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The object of this work is to analyze the dynamic characteristics of the portal frame which
consists of two stepped beams including a thin plate and a torsional spring at the
discontinuous point and a rigid body connecting each beam tip. This structure is available in
a lot of cases that need higher stiffness and linear motion of the tip mass. For example, it
might be used for an optical pick-up actuator, using piezoelectric materials, for the high area
density CD, DVD or the next generation of optical memory devices, which require
superrigidity and linear motion in focusing. The mathematical modelling and the derivation
of the equation of motion are given for the cantilevers with identically paralleled and stepped
beams. The equation of motion and the associated boundary and the continuous conditions
are analytically obtained by using Hamilton’s variational principle. The exact solutions are
presented and compared with the results obtained by FEM Tool (IDEAS).

© 2002 Elsevier Science Ltd. All rights reserved.

1. INTRODUCTION

Over the years, a lot of researches have been done with regard to the vibration of beam
structures in many different configurations and complexities. Many studies about the
evaluation of the natural frequencies of cantilevered beams with a tip mass exist [1-3].
Rutenburg presents the results of eigenfrequencies of a uniform cantilevered beam with
a rotational constraint at some point [4]. Its result indicates that natural frequencies are
sensitive to small changes in the location of the rotational spring. Gurgoze and Batan study
the eigenfrequencies of a uniform cantilever beam with a rotational and translational
constraint at different points [5]. Farghaly considers various constraints at the end
boundary in the analysis of the cantilever carrying a tip body [6]. The natural frequency of
a stepped beam with two different cross-sections is sought for various boundary conditions
by Jang and Bert [7, 8]. Subramanian and Balasubramanian describe the beneficial effects
of steps on the dynamic characteristics of beams [9]. They show that it is possible to
increase the first natural frequency or to change the natural frequencies by choosing the
appropriate thickness ratio and the length ratio of the stepped beam. An exact analytical
solution for a cantilever beam of non-uniform cross-section and carrying a mass at the free
end has been obtained by Rossi et al. [10]. Anderson solves the vibration problem of the
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Figure 1. Configuration of two stepped beams with a rigid body at their tip.

two uniform cantilevers joined by a rigid connector at their free ends [11]. He shows the
effects of the distance between the two beams and the parameters of the tip connector on
the natural frequency of the system. In this paper, we focus on the effect of the position of the
stepped point and the thickness ratio on the dynamic characteristics of the system. Also, the
evaluation of the natural frequencies of beams with a rotational constraint and a mass
located in their intermediate is presented. The beam structure is modelled using the classical
beam theory in which the beams comprising this frame are assumed to be uniform and
sufficiently slender so that shear deformation and rotary inertia can be ignored. The end
conditions raise dynamic coupling between the lateral and longitudinal motion, while the
governing equations and continuous conditions do not. We have decided mode styles from
the FEM(IDEAS) results which are the bending and the symmetric mode.

2. FORMULATION OF THE PROBLEM

To formulate the equations of motion of this system, we consider the illustration in
Figure 1. Let the O, X, Y; and the 0,X,Y, axes be inertial frames, and the o;x;y; and the
0,X,Y, axes be local fixed frames attached to the center of the beam tip. For the present
structural system, it is necessary to consider the energies pertaining to the different parts of
the system. The first parts of the kinetic energies are due to the lateral and longitudinal
motion of the beams, which are expressed by

1 . I P 1
T:s:_ p(RR)dTSZE pAl(”s1+vsl)dXs+_
Ty 0

L
: o IZRCR AL S

nL

where 7 is a non-dimensional parameter to describe the position of the step. The kinematic
variables u(X, t) and v(X, t) represent translational motions in the X and Y directions.
Throughout this paper, s = 1 and 2 describe the O;X;Y; and 0,X,Y, co-ordinates. The
right subscripts 1 and 2 of the translations (u and v) denote 0 < X <yLand yL < X < L
respectively. The subscripts to distinguish the beams are given in Figure 1. Considering the
illustration in Figure 2, we can define a position vector to describe an arbitrary point of the
tip body. An expression of the position vector of the tip body with two vectors can be shown
as

Ry =R(L; 1) + r(x,y) = [L + upa(L; )]L + v12(L; 1) + (en + )i+ (ry + Y)j

=[L +up,(Lst) + ey + x — (ry + »)0ia(L; )11
+ [v12(L; 1) 4+ (ear + X)V12(Ls t) + 1 + ¥]1J, (2
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Figure 2. Co-ordinate system and position vector to describe a tip body.

where i ~ 1+ v,J and j ~ — v,1 + J for linear system. In these expressions, I, J and i,
j denote the unit vectors associated with the inertial frame O; X, Y; and the local fixed frame
respectively. ¢, and hy, designate the distances between the centroid of the tip body and the
beam extremity in the x- and y-axis of the local co-ordinate respectively (see Figure 1). The
second part of the kinetic energy is due to the laterally and longitudinally coupled motion as
well as the lateral, the longitudinal and the rotational motion of the tip body. The kinetic
energy of the tip body is given by

Ty = éj PRy Ry doye = 3 M(iif, + 615) + 3 J05 + M(cpby20ts — ratin28h2), (3)
™

where M = 8cyhybyg, J = (M/3)(ca + hig) + M(cip + 1)

2by, is the thickness of the tip body. The tip body is treated as a rigid one with the mass
M and moment of the inertia J in the local frame. The kinetic energy of the intermediate
plates is

L

17 =5 [ + i3y acx - nDax. @
0

Whel‘e MP = Cphpbp, JP = (Mp/lz)(C}Z} + h}za)

A denotes the Dirac delta function and bp is the thickness of the intermediate plate. Mp
and Jp are the mass and the moment inertia of the intermediate plate respectively. Two
beams have the cross-section area A = bh, the second moment of area I = bh3/12, Young’s
modulus E, the mass density p and the length L. The potential energy of the beam due to the
bending and extension can be expressed as

1 1 ("E 1(F
Vi==| ojeijdty== | (EAud + ELoi?)dX, + = | (EAus + ELw3)dX,. (5)
2 T 2 0 2 nL

In this equation, the effects of transverse shear and rotary inertia are ignored. To consider
the change of the torsional rigidity at the discontinuous point, i.e, due to some adhesive
factor connecting two beams or the extremely high/low ratio of the cross-section area in
case that one cross-section cannot include the other cross-section, we assume that the
conjunction part at the discontinuous point of the beam is elastically restrained against
rotation by a torsional spring. The potential energy of the torsional spring at the point
where the spring is attached is written as

yrol

L
3 || kreace — nnyax, ©

0
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3. EQUATIONS OF MOTION

In order to derive the equations of motion of the system that consists of two stepped
beams and a rigid connector at their tips, the associated boundary conditions and the
continuous conditions at the beam’s joints, Hamilton’s variational principle is used. It may
be stated as

t, s=2 pt,
t, t, T Ts

s=1

where t = t; and t, are two arbitrary instants of time. Substituting the energy described
above into Hamilton’s principle and integrating by parts, we can obtain the following
equations:

s=2 prnL
oL = Z J (pAyiiyy — EAqugy)dugy + (pAqiigy + EIuy)dvg dX,

s=14J0

L
+ J (pAqiis; — EAug)0ug, + (pAaisy + Elug;)ovg, dX
nL

— {EA ug; dugy — EIL g ovg + EI 0vg Jx,_,
+ {EAquj; dugy — EAyu, dug, — (E1vs{ — Mpbigy )0vgy + EILyvgs v,
+ (EIv5y + kyvgy + Jplsy ) 0vsy — EL0 0050 fx. =1
+ {EAju5,0u,5 — EI 55005, + EIv5,005,
+ (EAyuys + Miiy, — Mryd,)0uy, — (EIvYS + My, + Mcydi,)ov,,
+ (EIv1, + Ji', + Mcybya — Mryiiy )00y 5 }x, =1 = 0. 8)
For very small rotating angle at the end of the beam, we assume that both the two beams
have the same deflection and rotating angle, i.e. vy,(L; t) = v55(L; t), v12(L; t) = v5,(L; 1),
and the relation between the extension and rotating angle, i.e. u;,(L;t) — us,(L;t) =
2ryv'2(L; t). Applying these three constraint boundary conditions to the end boundary
conditions of equation (8), we can obtain the following equations:
Governing equations
pAqiiyy — EAyug; =0, pAqbg + EILvs) =0, 0< X, <L, (9a,b)
pAyiig; — EAyuy, =0, pAyig, + ELLuy, =0, nL < X, < L. (10a, b)
Continuity conditions
At X, =L,
Ugg — Uy =0, vy — 0 =0, Uy — Vo =0, Ayugy — Ayu, =0,

Ellv;,{ — MPbsl — Elzv;/é =V, EIIU;II + kTU;I + JPi};I — Elzv;IZ =0. (lla—f)
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Boundary conditions

At X, =0,
Ugy = Ugy = U5y = 0. (12a-c)

At X, =L,

Ui — 035 =0, 01 =05 =0, up; —uz; — 2y, =0,

EA,u'y, + EAyu%, + Miiy, — Mrydy, =0,

EI,v)5 + EI w55 — Mvy, — Mcyy, =0,

El,wY, + EI 5, — 2ryyEA U, + J05 + My, — Mryiig, = 0. (13a-f)
The above 12 boundary conditions and 12 continuity conditions will yield 24 equations

in the 24 unknown coeflicients.

4. DIMENSIONLESS EXPRESSIONS

Xs — Ug — Us — U — Us
’/’s:fs Ugq :fl, Ust :fls Ugo :TZ, Usa :fz (143—6)
Dimensionless parameters for the beam
_ hy, - b, - A, - I, -. A,L?
h=-—=, b=-—=, A=—, I=-—=, A*= . 15a-¢
W PTee ATa T I (15-¢)

_ hy oy - by n _ M

Ny = — =2 by =— =2 M=

M L > Cm L 5 M L > I'm L 5 pAlLs

T M 2 2 T _ T 7 (2 =2

T =2 @+ by, T =T+ MG + ). (16a-f)

Dimensionless parameters for the intermediate plate and the torsional spring

—_ M,
MP: F

cp krL
L’ oA L

5o (70

hP:_ Cp= P jP:%(C—IZ"f‘Ef’), ET
12
Assumption of solutions. This system executes synchronous motions, defined as motions in
which every point performs the same motion in time. Synchronous motions imply that the
solution of governing equations can be separated in the space and time. We assume the
solutions as follows:

ﬁsl(”ss t) = Usl(ns)eiwta Esl(nsa t) = I7:51(17s)eiwt9 0 < Ns < n, (183, b)

U (M5, 1) = U ()€, 032, 1) = Vialn)e™,  n<ny < L. (19a, b)
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Governing equations
U;’I + (I)ZUSI = 05 _;/1// - ;:‘1“[751 = 07 0 < 7’5 < 7]» (20&, b)

Ub+@*Uy, =0, Vi —IiV,=0, n<n <l (21a, b)

Continuity conditions

Atng =,
Usl - Uszz(), Vsl—IZZZO, 175/1 _I7SIZ=0a U;l —/I_;z=0,
Vi + IMpVy — IV5 =0, Vi + ke Viy — 230V — IV, = 0. (22a-f)
Boundary conditions
At n, =0, ~ ~ ~
s =Va =V =0. (23a—c)
Atny=1,

I712 - I722 = 0, I71,2 - I72/2 = 0> U12 - Uzz - 2fMI71,2 = O’

Uy — @*MU,, + @*MiyV{, =0,

hNY]
ANyl

r 7/
12+

1”2/ + I__z//zl + /:‘1‘]\7”712 + /T?MC_MIZ/Z = 0,

~l

Vs + IV3y = 27y A*Usy — J3TVis — it Méy Vs + 28 MyiyUin = 0. (24a-f)

~

where

2 4 4
~2 , PL 4 , AL 74 , pALL
= — )L, = e )L, = ——
- A A o)

5. SOLUTION OF THE PROBLEM
The normal mode solutions of the ordinary differential equation are given by
Us1(ns) = Ay cos dng + By sin ang,

Vii(ns) = Cy1 €08 Ayng + Dy sin yng + Egy cosh Zyng + Fyysinh Ay, 0<n,<n, (25a,b)

Usz(ns) = Aj, cos @ + By, sin ang,
1732 (ns) = CSZ COs )_”217s + Ds2 sin )_”Zns + EsZ cosh ZZ"S + F;Z sinh EZ”sa n < Ns < 1. (263; b)

To determine the natural frequencies and mode shapes for this system, we first substitute
equations (25a, b) into the root boundary conditions equations (23a—c), which leads to

at Ns = 0: Asl = 0» Csl = - Esl: Dsl = - Fs1~ (273—0)
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TaBLE 1

707

Exact solutions and FEM (IDEAS) results for uniform beam (h, = 2 mm) (unit: Hz)

hl/h2:1
kT:()

Wy

>

3

(23

(OF]

Bending mode

Symmetric mode

Bending mode

Bending mode

Symmetric mode

Exact

FEM

Exact

FEM

Exact

FEM

Exact

FEM

Exact

FEM

409-5

4052

2550-0 24525 26661

2609-5 64477 63155 7029-1

66731

TABLE 2

Exact solutions and FEM (IDEAS) results for variation of h,/hy and n (h; = 2mm, ky = 0)

(unit: Hz)
hz/hl =02 hz/hl =04 hz/hl =05 hz/h] =06 hZ/hl =038
n Exact FEM  Exact FEM Exact FEM Exact FEM Exact FEM
Bending mode
First natural frequencies
02 655 667 1694 1702 2226 2228 2719 2712 3524 3496
04 100-3 1022 2352 2345 2863 2863 3231 3225 3724 3701
05 129-1 1324 2697 2713 3092 3100 3357 3355 3740 3720
06 170-1 1706 2943 2959 3196 3207 3382 3384 3730 3711
0-8 2589 2616 2959 2975 3130 3142 3329 3330 3740 3722
Second natural frequencies
02 8056 8300 15232 15325 17979 1798:0 20162 20064 23582 2324-1
04 13004 13244 16985 16970 18277 18330 18952 19790 23390 23051
05 13292 13481 15570 15688 17542 17576 1971-1 1961-1 23709 23342
06 11012 11024 1532:5 15412 18090 18087 2060-0 20453 24327 23930
0-8 11839 12157 20125 20135 21921 21864 23103 2292:6 24954 24573
Third natural frequencies
02 21584 22535 38179 38477 43522 43550 48064 47793 56623 55696
04 23706 23988 36450 36245 43575 43427 49752 49185 58750 57636
05 23255 24206 42880 43121 49598 49344 54215 53548 60122 58994
06 326144 32830 50283 50139 53254 52889 55648 54994 60321 59171
08 39696 39599 49475 49190 54825 54282 58716 57673 62863 61523
Symmetric mode
First natural frequencies
02 788:6  812:8 14757 14840 17367 17344 19425 19270 22606 2209-0
04 12835 13078 16653 16631 17807 17807 19143 19039 22337 21837
05  1321-8 13409 1520-1 15312 16911 16929 1883-0 18689 22535 22000
06 10945 11080 1470-1 14781 17144 1712-1 19429 19236 23017 22443
08 110244 11301 18439 18441 20217 20136 21425 21192 23422 22868
Second natural frequencies
02 21642 22483 38480 38797 44166 44143 49205 48746 59536 57715
04 23737 23929 36520 36285 44085 43858 50998 50163 62048 59896
05 23367 24096 43249 43494 50555 50207 55835 54869 63405 61289
06 32650 32778 50835 50139 54085 53626 56958 56052 63437 61290
08  3971:0 39586 49620 49295 55617 54907 60419 58923 66499 63941
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TaABLE 3
Exact solutions and FEM (IDEAS) results for variation of hy/h, and 1 (h, = 2mm, k; = 0)
(unit: Hz)
hl/h2=02 hl/h2:04 hl/hZ:OS hl/h2:06 hl/h2=08

n Exact FEM Exact FEM Exact FEM Exact FEM Exact FEM

Bending mode
First natural frequencies
02 1927 1937 2453 2431 2679 2654 2939 2914 3525 3494
04 1188 1221 2301 2298 2633 2613 2913 2885 3471 3436
05 93-4 965 2097 2107 2523 2516 2869 2852 3473 3439
06 763 782 18677 1880 2353 2354 2768 2755 3458 3427
0-8 562 573 1479 1493 1970 1979 2450 2450 3331 3310

Second natural frequencies
02 11671 11872 1951-6 19359 21425 2111-6 22694 22284 24680 24185
04 11155 1093-6 15377 15233 17934 17725 20329 20044 24093 23671
05  1321-8 12484 1562:3 15358 17520 17522 19577 19300 23512 23103
06 12835 12714 16653 1631-4 18062 1772'5 19668 19306 23209 22788
0-8 7962 8204 14855 14922 17493 17405 19655 1942-4 23252 22835

Third natural frequencies
02 36682 36178 46832 46478 52132 51587 56184 55359 61236 60101
04 31950 33522 46345 46005 49394 48741 52307 5151-3 58492 57480
05 225244 23602 41395 41725 47446 47258 5172:1 51254 58299 57327
0-6 20156 20109 34737 34902 4191-1 41882 48093 47757 57451 56584
0-8 21081 21678 34601 34280 39539 39008 44489 43842 54681 53802

Symmetric mode
First natural frequencies
02 11023 11106 18439 1801-8 20217 19589 2142:6 20674 23422 22554
04 10945 10479 1470-1 14345 17144 16696 19429 18869 23017 22240
05 12705 12655 15201 14650 16911 16365 18830 18264 2253-5 21782
06 12547 13046 16624 15990 17773 17089 19143 18442 22337 21562
0-8 7886 8095 14756 14757 17367 17131 19425 18955 22606 21834

Second natural frequencies
02 39696 37857 49620 48127 55617 53746 60419 57995 66499 63369
04 32613 34368 50835 4931-4 54085 51797 56958 54408 63437 60538
05 23255 24095 43249 43144 50555 4949-5 55835 54052 63405 60538
06 23706 22525 36520 36056 44086 4331-4 50998 4966:5 62048 59546
0-8 21584 22347 38480 37698 44166 42544 4920-5 47138 59535 56923

And then substituting more simplified equations (25a,b) and equations (26a,b) into the
end boundary and continuity conditions leads to the following set of equations:

[ ]{b,} ={0}, myn=1~18, (28)

where {bn} = {En» Fi1, C12, D12, E13, Fi3, Eszy, Fa1, Coz, Das, Egs, Fap, Byy, Aqa, Bia,
B215 A227 BZZ}T'

For the non-trivial solution, the determinant should be zero. The different values of
o and Z;, which make the value of the determinant to be zero, correspond to the various
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natural frequencies of the system. The determinant |a,,,,| of this system yields the frequency
equation for the system and it is also possible to find the mode shapes {b,} as well. The
components of the matrix [a,,,} are presented in Appendix A.

6. RESULTS AND SUMMARY

To solve this system of equations and to provide a numerical example, the following
parameters were used E =75x10""Pa, L=50x10"3m, p = py = 7800kg/m?>,
y=4x1073m, ¢y =5%x1073m, hy, =5x1073m, by, = 5x 107 3m for Tables 1-3. In
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e

0-02

0.01

Figure 3. Variation of the fundamental frequency , versus # for selected values of /i (bending mode).
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02 |

=1

015 |
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Figure 4. Variation of the second frequency w, versus # for selected values of i (symmetric mode).
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Table 1, the frequencies of bending modes (w;, w3 and w,) on the exact solutions of closed
portal frame with the uniform cross-section are equal to those of Anderson’s work [11].
Tables 2 and 3, related with the change of 0 < h,/h; < 1 and 0 < hy/h, < 1, respectively,
depict the variation of the three frequencies in bending and two ones in symmetric mode as
a function of the thickness ratio for selected values of the stepped points. All frequencies
increase with the increase of the thickness ratio.

To find the dynamic characteristics of the non-dimensionalized system, we choose
E=75%x10"°Pa, L=100x10"3m, p=7800kg/m3 py=1 h; =5x10"3m,
by =10x1073m, 7y = 01, cpy = O-1, hy, = 0-15, by, = 0-05. Figures 3-5 show the variation
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Figure 6. Variation of the fundamental frequency , versus # for selected values of b (bending mode).
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of the natural frequency for the stepped position #. The decrease of the step ratio h decreases
the natural frequency. The natural frequency varies steeply when & has small values and the
stepped point 7 is very close to the end of the beam. In Figure 6, the decrease of the step
ratio b decreases the first natural frequency. However, Figures 7 and 8 show the tendency of
the second and third natural frequencies to fall with the increase of b for the location of step.
In Figure 9, all the natural frequencies go down in correspondence with the decrease of h.
This figure shows that the first mode of this system is clearly different from one of
a cantilever beam composed of one beam in which the first natural frequency is larger

038 — 1
036 -
034 |

®; 0.32

0-3

0-28

T T T

0-26 1 L L | L L L 1 . " " 1 L n n 1
0-2 0-4 0-6 0-8 1
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0-36
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T T T T

=1

0-32

03

T T T T T
| IR BRI

028

0.26 L L L | s ! L I L L L | L L L 1 L L L

Figure 8. Variation of the third frequency ws versus # for selected values of b (bending mode).
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than in the uniform beam when step ratios h are over 0-3 (see reference [9]). In Figure 10,
the natural frequencies except the fifth natural frequency, which is the second natural
frequency in symmetric mode, decrease as b decreases. For reference, the first and third
natural frequencies of the stepped cantilever composed of one beam in bending mode are
larger than those of the uniform one when 0-1 < b < 1 (see reference [9]). In Figures 11-13
for the case of the uniform beam, h = b = 1, the undulating shapes of @,, &, and @; are
due to the fact that the rotational springs become ineffective when placed at locations with
vanishing slopes (v;, = 0, v, = 0) (see reference [4]). In this system, one can infer that
the slopes at the beam tip are very small from the variations of the first and second
natural frequencies of the bending mode. The second natural frequency is the symmetric

1 T -
0-9 =
0-8 .
0.7 >
w/m 06 ‘
o/, ]
05 E
04 3rd Mode E
03 3
1st Mode ]
0-2 3
N E S R RS
0.2 0.4 _ 06 0.8 1
h
Figure 9. Frequency ratios versus . ——: Bending mode; - - — —: symmetric mode.
T T s ]
iy 5th Mode \/, L e T 1
I / 4th Mode ]
09 L 7~ 2nd Mode _'
i 3rd Mode 1
/o0 / /> 1st Mode
U o8 7
I, i
0-7 , —
0.6 [ L | L \ L 1 L L L | L L i | L L L
0-2 0-4 _ 06 0-8 1
b

Figure 10. Frequency ratios versus b. ——: Bending mode; - — - —: symmetric mode.
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mode in which the slopes at the end of the beam are vanishing. In Figures 14-16 there
are plots depicting the variation of the first three eigenfrequencies for the uniform
beam versus # for the non-dimensionalized density of the intermediate plate pp when
hp = bp =01 and ép = 0-001. The fundamental frequencies decrease as jp increases.
These plots reveal that the variation of pp is very effective on the second and third
frequencies in the middle of the beam. However, the effectiveness of pp vanishes at
both boundaries.

The exact expressions for eigenfrequencies have been presented on the rotationally
constrained and stepped portal frame with intermediate mass. The reliability of the results
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Figure 12. Variation of the second frequency w, versus y for selected values of ky (symmetric mode).
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for the present study has been verified by comparing the results from FEM method
(commercial software IDEAS). Adjusting the thickness ratio and the length ratio of the
stepped beams, we can obtain the beneficial effects of frequency tuning to achieve a desired
dynamic behavior without altering considerably the frequencies of the other modes as well
as we can do structural tailoring to avoid resonance in various situations. We can modify
the dynamic characteristics of the system by considering the torsional spring at the beam
joint. In this paper, we present the variation of frequency according to the value of the
torsional spring.
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Figure 14. Variation of the fundamental frequency w; versus 5 for selected values of pp (bending mode).
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Figure 15. Variation of the second frequency w, versus 5 for selected values of pp (bending mode).
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Figure 16. Variation of the third frequency w; versus 5 for selected values of pp (bending mode).
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APPENDIX A: COMPONENTS OF THE MATRIX [a,,., ]|

A1,1 = Q11,7 = — COS Ayl + cosh Ay, ay., = ay1.8 = — sin Ay + sinh 2,7,
1.3 = d11x9 = — COS/Tz’?» A1.4 = dy1.10 = — SIN ;:2'75 d1.5 = dy1.11 = — cosh ;_vzﬂ,
16 = 1112 = — sinh/{m,

Az, = Q1247 = — /ﬁ(sin )_~1’7 — sinh ;:171) - ):TMP(COS ;:171 - COSh/Tl'I),

Apuy = (12,8 = 23(cOS A1 4+ cosh Z;n) — AF Mp(sin A, — sinh 4;1),

T 3 . re _"_3 —_
(3.3 = Q12,0 = — 1A38IN 250, dy.4 = A12.10 = 143 €08 A1,
TT3 i1 T T3 7
Apy5 = 12,41 = — IA3sinh Ayn, a6 = ay2.12 = — A3 cosh Ay,
A3.4 = dy3.7 = A(SInAyn + sinh A1),  az.; = ay3.8 = — A1(cos A, — cosh 4y1),
(3.3 = Q13,0 = A2 SIN 21,  A3,4 = d13.10 = — A2COS A1),
(3.5 = Q13,11 = — A28inh Ayn,  ds.6 = dy3.12 = — Ay cosh Ay,
Agui = Q1407 = A3(cOs 10 + cosh A1) + (ky — A3 Jp) A (sin A, + sinh A1),
Ay = A1g48 = /T%(Sln/im + Sinh)tﬂ’]) + (ET — ;:?jp);_bl(—cos ):177 + cosh /Tll’]),

772 7 T2 i 7
Q4.3 = Grawg = 1A5C08 A3, Qg4 = 14010 = IA58in Ayp,

772 7 T2 Gnh 7
Age5 = d1a.11 = — [A3c08h A3n,  G4u6 = A14.12 = — I A5 sinh A1,
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5,3 = — I__g sin ;_Lz — Z?M(COS 22 — ;IZEM sin 22),

As5.4 = I;Lg CosS /12 - ;L?M(Sln /’{2 - lsz CcoS /12),

as,s = — I/3sinh A, — A¥M(cosh A, + Z,Gysinh 4,),
ds,. = — 1/3¢cosdy — AtM(sinh A, + A, cosh 1,),
Aseo = — 123sin 7y, as.io=1/3¢c0sl,y, as,y = —IA3sinh/,, as.., = —I43coshl,,
Aoy = — 11308 Ay — AT (MEprycos Ay — J 25 8in 15),
Qgoa = — 12.35in 7y — 23 (MéEysin Ay + J 2508 4,),
dg.s = IA3cosh 2y — A3 (Méycosh Ay + J 1, sinh 1,),
dg.6 = I23sinh A, — 2$(Méysinh 2, 4+ J ., cosh ,),
Qoo = — 122C0S 0y, dguio=—I1A38inAs, dgui1 = 1A3coshi,, ag.i, =IA3sinhl,,
Qguia = ATMiyCOSD, gus = ATMPysind, dg, - = 2iyA*@ sin @,
Agurg = — 2y A*d cos @,
Aoy = 2ppAa SN Ay,  Arug = — 2FpgAs COS Ly,  d7us = — 2Fa A sinh Ay,
Q7,6 = — 2ipgAscOsh Ay,
A7:14 = — Q7,17 = COSD, 7,15 = — 7,13 = SIN O,
Aguy = — > Mg JpSiN Ay,  dgeq = B> MPpg Ay COS Ly, dgus = ®@>Miy/psinh 1y,
Agos = O>MipAscosh Ly, dg.ia = — Adsin® — @>M cos @,
Qg5 = A cosd® — @*Msin®, dag,;; = — ADSInd, dg,;5 = AdDcosd,
dg.3 = — U949 = COS ;12» Ag.4 = — do.10 = SIN 22:
do,s = — Uou11 = COSh Ay, o, = — g.1» = sinh ,,
A10+3 = — d10+9 = — )_tz Sin;—hza A10+4 = — A10s10 = 22005712,
A10+5 = — A10411 = i_z sinh)fz, A1006 = — 10412 = 12 coshi_z,
A15:13 = Q17416 = SINDN, dys.14 = Ay7.17 = — COS DN,
Ays.15 = dy7.8 = — Sinn,

A16+13 = Q1816 = D COSDY, 1614 = A1g.17 = ADsin oy,

A1615 = d1ge1g = — ADCOS DN.
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