 (from reference [16]).
A uniform lateral dynamic pressure q (X,>, tM )"q

�
F (tM ) is applied on the top surface of

the plate, in which q
�
is the maximum amplitude and F (tM ) is a dynamic load shape function

in time domain. Three sets of lateral loads, namely, suddenly applied load (Case 1),



TABLE 4

Frequency parameter �*"(�b�/��)�I
�
D

�
for FGM rectangular plates with immovable

inplane constraints on all edges (�


"0, �

�
"0, b/h"10, ¹

�
"300K, �¹"300K)

Mode sequences
Boundary
condition � n 1 2 3 4 5 6 7 8

CCCC 0)5 0)2 13)2966 16)8384 21)7947 29)5710 29)9195 30)4560 32)4340 36)4854
2)0 9)2196 11)6913 15)2957 20)4667 21)2323 21)4468 22)4853 25)4461
10)0 7)9839 10)1219 13)3088 17)6295 18)3727 18)9066 19)3778 21)9914

1)0 0)2 5)2968 10)4371 10)4371 14)9290 16)5741 17)7034 20)5278 21)5468
2)0 3)6638 7)2545 7)2545 10)3924 11)7056 12)3207 14)4521 15)0049
10)0 3)1835 6)3001 6)3001 9)0171 10)2372 10)6781 12)6015 12)9948

1)5 0)2 3)9765 6)1040 9)5486 9)5486 11)3705 14)0829 14)3854 15)7688
2)0 2)7373 4)2236 6)6331 6)6331 7)9088 9)8122 10)0191 11)1492
10)0 2)3753 3)6692 5)7618 5)7618 6)8690 8)5206 8)6979 9)7598

CSCC 0)5 0)2 10)4436 14)9271 20)5267 26)3159 29)2684 29)5666 29)7938 34)2248
2)0 7)2700 10)3909 14)4520 18)3203 20)6030 20)7767 21)0353 23)9649
10)0 6)3045 9)0158 12)6007 15)8335 17)8142 17)9830 18)5759 20)7626

1)0 0)2 4)6631 9)1716 10)2161 14)1166 16)1116 16)4120 19)9868 19)9868
2)0 3)2130 6)3768 7)1005 9)8347 11)2403 11)5963 14)0890 14)0890
10)0 2)7875 5)5432 6)1677 8)5402 9)7597 10)1457 12)2956 12)2956

1)5 0)2 3)7925 5)5711 8)7758 9)4673 11)0884 13)0969 13)8702 15)7197
2)0 2)6055 3)8464 6)0993 6)5763 7)7126 9)1348 9)6646 11)1159
10)0 2)2589 3)3394 5)3034 5)7124 6)6996 7)9411 8)3942 9)7315

CSCS 0)5 0)2 8)0435 13)3985 19)5039 22)9349 26)9062 28)7000 29)0742 32)0506
2)0 5)6274 9)3391 13)7657 16)0523 18)8195 20)3041 20)6723 22)5310
10)0 4)8601 8)1143 12)0203 13)9352 16)3154 17)5880 18)2817 19)5699

1)0 0)2 4)2154 8)0126 9)9887 13)3987 14)5651 16)2614 19)2150 19)5020
2)0 2)8949 5)5639 6)9416 9)3387 10)1822 11)4954 13)4275 13)7617
10)0 2)5069 4)8386 6)0299 8)1141 8)8554 10)0600 11)6601 12)0190

1)5 0)2 3)6645 5)1178 8)0131 9)4005 10)8442 12)1363 13)3988 15)6765
2)0 2)5148 3)5238 5)5646 6)5295 7)5421 8)4704 9)3387 11)0866
10)0 2)1791 3)0565 4)8389 5)6718 6)5521 7)3709 8)1141 9)7065
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sinusoidal load (Case 2), and exponential load (Case 3), are considered in the present
analysis, whose pulse shapes are de"ned as

Case 1:

F (tM )"1. (45a)

Case 2:

F (tM )"�
sin (�tM /tM

�
), tM )tM

�
,

0, tM 'tM
�
.

(45b)

Case 3:

F (tM )"e!�tM . (45c)

In the following numerical illustrations, the initial stress-free temperature is set at
¹

�
"300 K. D

�
and I

�
are chosen to be the values of D

��
and I

�
of a stainless-steel plate of



TABLE 5

Frequency parameter �*"(�b�/��)�I
�
D

�
for FGM square plates under three sets of

thermal environments (n"2)0, ¹
�
"300K, immovable)

Mode sequences
�¹ Boundary
(K) condition b/h 1 2 3 4 5 6 7 8

0 CCCC 10 4)1062 7)8902 7)8902 11)1834 12)5881 13)1867 15)4530 16)0017
5 6)8757 12)1576 12)1576 16)5854 18)9362 19)2780 22)5928 22)7898

CSCC 10 3)6705 7)0131 7)7426 10)6189 12)0942 12)4766 15)0828 15)1834
5 6)2670 11)2265 12)0465 16)0202 17)9957 19)1341 21)8714 22)4638

CSCS 10 3)3564 6)2058 7)5814 10)1160 11)0243 12)3740 14)3955 14)7487
5 5)7918 10)2959 11)8412 15)4864 17)0128 19)0295 21)1590 22)1571

300 CCCC 10 3)6636 7)2544 7)2544 10)3924 11)7054 12)3175 14)4520 15)0019
5 6)4638 11)4980 11)4980 15)7253 17)9744 18)3085 21)4681 21)6633

CSCC 10 3)2130 6)3768 7)1005 9)8347 11)2403 11)5963 14)0890 14)2002
5 5)8653 10)5940 11)3852 15)1786 17)0657 18)1691 20)7717 21)3492

CSCS 10 2)8949 5)5639 6)9416 9)3387 10)1822 11)4954 13)4275 13)7617
5 5)4004 9)6876 11)1862 14)6624 16)1151 18)0682 20)0842 21)0538

500 CCCC 10 3)2357 6)6281 6)6281 9)5990 10)8285 11)4350 13)4412 13)9756
5 6)0369 10)7959 10)7959 14)7982 16)9321 17)2601 20)2414 20)4373

CSCC 10 2)7712 5)7598 6)4707 9)0547 10)3862 10)7235 13)0899 13)2002
5 5)4556 9)9297 10)6839 14)2760 16)0647 17)1274 19)5771 20)1384

CSCS 10 2)4499 4)9479 6)3157 8)5709 9)3539 10)6255 12)4519 12)7736
5 5)0067 9)0575 10)4933 13)7829 15)1583 17)0315 18)9217 19)8575
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b/h"10. E
�
and �

�
serve, respectively, as the reference values of elastic modulus and mass

density, and are selected to be the Young's modulus and mass density of stainless steel. The
above reference parameters are all evaluated at ¹

�
. Dimensionless in-plane loads are

expressed as (�


, �

�
)"(p



, p

�
)a�/��D*

��
. For the sake of brevity, a clockwise notation

starting from y"0 is employed. Symbol &&CSCF'', for example, identi"es a plate clamped at
y"0, 1, simply supported at x"0, and free at x"1. A program was developed for the
purpose and many examples were solved numerically, including the following.

4.1. CONVERGENCE AND ACCURACY STUDIES

To validate the present method for FGM plates, two test examples are "rst examined. By
varying the number ofN andM, convergence study has been undertaken in Table 2 for the
"rst 10 natural frequencies of simply supported aluminum oxide/Ti}6Al}4V square plates
(a"b"0)4m, h"0)005m, n"0, 2000) together with the solutions given by He et al. [19]
for direct comparison. The plates are purely aluminum oxide at the top surface and purely
Ti}6Al}4V at the bottom surface with the material properties evaluated at ¹

�
"300K. It is

observed that the present method converges well enough to obtain results in good
agreement with those in reference [19], whenN*13 andM*5. Thus,N�M"13�5 has
been used in all the following computations.
As another part of validation, static bending of simply supported aluminum/zirconia

square plates (a�b�h"0)2m�0)2m�0)01m) under uniform lateral pressure is
considered. Results are compared in Figure 1 with the "nite element solutions of Praveen



TABLE 6

Frequency parameter �*"(�b�/��)�I
�
D

�
for FGM square plates having free edge(s) at

x"0 and/or 1 and immovable constraints at y"0, 1 (�


"0, �

�
"0, n"2)0, ¹

�
"300K)

Mode sequences
�¹ Boundary
(K) condition b/h 1 2 3 4 5 6 7 8

0 CCCF 10 2)7939 4)5380 6)9679 8)3109 8)6828 11)8089 12)0395 13)4111
5 4)8453 7)5422 10)9235 13)0657 13)3379 17)8871 18)1978 20)0965

CSCF 10 2)7342 4)0710 6)9364 7)4410 8)3963 11)4629 11)7852 12)6117
5 4)7422 6)9144 10)8773 12)1021 13)0115 17)2953 18)1726 19)1323

CFCF 10 2)6040 3)0576 4)9221 6)7622 7)3815 8)7630 9)3925 11)6084
5 4)5404 5)2263 8)2485 10)6181 11)5263 13)9973 14)3996 17)9293

300 CCCF 10 2)5382 4)2903 6)4864 7)9788 8)1917 11)1014 11)4873 12)6845
5 4)5849 7)2213 10)3821 12)5715 12)7370 17)1537 17)3552 19)3437

CSCF 10 2)4773 3)8289 6)4553 7)1343 7)9097 10)9254 11)0783 12)1487
5 4)4842 6)6121 10)3376 11)6442 12)4209 16)5830 17)3312 18)4299

CFCF 10 2)3420 2)8072 4)6683 6)2807 6)8960 8)4183 8)8879 10)9029
5 4)2857 4)9570 7)9084 10)0844 10)9669 13)4772 13)7671 17)0946

500 CCCF 10 2)2929 4)0328 6)0081 7)6050 7)6830 10)3901 10)8847 11)9330
5 4)3098 6)8602 9)7950 11)9949 12)0669 16)3131 16)4287 18)3906

CSCF 10 2)2317 3)5822 5)9778 6)7930 7)4089 10)3428 10)3675 11)6120
5 4)2129 6)2753 9)7527 11)1121 11)7643 15)7685 16)4059 17)6013

CFCF 10 2)0929 2)5621 4)3996 5)8054 6)4057 8)0275 8)3553 10)1962
5 4)0206 4)6664 7)5214 9)5084 10)3526 12)8685 13)0531 16)1787

Figure 3. E!ect of material composition on the dynamic response of CSCS FGM square plates subjected to
a suddenly applied lateral load: (a) central de#ection versus time; (b) central bending moment versus time.
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Figure 4. E!ect of temperature rise �¹ on the dynamic response of CCCC FGM plates subjected to a suddenly
applied lateral load: (a) central de#ection versus time; (b) central bending moment versus time.
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and Reddy [20]. In this comparison the material properties are assumed to be
temperature-independent, i.e., E

�
"70 GPa, �

�
"0)3, E

�
"151 GPa, �

�
"0)3. They show

that the present results agree well with those in reference [20].

4.2. NUMERICAL RESULTS FOR FREE VIBRATION

Dimensionless natural frequency parameters �*"(�b�/��)�I
�
/D

�
of Si

�
N

�
/SUS304

rectangular plates are given in a tabular form. Table 3 gives the natural frequencies of
pre-stressed CCCC FGM square plates (b/h"10) with di!erent material compositions and
under thermal environmental condition �¹"300K. In Table 3, movable in-plane
boundary conditions are considered. The fully Si

�
N

�
and SUS304 cases correspond to

isotropic plates in nature, while the other four cases (n"0)2, 2, 5, 10) are for the graded
plates with two constituent materials. It is evident that, from Table 1, the bending sti!ness is
the maximum for the ceramic plate, the minimum for the metallic plate, and degrades
gradually as the volume fraction index n increases. Five sets of initial in-plane loading
conditions are considered. �



"�

�
"0 denotes no in-plane loads. �



"0 and �

�
"!5 (or

5) denote unixial stretching or compression, and �


"�

�
"!5 (or 5) denotes equal biaxial

stretching or compression. As demonstrated by the results, �* decreases as material
composition varies from pure silicon nitride to pure steel. It is also observed that, for the
"xed material mixtures, with the same increase in temperature, �* increases by increasing
initial in-plane tension and decreases by increasing initial edge compression.



Figure 5. E!ect of free boundary condition on the dynamic response of FGM square plates with immovable
edges at >"0, b and subjected to a suddenly applied lateral load: (a) central de#ection versus time; (b) central
bending moment versus time.
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Table 4 gives frequencies of FGM rectangular plates (�"0)5, 1)0, 1)5) with volume
fraction index n ("0)2, 2, 10) and with di!erent boundary conditions (CSCS, CSCC and
CCCC), under thermal environmental condition �¹"300 K. Immovable in-plane
boundary conditions are considered. The results show that the CCCC rectangular plate has
the highest, whereas the CSCS plate has the lowest natural frequency values, implying that
the plate with greater support rigidity will have higher vibrating frequencies. Meanwhile,
�* decreases dramatically as � increases from 0)5 to 1)5, and decrease as n increases from
0)2 to 10.
To show the e!ects of thermal environments, transverse shear deformation and rotary

inertia on vibration characteristics of FGM plates, dimensionless frequencies for CCCC,
CSCC and CSCS FGM square plates (n"2)0) with di!erent values of b/h ("5, 10) are
given in Table 5. Three sets of thermal environments, i.e., �¹"0, 300 and 500K are taken
into consideration. As expected, �* decreases as �¹ increases. This is because Young's
modulus usually decreases with rising temperatures. It can be seen that, due to the e!ects of
transverse shear deformation and rotary inertia, the frequencies of FGM plates increase as
b/h varies from 10 to 5.
In Table 6, we examine the vibration characteristics of an FGM square plate (n"2)0)

with immovable edges at y"0, 1 and free edge(s) at x"0 and/or 1. The
results show that the CCCF plate has the maximum value, and the CFCF plate has the
minimum value of �*.



Figure 6. E!ect of initial membrane stress on the dynamic response of CCCC FGM square plates subjected to
a suddenly applied lateral load: (a) central de#ection versus time; (b) central bending moment versus time.
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4.3. NUMERICAL RESULTS FOR TRANSIENT RESPONSE

Parametric studies have been performed to study the transient response of FGM plates
subjected to a uniform lateral dynamic load combined with initial membrane stresses under
thermal environments. Typical results are plotted in Figures 2}8. It should be appreciated

that in all these "gures, t*"tM �E
�
/�

�
a�, w

�
"=M

�
E
�
h�/q

�
a� and M


�
"MM

��
/q

�
a�

represent the dimensionless forms of, respectively, time, de#ection and bending moment at
the point (X, >)"(a/2, b/2).
We begin by examining the e!ect of material composition on the transient response of

CCCC and CSCS Si
�
N

�
/SUS304 square plates subjected to a suddenly applied lateral load,

under thermal environmental condition �¹"300K. Figures 2 and 3 show, respectively,
the de#ections and bending moments as functions of varying volume fraction index n. For
the CCCC plate, the higher the bending rigidity is, the lower will be the peak value of
de#ections. However, the minimum dynamic de#ection of the CSCS plate occurs when
n"0)2, but not in the case of an isotropic silicon nitride plate, indicating that the dynamic
response of graded plates do not necessarily lie between those of isotropic metal and
ceramic plates.
It is noted that, in both Figures 2 and 3, bending moments of plates with graded material

composition are much higher than those of purely metallic and ceramic plates. This is due
to the fact that, the thermal expansion at the top surface is lower than that at the bottom
surface, uniform high temperature change results in a downward de#ection and initial
bending moments of the FGM plate.



Figure 7. E!ect of in-plane boundary constraints on the dynamic response of CCCC FGM square plates
subjected to a suddenly applied lateral load: (a) central de#ection versus time; (b) central bending moment versus
time.
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Figure 4 shows the e!ect of thermal environments on the dynamic response of a CCCC
FGM rectangular plate subjected to a suddenly applied lateral load, under thermal
environmental conditions �¹"0 and 300K. It can be seen that both de#ections and
bending moments increase dramatically with increasing �¹.
Figure 5 gives the dimensionless central de#ection and bending moment as functions of

time for FGM square plates with free edge(s) at x"0 and/or 1 (CFCF, CCCF and CSCF).
Results show that the plate with two opposite free edges, namely, the CFCF plate, produces
much more de#ections and much less bending moments than the CCCF and CSCF plates.
It is also observed that the greater the volume fraction index n is, the greater will be the
thermally induced initial bending moments, and the plates with free edge will have more
bending moments than those without free edges.
Figure 6 shows the e!ects of initial membrane stresses on the dynamic response of

a CCCC FGM square plate with movable in-plane boundary conditions, subjected to
a suddenly applied lateral load and under thermal environmental condition �¹"300K.
The results reveal that, although no initial de#ections are induced by membrane stresses,
application of in-plane compression will result in considerable increase in both de#ections
and bending moments.
Figure 7 compares the dynamic response of CCCC FGM square plates with movable and

immovable in-plane boundary conditions under the same loading condition of Figure 6. It
is seen that both dynamic de#ection and bending moment in an immovable CCCC plate are
greater than those in a movable CCCC plate.



Figure 8. E!ect of dynamic load shape on the dynamic response of CCCC FGM square plates under thermal
environments: (a) central de#ection versus time; (b) central bending moment versus time.
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Figure 8 compares the dynamic response of a CCCC FGM square plate under load cases
1}3, i.e., suddenly applied load, sinusoidal load and exponential load, as de"ned in equation
(45). Here, the values used in the computations are dimensionless duration of the load

tM
�
�E

�
/�

�
h"6 and �"4.

In Figures 4}8, the volume fraction index is chosen to be n"0)2 and 2)0, and in Figures
2}4 and 8, all the results are for the FGM plate with immovable in-plane boundary
conditions on all edges.

5. CONCLUDING REMARKS

Free vibration and the dynamic response of functionally graded rectangular plates
subjected to impulsive lateral loads combined with initial in-plane actions and under
thermal environments are investigated by using a semi-analytical approach. The present
formulations are based on Reddy's higher order shear deformation plate theory to account
for the rotary inertia and parabolic distribution of the transverse shear strains through the
plate thickness. Non-linear temperature-dependency of material properties is also taken
into account. The plate under consideration is clamped on two opposite edges and may be
either free, simply supported or clamped on the remaining two others. Natural frequency
parameters and dynamic response for silicon nitride/stainless-steel rectangular plates are
presented in tabular and graphical format respectively. Numerical results show that, when
thermal e!ects are included, the plates with intermediate material properties do not
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necessarily have intermediate dynamic response. They also con"rm that the vibration
characteristics and dynamic responses are signi"cantly in#uenced by material composition,
temperature rise, the character of in-plane and out-of-plane boundary conditions, initial
membrane stresses, as well as dynamic load shape.
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