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The dynamic behavior of a symmetric gyro with linear-plus-cubic damping, which is
subjected to a harmonic excitation, is studied in this paper. The Liapunov direct method has
been used to obtain the su$cient conditions of the stability of the equilibrium points of the
system. By applying numerical results, time history, phase diagrams, PoincareH maps,
Liapunov exponents and Liapunov dimensions are presented to observe periodic and
chaotic motions. Besides, several control methods, the delayed feedback control, the
addition of constant motor torque, the addition of period force, and adaptive control
algorithm (ACA), have been used to control chaos e!ectively. Finally, attention is shifted to
the synchronization of chaos in the two identical chaotic motions of symmetric gyros. The
results show that one can make two identical chaotic systems to synchronize through
applying four di!erent kinds of one-way coupling. Furthermore, the synchronization time is
also examined.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

Research in the area of gyro dynamics dates back about one hundred years. Gyroscope is an
attractive and everlasting subject of dynamics, which has been studied by many authors.
Beyond its purely scienti"c interest, the gyroscope has attributes of great utility to
navigational, aeronautical and space engineering. The pioneering paper on the concept of
chaotic motion in gyros was not presented until 1981 [1]. Recently, Ge et al. [2, 3]
conducted a detailed study evaluating the non-linear behavior of a symmetric heavy
gyroscope mounted on a vibrating base. In their study, the chaotic motion of the system
with linear damping was investigated. Very recently, the motion of a symmetric gyro, which
is subjected to a harmonic vertical base excitation has been studied by Tong and Mrad [4],
with particular emphasis on its non-linear dynamic behavior. However, their study did not
take the damping e!ect into account. Their results also indicate that a symmetric gyro
exhibits both regular and chaotic motions. The type of the attractors ("xed point, periodic,
quasi-periodic, chaotic) is also encountered. Therefore, analyzing the dynamics of gyro
using the chaotic method is a relatively new approach. In this paper, the dynamic behaviors
of a symmetric gyro with linear-plus-cubic damping which is subjected to a harmonic
excitation will be studied in detail.

The concept of chaos was "rst introduced by PoincareH [5] to describe orbits in space
mechanics. The chaotic behaviors of #uid were given by Lorenz [6]. Chaos occurs in
mechanical or electrical oscillators, in rotating heated #uids, in chemical reactions, even in
economic systems, etc.
022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.
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In this work, the stability of the equilibrium points of the system is investigated by the
Liapunov direct method. Bifurcation of the parameter-dependent system is studied
numerically. The time evolutions of the non-linear dynamical system responses are
described in phase portraits via the PoincareH map technique. The occurrence and the nature
of chaotic attractors are veri"ed by evaluating Liapunov exponents and Liapunov
dimensions.

The presence of chaotic behavior is generic for suitable non-linearity, ranges of
parameters and external forces, where one wishes to avoid or control so as to improve the
performance of a dynamical system. Sometimes chaos is useful, as in mixing process or in
heat transfer. However, chaos is always unwanted or undesirable. Clearly, the ability to
control chaos, that is to convert chaotic oscillations into desired regular ones with
a periodic time dependence, would be bene"cial in working with a particular system. It is
thus of great practical importance to develop suitable control methods. Recently, much
interest has been focused on this type of problem*controlling chaos [7}9]. The aim of this
paper is to control chaotic motion of the gyroscope. For this purpose, many control
methods, which are the delayed feedback control, the addition of the constant motor
torque, the addition of the periodic force, and adaptive control algorithm (ACA), are used to
control chaos.

The problem of synchronization of dynamical system is one of the classical topics in
engineering science. Recently, renewed interest in this "eld was stimulated in connection
with the synchronization of chaotic motion. If two identical copies of a chaotic system are
started with similar initial conditions, their motions will not remain similar for long. Since
exponential divergence of orbits will amplify for any initial small errors. It appears, at "rst,
that it would be very di$cult to keep both copies of a chaotic system synchronized. But, in
1990, Pecora and Carroll [10] showed that synchronization was indeed possible, and
moreover, it could be achieved with a simple coupling. Because of their works, the
synchronization of chaotic dynamical systems has been intensively studied by other
researchers [11]. The basic idea in identical synchronization is to take two copies of "xed
chaotic system and let one control the other. The master (drive) system provides a signal
that is fed to the slave (response) system. The signal is usually one of the co-ordinates of the
master chaotic system. Synchronization can be thought of as a form of control chaos.
Finally, attention is shifted to the synchronization of chaos in the symmetric gyros. For this
purpose, four di!erent kinds of one-way coupling are adopted to perform the synchronizing
chaotic motion. The synchronization of chaos will be also shown by phase trajectory. The
sign of the sub-Liapunov exponent is also applied to diagnose whether synchronization of
chaos occurs or not. Four di!erent kinds of one-way coupling are used to examine whether
the two identical chaotic systems will be synchronized or not. Moreover, the synchronization
time is also examined.

2. EQUATIONS OF MOTION

The geometry of the problem under consideration is depicted in Figure 1. The motion of
a symmetric gyro mounted on a vibrating base can be described by Euler's angles
� (nutation), � (precession), and � (spin). By using Lagrangian approach, the Lagrangian
has the expression
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(�Q cos�#�Q )�!M
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where I
�
and I

�
are the polar and equatorial moments of inertia of the symmetric gyro,

respectively,M
�
is the gravity force, lM is the amplitude of the external excitation disturbance,



Figure 1. A schematic diagram of the physical system.

Figure 2. Bifurcation diagrams for speci"c values set (��"100, �"1 c
�
"0)5, c

�
"0)05, �"2); steady state

angular position x
�
(n¹) versus the normalized amplitude f of harmonic excitation.
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Figure 3. (a) Time history, (b) Phase trajectory, (c) PoincareH map for f"32)0 (period-1¹).

Figure 4. (a) Time history, (b) Phase trajectory, (c) PoincareH map for f"33)0 (period-2¹).
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Figure 5. (a) Time history, (b) Phase trajectory, (c) PoincareH map for f"36)0 (chaos).

Figure 6. The maximal Liapunov exponents as a function of f.
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and � is the frequency of the external excitation disturbance. It is not di$cult to see that
co-ordinates � and � are cyclic, as they are absent from the Lagrangian, which provides us
with two "rst integrals of the motion expressing the conjugate momenta. The momentum
integrals are

P
(
"

�¸
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�
�Q sin��#I
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(�Q cos�#�Q ) cos�"�

(
, (2)

P�"

�¸

��Q
"I

�
(�Q cos�#�Q )"I

�
�

�
"�� , (3)

where �
�
is the spin velocity of the gyro.

The Routh's procedure is adopted along with the above-mentioned relations, the
Routhian of the system becomes
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The equation above depends on the angle � alone. According to Gantmacher [12], �
(
"��

when �"0. The dissipative force is also assumed to be in linear-plus-cubic form, which is
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where D
�
and D

�
are positive constants.

The only equation of motion describing the system can be obtained from

d
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The equation above allows the system to be viewed as a single-degree-of-freedom system.
The equation governing the gyroscope is given by
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The normalized equations in convenient "rst order form are
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3. STABILITY ANALYSIS BY LIAPUNOV DIRECT METHOD

In this section, the stability of the equilibrium points of the system is investigated by the
Liapunov direct method. The equations of motion given in previous section are
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deterministic, second order, non-linear and non-autonomous. It is a highly non-linear
problem. For this purpose, the non-linear terms (1!cosx

�
)�/sin�x

�
and sinx

�
are

expanded into power series of x
�
:
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Using equations (10) and (11), the governing equations of the system can be expressed as
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where
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Using the Liapunov stability analysis [13], the "xed points of the system are "rst
examined. It can be seen that (A) x

�
"x

�
"0 and (B) x

�
"�, x

�
"0 are "xed points for all

parameter values.
For the "xed point (A) (x

�
, x

�
)"(0, 0), this solution describes a motion in which one of

the principal axes of the gyro coincides with the local vertical axis. To study the stability of
the equilibrium point of the system, the disturbance of motion is set to be
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Substituting equation (14) into equation (12), the equations of disturbance become
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In this case there is no physical intuition readily available to guide us in the choice of<. The
Liapunov function is assumed to be
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The Liapunov function < is positive de"nite if it satis"es the inequality
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The requirements for <Q in the Liapunov direct method are
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According to the Liapunov stability theorem and new theorem proposed by Cveticanin
[14], inequalities (19) are su$cient conditions for system stability, and (x

�
, x

�
) " (0, 0) is

asymptotically stable equilibrium.
Similarly, the Liapunov function < for point (B) is taken as
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The following inequalities:
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are the su$cient conditions for system stability. The "xed point (x
�
, x

�
)"(�, 0) is

asymptotically stable equilibrium.
It is evident that stability has been established. In general, � and c

�
are "xed for a given

system. However, the normalized amplitude f and the frequency of the external harmonic
excitation � and the spin velocity �

�
could be varied. An inspection of inequalities (19)

indicates that stability can be achieved simply by increasing the spin velocity when the
gyroscope is spinning in an upright position. This "nding has practical importance for the
design of gyroscope instruments. For instance, it is desirable to set the gyro in more stable
spinning state by simply giving higher initial spinning velocity.

4. BIFURCATION DIAGRAM, PHASE PORTRAITS AND POINCARED MAP

In the present study, the non-linear equation of motion (8) is integrated numerically in
order to obtain the various dynamic behaviors of the gyro. The bifurcation diagram
provides a summary of essential dynamics and is therefore a useful method for acquiring
this overview.

For this system, bifurcation can easily be detected by examining a graph of x
�
versus f.

The bifurcation will be obtained by the fourth order Runge}Kutta numerical integration
algorithm with a given set of initial conditions. The bifurcation diagram for speci"c value
set (��"100, �"1, c

�
"0)5, c

�
"0)05, �"2) is presented in Figure 2. The

period-doubling bifurcation phenomena can easily be observed. If f increases, the diagram
becomes very complex. The PoincareH map is also used to examine the behavior of the
system. It is a three-dimensional problem with x

�
, x

�
, and t as independent variables. The

t is a multiple of ¹ which is the period of the harmonic excitation and is de"ned as
¹"2�/�.

Figures 3(a)}3(c) show the time history, the phase trajectory and the PoincareH map for
f"32)0. As seen in Figure 3(c), there is only one data point and is denoted by symbol &&o''.
Clearly, it indicates that the system is period-1¹ motion. Figures 4(a)}4(c) show the time
history, the phase trajectory and the PoincareH map for f"33)0. Similarly, Figure 4(c) shows
the system in a period 2 motion using two data points denoted by symbol &&o''. Figures
5(a)}5(c) show the time history, the phase trajectory and the PoincareH map for f"36)0. An
interesting attractor, which con"guration looks like &&S'', is presented. However, when the
bifurcation diagram loses continuity, it means that the system is either in quasi-periodic
motion or chaotic motion. Therefore, further tests are required to classify the dynamics.

5. LIAPUNOV EXPONENTS AND LIAPUNOV DIMENSIONS

According to the previous section, quantifying chaos has become an important
problem. Liapunov exponents can provide qualitative and quantitative tests for dynamic
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behavior. The algorithm developed by Wolf et al. [15] is used to determine the Liapunov
exponents.

The Liapunov exponents may be used to measure the sensitive dependence of the initial
conditions. Di!erent solutions of a dynamic system, such as "xed point, periodic motion,
quasi-periodic motion, and chaotic motion can be distinguished from it. If two trajectories
start close to one another in phase space, they will move exponentially away from each
other for small times on the average. Thus, if d

�
is a measure of the initial distance between

the two starting points, the distance is d(t)"d
�
2��. The symbol 	 is called Liapunov

exponent. The divergence of chaotic orbits can only be locally exponential, because if the
system is bounded, d(t) cannot grow to in"nity. A measure of this divergence of orbits is that
the exponential grown at many points along a trajectory has to be averaged. When d(t) is
too large, a new &nearby' trajectory d

�
(t) is de"ned. The Liapunov exponent can be

expressed as
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)
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The signs of the Liapunov exponents provide a qualitative picture of a system dynamics.
The criterions are

	'0 (chaotic),

	)0 (regular motion).

The periodic and chaotic motions can be distinguished from the bifurcation diagram, while
the quasi-periodic motion and chaotic motion may be confused. However, they can be
distinguished from the Liapunov exponent method.

For the system, if x
�
"�t is introduced, then the non-autonomous equations (8) of

motion can be transformed as autonomous one:
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For example, in the phase space (x
�
, x

�
, x

�
), the Liapunov exponents for the system are

found to be (	
�
, 	

�
, 	

�
"0). The Liapunov spectra for speci"c system parameter value set

(��"100, �"1, c
�
"0)5, c

�
"0)05, �"2) as f"32)0}36)0 are shown in Figure 6 to

con"rm the chaotic dynamics.
There are a number of di!erent fractional-dimension-like indices, e.g., the information

dimension, Liapunov dimension, and correlation exponent, etc. The di!erence between
them is often small. The Liapunov dimension is a measure of the complexity of the attractor.
It was developed by Frederickson et al. [16]. The Liapunov dimension d

�
is introduced as

d
�
"j #

��
���

	
�


	
�	�



, (24)

where j is de"ned by the following conditions:
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TABLE 1

¸iapunov exponents and ¸iapunov dimensions of the system for di+erent f

f 	
�

	
�

	
�

�	
�

d
�

32.0 !0)0906756 !0)6384222 0 !0)7290978 1 Period-1
33)0 !0)0129279 !0)7598052 0 !0)7727331 1 Period-2
34)5 !0)1495718 !0)6363110 0 !0)7858827 1 Period-4
36)0 0)2098415 !1)0279003 0 !0)8180588 1.29 Chaos

Figure 7. K"1)0 and �"2, the period-1¹ motion of the system after feedback control.
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The Liapunov dimension for a strange attractor is not a integer. The Liapunov
dimensions and the Liapunov exponents of the non-linear system are listed in Table 1 for
di!erent values of f. It is also found that the summation of the Liapunov exponents
of the system is not equal to c

�
#c

�
. Because the system possesses the linear-plus-cubic

damping.

6. CONTROLLING OF CHAOS

Several interesting non-linear dynamic behaviors of the system have been discussed in
previous sections. It has been shown that the forced system exhibits both regular and
chaotic motions. The extreme sensitivity to initial states in a system operating in chaotic
mode can be very destructive to the system because of unpredictable behavior.



Figure 8. The maximal Liapunov exponents against M.
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In order to improve the performance of a dynamic system or avoid the chaotic
phenomena, we need to convert a chaotic motion to become a periodic motion. In this
section, the focus is shifted to the control of the chaotic motion. For this purpose, the
delayed feedback control, the addition of the constant motor torque, the addition periodic
force, and adaptive control algorithm (ACA) are used to control chaos.

6.1. CONTROLLING OF CHAOS BY THE DELAYED FEEDBACK CONTROL

Let us consider a dynamic system, which can be simulated by ordinary di!erential
equations. We imagine that the equations are unknown, but some scalar variable can be
measured as a system output. The idea of this method is that the di!erence D(t) between the
delayed output signal y (t!�) and the output signal y(t) is used as a control signal. In other
words, a perturbation form is adopted as

u(t)"K[y(t!�)!y(t)]"KD(t). (25)

Here � is delay time. By choosing an appropriate weight K and � of the feedback control
system one can achieve the periodic state. For K"1)0 and �"2, after 100 s, the control
scheme is activated and the system reaches to period-1 motion. The results are shown in
Figure 7.

6.2. CONTROLLING OF CHAOS BY THE ADDITION OF THE CONSTANT MOTOR TORQUE

Interestingly, one can even add just a constant term to control or quench the chaotic
attractor to a desired periodic one in the typical non-linear non-autonomous system. It



Figure 9. The maximal Liapunov exponents against A for "xed �"1.
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ensures e!ective control in a very simple way. In order to understand this simple controlling
approach in a better way, this method is applied numerically (8). The constant motor torque
M is added into the second equation of equation (8).

If one considers the e!ect of the constant motor torque M by increasing it from zero
upward, the chaotic behavior is altered. Spectral analysis of the Liapunov exponents has
proven to be the most useful dynamical diagnostic tool for examining chaotic motions. In
Figure 8, the maximal Liapunov exponents are shown. When the constant motor torque
M is presented at certain interval, the system returns to regular motion.

6.3. CONTROLLING OF CHAOS BY THE ADDITION OF THE PERIODIC FORCE

The control of the system dynamic can be achieved by the addition of external periodic
force in the chaotic state. The added periodic force A sin� t is added into the second
equation of equation (8). The system can be investigated by numerical solution, with the
remaining parameters "xed. We examine the change of dynamics of the system as a function
of A for "xed �"1)0. The maximal Liapunov exponents are estimated numerically. The
results are shown in Figure 9. At certain intervals, the maximal Liapunov exponents 	

�
)0,

indicates that the motion of the system can now be predicted.

6.4. CONTROLLING OF CHAOS BY THE ADAPTIVE CONTROL ALGORITHM (ACA)

In 1990, Huberman and Lumer have suggested a simple and e!ective adaptive control
algorithm, which utilizes an error signal proportional to the di!erence between the goal



Figure 10. The period-2¹ motion applying adaptive control.
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output and actual output of the system. The error signal governs the change of parameter of
the system, which readjusts so as to reduce the error to zero. This method can be explained
brie#y: the system motion is set back to desired stateX



by adding dynamics on the control

parameter P through the evolution equation below

PQ "�G(X!X


), (26)

where the function G depends on the di!erence between X


and the actual output X, and

� indicates the sti!ness of the control. The function G could be either linear or non-linear.
In order to convert the dynamics of system (8), the �� term in equation (8) is
replaced by

AQ "�[(x
�
!x

�

)#(x

�
!x

�

)]. (27)

If �"0)04, the system can reach period-2¹ motion as indicated in Figure 10. It is clear
that the desired periodic motion can be reached by adaptive control algorithm.

7. CHAOS SYNCHRONIZATION

Chaos synchronization is an important problem in the non-linear science. The chaos
synchronization problem has the following feature: The trajectories of a slave (response)
system must tracks the trajectories of a master (drive) system in spite of both master and
slave system being di!erent. In this section, we describe the linking of two chaotic systems
with a one-way coupling. The state equations of two identical gyros with a one-way
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coupling element are represented as

Drive (master):
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Response (slave):
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where � is the coupling parameter, F(x
�
, y

�
) is the coupling function. In order to con"rm

synchronization of chaos, four di!erent kinds of one-way coupling are introduced as follows:
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�
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�
)"� sinh(x

�
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�
).

In fact, synchronization of chaos can be regarded as a special tracking problem, with the
desired trajectory not being a constant (chaotic trajectory). Where the one-way coupling is
a control scheme.When the synchronization occurs (x

�
(t)"y

�
(t), i"1, 2), otherwise they are

di!erent.
In order to study synchronization of chaos, the in#uence of the coupling strength on the

two identical systems behavior will be examined by observing how the coupling parameter
� changes with the constant values of the remaining parameters, which are: the damping
coe$cients c

�
"0)5, c

�
"0)05, the normalized amplitude of the external harmonic

excitation f"36, the frequency of the external harmonic excitation �"2, and �"1. The
initial conditions of the master system and the slave system are given as (1)0, 0)2) and (0)1,
Figure 11. The Liapunov exponents versus � as one-way coupling is � sin(x
�
!y

�
).



Figure 12. The Liapunov exponents versus � as one-way coupling is � sin (x
�
!y

�
).

Figure 13. The Liapunov exponents versus � as one-way coupling is � [exp (x
�
!y

�
)!1].
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0)02) respectively. In the present study, the whole system (master and slave) will be
integrated numerically in order to obtain the Liapunov exponents. When the coupling
parameter � is not su$cient large, the type of the Liapunov exponents for the whole system
is presented as (#,#,!,!, 0). It implies that the hyper-chaotic attractor exists. As � is



Figure 14. The Liapunov exponents versus � as one-way coupling is � sinh(x
�
!y

�
).
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increased further, an interesting phenomenon appears. The type of the Liapunov exponents
is changed into (#,!,!,!,, 0). It implies that the two identical systems will be
synchronized. The Liapunov exponents of the whole system for four di!erent kinds of
one-way coupling are shown in Figures 11}14, respectively.

For case (A), if �*0)44, the phase portraits of the master and the slave are synchronized.
Figure 15(a) depicts the trajectory of (x

�
!y

�
), for �"0)80. Figure 15(b) shows the relation

of x
�
and y

�
when synchronization occurs. Figure 15(c) and 15(d) display the trajectories of

the master system and the slave system respectively. On the contrary, if �"0)2, as shown in
Figure 16, the two identical systems will not synchronize.

For case (B), if �*0)46, the phase portraits of the master system and the slave system are
synchronized. Figures 17 and 18 show the synchronized behavior for �"0.8 and
unsynchronized behavior for �"0)2, respectively.

For case (C), if �*0)14, the phase portraits of the master system and the slave system are
synchronized. Figures 19 and 20 show the synchronized behavior for �"0)80 and
unsynchronized behavior for �"0)1 respectively.

For case (D), Figure 14 shows an interesting phenomenon. The sub-Liapunov exponent
transverses zero many times in certain interval of �. Therefore, the detailed discussion is
needed. It is found that the major sub-Liapunov exponent is negative at � 3 [0)14}0)27, 0)37,
0)38] and �*0)40. The master system and slave system are calculated by numerical
integration for � 3 [0)14}0)27, 037, 0)38]. The incremental value of � is 0)01. A fascinating
behavior of the slave system is observed during the integration process. The attractor of the
slave system is changed into another con"guration. The attractor of the slave system is also
changed depending on the value of � while � 3 [0)14}0)27]. Further, as �"0)37 and 0)38, the
strange attractors of the slave system are still di!erent from the master's strange attractor. It
is clear that synchronization will not be present. The PoincareH maps of the slave system are
also shown in Figure 21(a)}21(d) for �"0)14, �"0)18, 0)27 and 0)38 respectively. Those



Figure 15. (a) The trajectory of (x
�
!y

�
); (b) The relation of x

�
and y

�
; (c) The trajectories of the master

system; (d) The trajectories of the slave system (synchronized motion for �"0)8 in case (A)).

Figure 16. (a) The trajectory of (x
�
!y

�
); (b) The relation of x

�
and y

�
; (c) The trajectories of the master

system; (d) The trajectories of the slave system (unsynchronized motion for �"0)2 in case (A)).
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Figure 17. (a) The trajectory of (x
�
!y

�
); (b) The relation of x

�
and y

�
; (c) The trajectories of the master

system; (d) The trajectories of the slave system (synchronized motion for �"0)8 in case (B)).

Figure 18. (a) The trajectory of (x
�
!y

�
); (b) The relation of x

�
and y

�
; (c) The trajectories of the master

system; (d) The trajectories of the slave system (unsynchronized motion for �"0)2 in case (B)).
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Figure 19. (a) The trajectory of (x
�
!y

�
); (b) The relation of x

�
and y

�
; (c) The trajectories of the master

system; (d) The trajectories of the slave system (synchronized motion for �"0)8 in case (C)).

Figure 20. (a) The trajectory of (x
�
!y

�
); (b) The relation of x

�
and y

�
; (c) The trajectories of the master

system; (d) The trajectories of the slave system (unsynchronized motion for �"0)1 in case (C)).
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Figure 21. The PoincareH maps of the slave system for (a) �"0)14, (b) �"0)18, (c) �"0)27 and (d) �"0)38.

Figure 22. (a) The trajectory of (x
�
!y

�
); (b) The relation of x

�
and y

�
; (c) The trajectories of the master

system; (d) The trajectories of the slave system (synchronized motion for �"0)8 in case (D)).
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Figure 23. (a) The trajectory of (x
�
!y

�
); (b) The relation of x

�
and y

�
; (c) The trajectories of the master

system; (d) The trajectories of the slave system (unsynchronized motion for �"0)2 in case (D)).
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"gures can be compared with the strange attractor presented in Figure 5(c). Finally, if
�*0)4, the phase portraits of the master and the slave are synchronized. Figures 22 and 23
show the synchronized behavior for �"0)80 and the unsynchronized behavior for �"0)20
respectively. Hence, when applying the one-way coupling we know that the behavior of the
slave system is dependent on the behavior of the master system. However, the master system
is not in#uenced by the behavior of the slave system.

From the paragraph above, four kinds of one-way coupling have been successfully
applied to obtain chaos synchronization in the two identical systems. The next step is to
evaluate the time required for a chaotic trajectory of the slave system to synchronize with
a chaotic trajectory of the master system with a one-way coupling alone. For this purpose,
an error function is de"ned by

E(t)"
x
�
!y

�

#
x

�
!y

�

#
xR

�
!yR

�

#
xR

�
!yR

�

. (30)

When the value of E(t) is less than 10��, the synchronization of these two identical
systems are achieved. The time t which corresponds to E(t)(10�� is called the
&&synchronization time''. According to the above rigorous de"nition, if �"0)80, the
synchronization times for cases (A), (B), (C), and (D) are 53)02 s, 53)29 s, 52)87 s and 52)54 s,
respectively.

8. CONCLUSIONS

The non-linear motion of a symmetric gyro with linear-plus-cubic damping mounted on
a vibrating base has been investigated. It has shown that the system exhibits both regular
and chaotic motions. Period-doubling route to chaos in this system is also observed. The
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Liapunov direct method has also seen employed in a rigorous treatment of su$cient
conditions for system stability. The bifurcation of the parameter-dependent system has been
studied numerically. The time evolutions of the non-linear dynamical system response were
described using the phase portraits via the PoincareH map technique. Further, the occurrence
and nature of chaotic attractors have been veri"ed by evaluating the Liapunov exponents
and the Liapunov dimensions. Besides, several control methods, the delayed feedback
control, the addition of the constant motor torque, the addition of the periodic force, and
adaptive control algorithm (ACA), are successful by using to control chaos. The
synchronization of chaos in the two identical chaotic motions of symmetric gyros is also
studied. According to the results, two identical chaotic systems can be synchronized by
applying four di!erent kinds of one-way coupling. Finally, the synchronization time is also
examined. This obviously is of signi"cance for the design of future gyroscopes.
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