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Theoretical models that can be used to predict the range of mainlobe widths and the
probability distribution of the peak sidelobe levels of two-dimensionally sparse arrays are
presented here. The arrays are considered to comprise microphones that are randomly
positioned on a segmented grid of a given size. First, approximate expressions for the mean
and variance of the squared magnitude of the aperture smoothing function are formulated
for the random arrays considered in the present study. By using the variance function, the
mean value and the lower end of the range i.e., the "rst 1 per cent of the mainlobe width
distribution, can be predicted with reasonable accuracy. To predict the probability
distribution of the peak sidelobe levels, distributions of levels were modelled by using
aWeibull distribution at each peak in the sidelobe region of the mean squared magnitude of
the aperture smoothing function. The two parameters of the Weibull distribution were
estimated from the means and variances of the levels at the corresponding locations. Next,
the probability distribution of the peak sidelobe levels were identi"ed by following
a procedure in which the peak sideload level was determined as the maximum among a "nite
number of independent random sidelobe levels. It was found that the model obtained from
that approach predicts the probability density function of the peak sidelobe level
distribution reasonably well for the various combinations of the two di!erent numbers of
microphones and the various grid sizes tested in the present study. The application of these
models to the design of random, sparse arrays having speci"ed performance levels is
discussed.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

As described in a previous article [1], it is possible to use a stationary array of microphones
to identify the locations and strengths of the noise sources that contribute to an accelerating
vehicle's sideline noise level. An unusual feature of that method is that it can be used in the
case when the source vehicle moves at a non-constant velocity: during a standard vehicle
passby test, for example. In such a test, the position of the vehicle is tracked continuously by
using a radar transducer (which measures the vehicle's velocity) and a photoelectric sensor
is used to identify the absolute position of the vehicle at one time. From the vehicle's
position as a function of time, propagation distances from assumed source locations on
a restoration plane (attached to and moving with the side plane of the vehicle) to the
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.
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stationary array microphones are calculated. Based on those propagation distances, each
microphone signal is de-Dopplerized and corrected for the amplitude attenuation resulting
from spherical spreading. The processed microphone signals can then be focused on
a sequence of locations on the restoration plane to yield the spatial distribution of source
strengths at any vehicle position during the passby.

A microphone array to be used for this purpose must satisfy various, sometimes
con#icting, requirements. For example, the microphones must be spaced su$ciently closely
to avoid spatial aliasing while at the same time the total array aperture must be large
enough to allow typical sources to be resolved accurately. To satisfy these requirements by
using a fully populated array suggests the need for an unrealistically large number of
microphones, potentially in the thousands.

However, it is known that the conditions listed above may be met by using so-called
sparse arrays in which microphones are not placed at all of an aperture's underlying grid
locations. In the case of linear sparse arrays, it is known that mainlobe width is essentially
the same as that of the equivalent fully populated array so long as the aperture size of the
sparse array is the same as that of the fully populated array on the underlying grid [2]. Since
the spatial anti-aliasing performance of an array is determined by the minimum spacing in
its co-array (i.e., the autocorrelation of the array con"guration), sparse arrays possess the
same degree of anti-aliasing capability as that of the fully populated array on the underlying
grid. However, it is known that the peak sidelobe levels of sparse arrays tend to be higher
than those of equivalent fully populated arrays. The peak sidelobe level is related to
the noise rejection capability of an array and it is usually an important factor by which the
performance for an array con"guration is assessed. Given that the aperture size and
the number of sensors in a linear sparse array are "xed (i.e., that there are sensors placed at
both ends of the underlying grid), a broad range of peak sidelobe levels is possible
depending on the precise details of the array con"guration. Sidelobe levels can be controlled
to some extent by applying spatial windows to the array output. However, the possibility of
applying spatial windows to reduce the peak sidelobe levels has been excluded in the present
study since the weighting factors for each microphone are assumed to be related to the
propagation distances from each point of interest on the restoration plane to each
microphone [1].

Note that the co-array of an array represents the number of occurrences of each baseline
within the array (the baseline is de"ned as the distance between a pair of sensors in an array
con"guration). For an M-sensor array, the maximum number of possible baselines is

�
C

�
"M(M!1)/2. It is usually the case that sparse arrays feature redundant baselines

(i.e., multiple appearances of the same baseline) and lack certain other baselines. The
absence of a particular baseline in an array con"guration of course means that the incident
spatio-temporal sound pressure "eld cannot be sampled at that baseline. Two methods
focusing on the redundancy of an array have been used to design linear arrays having
equi-spaced, linear grids: the two methods results in either minimum redundant or
non-redundant linear arrays. The design of minimum redundant linear arrays is described
by Mo!et [3], and by Panayirci and Chen [4]. In the case of a minimum redundant array,
the number of redundancies in the co-array is minimized subject to the restriction that there
should be no &&holes'', or zero correlation values, within the array's co-array.
Non-redundant linear arrays are described by Vertatschitsch and Haykin [5]: their
co-arrays have only zero or unit correlation values (except at zero lag). While
a non-redundant array usually yields the largest aperture amongst the possible array types
given a "xed number of sensors, the &&holes'' in the co-array result in sidelobe levels that are
likely to be higher than those resulting from the use of a minimum redundant array. The
bene"t of minimum redundant and non-redundant arrays given a certain number of sensors
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is that they result in a relatively large aperture size without unnecessary loss in baselines,
thus allowing good spatial resolution (i.e., small mainlobe width) to be obtained. However,
given the maximum aperture size and the available number of sensors, the question is: Are
either minimum redundant or non-redundant sparse arrays optimal in the sense that they
yield the smallest peak sidelobe level amongst all possible sparse arrays that extend over the
same aperture size? The work described in the present article was performed in part to
address this concern.

The linear array design methods described above cannot be easily extended to the case of
two-dimensional sparse arrays. Indeed, it is not even easy to de"ne such an array's
&&aperture size''. There have been relatively few publications related to the design of
two-dimensional arrays. One approach to designing two-dimensional arrays was suggested
by Klemperer [6]. In his method, non-redundant arrays were generated based on
a six-sensor array of zero redundancy to which three sensors at a time were added
axisymmetrically on a triangular grid. Among the non-redundant arrays generated, the best
array con"guration was selected based on the criteria of &&compactness'' and large &&core
number'', the latter being de"ned as the total number of baselines in the central portion of
the co-array within a limiting circle in which just a small proportion (5}10 per cent) of holes
was allowed. However, this method cannot be used to design non-axisymmetrical arrays
(for instance, rectangular arrays) in applications where such arrays are preferred.
Klemperer's method represents an extension to two dimensions of the philosophy that the
array having the smallest number of redundancies will be the best amongst the possible
array con"gurations that could be constructed on the underlying grid.

Another two-dimensional array design method involves the generation of arrays in which
sensors are positioned randomly within a given aperture region. The positioning of sensors
in a random fashion helps to avoid the periodicity inherent in non-random arrangements,
thus possibly #attening the co-array values. Random arrays are essentially extreme versions
of non-redundant arrays when a large enough number of sensors are involved. However, to
justify the use of array design methods based on minimizing the number of redundancies, it
should "rst be demonstrated that an array having a small number of redundancies generally
yields small peak sidelobe levels. To-date, that connection does not appear to have been
demonstrated. For example, the correlation between the number of redundancies and the
peak sidelobe level of a set of 2000 array con"gurations generated by randomly placing 16
microphones on a 12�12 grid with a grid spacing of 1/11 m in both the x and z directions
(i.e., in the horizontal and vertical directions respectively) is shown in Figure 1 (the
procedure used in these calculations will be described in later sections of this article). Even
though some degree of correlation can be observed in the data shown in Figure 1, it can also
be seen that there is a large variation in peak sidelobe level for a given number of
redundancies. Furthermore, since some of the random array con"gurations possessing
relatively low peak sidelobe levels could have relatively large mainlobe widths, it does not
seem safe to rely solely on the number of redundancies to identify a good array
con"guration.

Note that arrays generated by deterministic design methods, e.g., crossed arrays [7] and
elliptically spiral array [2], are all subsets of random sparse arrays so long as they share the
same underlying grid. Therefore, it might be considered wise to allow an optimal array
(satisfying both the mainlobe width and the peak sidelobe requirements) to emerge from an
exhaustive search of a population of random arrays without imposing a particular array
shape ab initio.

In practice, however, the speci"cation of two-digit numbers of grid points in both
horizontal and vertical directions (for example, 80�40) in a rectangular aperture to be
populated sparsely by a manageable number of sensors (for example, 64) would yield a very



Figure 1. Correlation between the number of redundancies and the peak sidelobe level for 2000 randomly
generated 16-microphone array con"gurations with a 12�12 grid size and 1/11m grid spacing in the x and
z directions.
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large number of possible array con"gurations. As a result, the subset of arrays that can be
tested in a reasonable period of time generally represents only a small fraction of the total
set of possible arrays. Therefore, it would be of bene"t if, when determining the number of
sensors and the grid size to be used in a particular application, the ranges of mainlobe
widths and peak sidelobe levels of various classes or random array con"gurations could be
estimated before starting a time-consuming search process. Lo [8] developed an
approximate method of determining the critical number of sensors required to generate
with a good chance of success a random linear array having a speci"ed peak sidelobe level.
Lo's approximate method is based on a statistical approach and is asymptotically valid for
large numbers of sensors (in his study, cases where the number of sensors was greater than
100 were considered).

In the present article, a similar tool, which can be used even when the number of
microphones is relatively small, is described. The model presented in the present study can
be used to predict the range of the distributions of the mainlobe widths and the probability
distributions of the peak sidelobe levels of randomly generated two-dimensional arrays
given the grid size and the number of microphones to be positioned on the grid. In principle,
the computationally e$cient method presented here can be used to predict the smallest
possible mainlobe width and the lowest possible peak sidelobe levels obtained by testing
a reasonably small fraction of the total set of possible arrays. Thus, one can use the tools
described here to choose an appropriate grid size and spacing given a speci"ed number of
sensors before a time consuming, exhaustive search is performed. Alternatively, these tools
can be used to estimate the minimum number of sensors that must be used to meet speci"ed
requirements for peak sidelobe level, mainlobe width and anti-aliasing performance.

Note "nally that it is certainly possible that an array carefully designed according to
some speci"ed criteria (shape, for example) might perform better than the best of a "nite
subset of all possible randomly generated array con"gurations in terms of peak sidelobe
level and mainlobe width. However, it is generally not an easy task to design an array as the
number of microphones increases. Even when one attempts to design an array
con"guration according to some set of arbitrary criteria, the tools that are described in the
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present article can be used to establish a standard against which the peak sidelobe levels and
the mainlobe width of those array con"gurations can be compared. As a benchmarking
study, the problem of placing 16 and 64 microphones within di!erent-sized, square
apertures is also considered here.

2. RANDOM ARRAY GENERATION WITH A SEGMENTING SCHEME

2.1. GRID SPACING

Given a speci"ed aperture in the x}z plane, the fundamental grid spacing in the x and
z directions (e.g., in the horizontal and vertical directions respectively) is determined by the
spatial anti-aliasing capability required in a speci"c application. In vehicle passby
applications, for example, the fundamental grid spacing is determined by the frequency
range of interest and the maximum incidence angle from the vehicle noise sources to the
center of the array. Standard motor vehicle passby test procedures are described in ISO
362-1981. In the present work, it was assumed that it is desired to identify the source
locations and strengths over a vertical plane (i.e., the x}z plane) extending from !10 to
10m from the center of the array and horizontally separated from the array: see Figure 2. In
that case, the maximum incidence angle occurs when the vehicle is either at the entrance or
exit of the test section as depicted in Figure 2. The maximum angle would occur at the
entrance side of the array plane when the source is at the exit edge of the noise source plane
(or equivalently, at the exit side of the array plane when the source is at the entrance edge of
the noise source plane). To avoid spatial aliasing, it is required that there be at least two
Figure 2. Determination of maximum allowable sensor spacing in the x direction (the direction of vehicle
movement): (a) isometric view; (b) top view.
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sensor spacings, 2d, within one spatial cycle of the sound "eld in the x direction. Therefore,
the maximum sensor spacing, d

�
, that is allowed in the x direction can be calculated as

d
�
"

c

2 f
���

sin �
, (1)

where c is the sound speed and f
���

is the highest frequency that contributes signi"cantly to
the sound "eld incident on the array. Here, for instance, when f

���
is 2 kHz, d

�
is calculated

to be approximately 0)11 m. The present analysis is based on the existence of plane phase
planes (the far "eld source case). However in reality, the noise sources on the restoration
plane (the side plane of the vehicle) lie within the &&near "eld'' of the microphone array, i.e.,
spherical spreading e!ects are signi"cant. An analysis performed assuming spherical phase
surfaces would result in a decrease in the allowable sensor spacing in the x direction; an
exact analysis would require a knowledge of the microphone positions a priori. Therefore,
the sensor spacing in the x direction should be selected so that it is smaller than the value
calculated above, and the appropriateness of the spacing should be checked after the array
design is "nalized.

2.2. SEGMENTING SCHEMES

Once the spacing of the underlying regular grid is determined, all the sparse arrays
de"ned on the same underlying grid share the same spatial aliasing characteristics except in
the case of sparse arrays in which microphones happen to be placed at integer multiples of
the underlying grid spacing (i.e., where the smallest actual microphone spacing is an integer
multiple of the nominal grid spacing). The mainlobe width and the peak sidelobe level of
a sparse array then depend on the aperture size and the way the microphones are disposed
on the grid points.

The mainlobe width, in particular, is strongly related to the aperture size of an array
con"guration (that relation will be discussed in detail in section 3.2). The aperture sizes of
random arrays, and thus the mainlobe width, can to some extent be controlled by specifying
the size of the underlying grid. However, when sensors are positioned randomly on the grid,
sensors can clump together in a small region thus yielding a smaller e!ective aperture size
than is suggested by the nominal grid size. To make sure that the sensors are spatially well
distributed after an appropriate grid size is "xed, schemes based on segmenting the whole
aperture into smaller subsections were considered in the present study.

In a segmenting procedure, sensors are "rst grouped on a segment-by-segment basis, and
each group of sensors is then positioned randomly within each subsection as in the random
array design method. Moebs [9] "rst used a segmenting scheme when designing
a 16-microphone array in order to resolve the clumping problem. In this case, he segmented
a rectangular aperture of size 3m�1)8m (a 16�10 grid size) into 3�3 subsections of equal
width and height. In his method, one microphone was always positioned at the center of the
array's aperture and the rest of the microphones were positioned randomly within the
various subsections.

Three segmenting schemes for a square, 12�12 grid are illustrated in Figure 3. Since the
width and height of the 12�12 grid was speci"ed to be 1m�1m, the grid spacing, d

�
and

d
�
, was approximately 0)09 cm. To study the e!ects of segmenting the baseline grid into

uniform subsections, the baseline aperture (denoted segmenting scheme 1) shown in
Figure 3(a) was uniformly divided into 2�2 subsections and 4�4 subsections as shown in
Figure 3(b) and 3(c); the latter arrays will be referred to as resulting from the application of
segmenting schemes 2 and 3 respectively. As the number of uniform subsections increases,



Figure 3. Square array apertures and uniform segmenting schemes. Gray regions represent subsections and the
underlying grid points in each subsection are denoted by &&#'' symbols. The segmented array apertures shown in
(a), (b), and (c) result from the application of segmenting schemes 1, 2, and 3 respectively.
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microphones tend to spread evenly over the grid. Note that the theoretical model that is
described in section 3 is applicable only when the number of microphones in each
subsection is the same. Therefore, 3�3 subsections were not considered here (since 16- and
64-microphone arrays were considered in the present study).

The mainlobe width and peak sidelobe level of an array con"guration can be estimated
from the squared magnitude of its aperture smoothing function,=(k), de"ned as

=(k)"
�
�
���

exp ( jk ) x
�
). (2)

In equation (2), x
�
and k denote the rth sensor's position vector and the wave number vector

respectively. Therefore, the aperture smoothing function represents the two-dimensional
spatial Fourier transform of the microphones' positions.

For each array con"guration generated here, the squared magnitude of the aperture
smoothing function was calculated using a zero-padded (96�96)-point FFT. An example of



Figure 4. An example of the squared magnitude of the aperture smoothing function of an array generated using
segmenting scheme 2. The x at the center of the plot represents the peak of the mainlobe and the other two x's
represent the peak sidelobes. The closed curve at the mainlobe location shows the 3 dB down contour line. The
scale bar represents a decibel scale.
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the squared magnitude of an aperture smoothing function generated using segmenting
scheme 2 for 16 microphones is shown in Figure 4. From the squared magnitude of the
aperture smoothing function, the mainlobe widths based on the 3 dB down contour lines
and peak sidelobe levels can be calculated and are shown in Figure 4. Note that the present
work is concerned with two-dimensional array con"gurations and &&mainlobe width'' in the
present article, in fact, represents the mainlobe &&area'' which therefore has the unit of m��

(area in the wave number domain).
Two thousand, 16-microphone array con"gurations were randomly generated by using

each of segmenting schemes 1, 2 and 3, and the 3 dB down mainlobe widths and the peak
sidelobe levels in each case are plotted in Figure 5(a), 5(b) and 5(c) respectively. The best
choice of an array con"guration from amongst all the random arrays would be the array
con"guration that yielded the smallest mainlobe width and the lowest peak sidelobe level. It
can be seen in Figure 5(a}c) that an appropriate choice of an array con"guration is from
those at the lower bound of the distributions: that is, from those arrays having the smallest
possible mainlobe bandwidth for the same peak sidelobe level.

When segmenting schemes 2 and 3 are considered (2�2 and 4�4 uniform subsections
respectively), it can be seen from Figure 5(b) and 5(c) that the lower bound of the mainlobe
width did not change very signi"cantly from the lower bound shown in Figure 5(a)
(although the lower bound in the case of segmenting scheme 3 does seem to be somewhat
higher than in the other two cases). The main e!ect of the segmenting is to decrease the
variation of the mainlobe width distribution. The array con"gurations distributed within
the upper portion of Figure 5(a) are presumably those array con"gurations that have much
smaller e!ective aperture sizes than the nominally speci"ed aperture size. Therefore, the
introduction of uniform segmenting schemes in the generation of random arrays helps to



Figure 5. Correlation between the peak sidelobe levels and the 3 dB down bandwidths of sets of 2000 randomly
generated arrays generated using: (a) segmenting scheme 1, (b) segmenting scheme 2, and (c) segmenting scheme 3.
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"lter out array con"gurations having relatively large mainlobe widths for the same peak
sidelobe level without losing those array con"gurations at the lower bound. For this reason,
it was decided to use the uniform 2�2 segmenting scheme in the present work (since
segmenting scheme 3 may be too restrictive). The random array con"gurations investigated
in the present study were generated based on segmenting scheme 2, unless stated otherwise.

3. THEORETICAL MODEL AND RESULTS

3.1. MEAN AND VARIANCE OF THE APERTURE SMOOTHING FUNCTION

The mean value and the variance of the squared magnitude of the aperture smoothing
function for random arrays were investigated next. These quantities have been discussed in
reference [10] for random arrays created without use of a segmenting scheme. In that work,
sensors were assumed to be distributed over a prede"ned aperture without an underlying
grid. Sensors were placed randomly and independently of each other without regard to the
positions of previously positioned sensors. In the present study, the formulae for the mean
value and the variance of the squared magnitude of the aperture smoothing function are
generalized so as to make it possible to deal with cases in which segmenting schemes are
used. Even though the present discussion is restricted in detail to the case of a uniform 2�2
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segmenting scheme, the formulae which will be presented here can be applied to general
segmenting schemes comprising any number of arbitrarily shaped subsections. The only
constraint that is imposed in the derivation procedure is that the same number of sensors
should be assigned to each subsection.

To simplify the following analysis, it was assumed that each sensor could be placed
anywhere within each subsection without regard to the prede"ned grid points. The squared
magnitude of the aperture smoothing function of array con"gurations comprising
M sensors can be expressed as [10]

�=(k) ��"

�
�

����

�
�

����

exp � jk ) (x
��

!x
��
)�, (3)

where x
�
and k denote the rth sensor's position vector and the wave number vector

respectively.
The mean squared magnitude of the aperture smoothing function for random array

con"gurations can then be expressed as
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Moreover, the r
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cases can be further divided into cases in which the two sensors at r

�
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�
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In equation (6), n and m, respectively, denote the number of subsections and the number of
microphones within each subsection: the latter quantity is m"M/n. The variables p and
q are integer values denoting the index number of the subsections. The second term above
corresponds to the case in which the sensors at r

�
and r

�
lie within the same subsection,

while the third term corresponds to the case in which they lie within two di!erent
subsections. Since the random variables x

��
and x

��
are independent of each other, equation

(6) can be simpli"ed to
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where �
�
(k) is the characteristic function of the random variable governing sensor

placement in subsection p: it is de"ned as �
�
(k)"E�exp �jk ) x��, and �

�
(!k) denotes its

complex conjugate. Equation (6) can be manipulated to yield an alternate form, i.e.,
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Next, the variance of the squared magnitude of the aperture smoothing function about the
mean value can be obtained from the formula [10]

��"E [ �= (k) ��]!E[ �=(k) ��]�, (9)

where the mean value of the fourth power of the magnitude of the aperture smoothing
function is
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A similar but more tedious procedure than that used to obtain equation (8) yields an
equation for the fourth power of the magnitude of the aperture smoothing function, i.e.,
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where u
�
denotes the unit step function de"ned as

u
�
"�

1, n*a

0, otherwise.
(12)

Equations (8) and (11) can be evaluated easily provided that the probability density
function of the random variable (the sensor's position vector x, in this application) is de"ned
for each subsection. The gray regions (i.e., the shaded areas) in Figure 3 represent the
subsections. Note that the subsections include the additional area around the grid points at
the edge of the array so that the shaded area in Figure 3(a) can conceptually be subdivided
into small adjoining square areas, each surrounding a grid location. The average of all
locations within the small square area is the grid location. Therefore, the array aperture
denoted by the shaded regions represents the continuous version of the discrete array
aperture in the sense that both continuous and discrete array apertures share the same
aperture size. That means, for instance, that the average distance of a number of sensors
from the central point of the aperture when they are randomly placed in the shaded area
(not necessarily on the grid points) is equal to that of the sensors when they are randomly
placed on discrete grid points within the shaded area.

In Figure 6(a) is shown the mean squared magnitude of the aperture smoothing functions
of random arrays based on segmenting scheme 2 with a grid size of 12�12: a uniform
Figure 6. Mean squared magnitude of the aperture smoothing function and $2� variations about this mean
calculated for random arrays generated by using the segmenting scheme 2: (a) mean value; (b) #2� variation;
(c) !2� variation. Scale bar represents a decibel scale.



Figure 7. Cross-sections (k
�
"0) of the mean squared magnitude of the aperture smoothing function (solid line)

and the variation ($2�) about this mean (dashed lines) calculated for random arrays generated using the
segmenting scheme 2. Dotted lines denote the mean values and the variances of the squared magnitude of the
aperture smoothing function, respectively, obtained by averaging results from 2000 randomly generated arrays
with the same segmenting scheme: (a) 4�4 grid, (b) 6�6 grid, (c) 12�12 grid.
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probability density function was assumed to apply in each subsection. In Figure 6(b) and
6(c) are shown the $2� variations of the mean squared magnitude of the aperture
smoothing functions about this mean. A cross-sectional view of Figure 6 along the line
k
�
"0 is shown in Figure 7 along with results calculated for other sets of random arrays

generated by using di!erent grid sizes. The grid sizes used to generate the data shown
in Figure 7(a), 7(b), and 7(c) were 4�4, 6�6, and 12�12 respectively. Each complete
grid was divided into uniform 2�2 subsections (segmenting scheme 2), and zero-padded
(32�32)-, (48�48)-, and (96�96)-point FFTs were used, respectively, to calculate
the squared magnitudes of the aperture smoothing functions for 2000 randomly generated
array con"gurations for each grid size (except for the case of a 4�4 grid, when only a
single con"guration is possible). In the "gures, the predicted mean squared magnitude of
the aperture smoothing function is denoted by a solid line, while the predicted variations
($2�) about this mean are denoted by dashed lines. The dots represent the corresponding
curves calculated on the basis of the 2000 randomly generated array con"gurations.

It can be seen that the simulation results show progressively better agreement with the
predictions of the theory as the number of grid points within a given aperture becomes
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larger. This follows since equations (8) and (11) were derived based on the assumptions that
sensors could be placed on the aperture continuously (i.e., without a grid), and that sensors
are positioned randomly without regard to the previously positioned sensors. However, in
the simulation, placing more than one microphone at the same grid point was not allowed,
and sensors were positioned on discrete grid points. Therefore, the theoretical model does
not account for the e!ects related to the number of grid points within a given aperture,
and predicts identical means and variances regardless of the grid spacing so long as
the aperture size is the same. However, it should be noted that the grid spacing e!ect
exists in practice: as the grid spacing becomes smaller, the discrepancies between the
predicted values and the results obtained from simulated array con"gurations decrease. For
the case of a 6�6 grid (see Figure 7(b)), the mean value was overestimated, especially near
the minima of the squared magnitude of the aperture smoothing function, by approximately
2}3 dB. Also, note that the variance tend to be overestimated compared to the actual
values as the grid spacing becomes larger. For the case of a 4�4 grid, in which case, a fully
populated, unique 16-microphone array con"guration exists, the theory cannot predict
the variance of the squared magnitude of the aperture smoothing function. Therefore,
the theoretical model presented in this subsection for the mean squared magnitude of the
aperture smoothing function and the corresponding variance become asymptotically exact
only as the grid spacing becomes small.

3.2. MAINLOBE WIDTHS AND EFFECTIVE APERTURE SIZES

It is known that an array's mainlobe width is generally dependent on the array's
aperture size. For linear arrays, the aperture size is simply the distance from one end of the
array to the other. In this subsection, the relationship between the mainlobe width and the
&&size'' of two-dimensional array con"gurations is investigated based on observations of
random arrays generated for di!erent segmenting schemes, grid sizes, and numbers of
microphones.

There is no concrete de"nition of &&aperture size'' for two-dimensional arrays, but since
aperture size in linear arrays is approximately proportional to the degree to which the
microphones are spread out, it was of interest to investigate the correlation between the
polar moment of an array's microphone positions and its mainlobe width (the polar
moment of an array's microphone positions is de"ned as ��

���
�x

�
� provided that the mass

center of the array is located at the origin of the coordinate system).
In Figure 8, mainlobe widths are plotted as a function of array polar moments for "ve sets

of 2000 random arrays generated by using the three di!erent segmenting schemes, three
di!erent grid sizes, and two di!erent numbers of microphones. That is, for 16-microphone
arrays, the segmenting schemes 1}3 used in combination with a 12�12 grid size were tested;
a di!erent grid size, 6�6, used in combination with segmenting scheme 2, was also tested.
To test a case involving a di!erent number of microphones, 64-microphone arrays were
generated by using a 24�24 grid size based on segmenting scheme 2. The grid spacing in
both the x and z directions was 1/11m for all array con"gurations. In Figure 8, the vertical
axis represents the polar moment per sensor while the horizontal axis denotes the square
root of the mainlobe width. The distributions of the polar moments per sensor (m

�

), and the

roots of the mainlobe widths (bw
�
) of the array con"gurations can be seen to approximately

follow the curve m
�


"1)87 /bw
�
, regardless of segmenting scheme, grid size or the total

numbers of sensors.
The hyperbolic relationship between the polar moment per sensor and the root of

mainlobe width observed for two-dimensional arrays may be explained by analyzing linear,



Figure 8. Correlation between the root of the mainlobe widths (bw
�
) and the &&polar moment per sensor'', (m

�

),

for 16-microphone random array con"gurations and 64-microphone array con"gurations. In the expanded sketch,
the approximate locations of the results of the 16-microphone random arrays generated based on segmenting
schemes 1, 2, and 3 and with the grid size 12�12 are denoted by 1, 2, and 3. The results for the 16-microphone
random arrays based on segmenting scheme 2 with a grid size 6�6 are denoted by A. The results for 64-
microphone random array con"gurations generated based on segmenting scheme 2 with the grid size 24�24 are
denoted by B. Data points were curve-"tted (shown as a solid line) by using the formula, m

�

"1)87/bw

�
.
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regular (i.e., fully populated) arrays. Consider, a linear regular array composed ofM sensors
with sensor spacing, d. The mainlobe width, bw, of the linear array is [10]

bw"4�/Md. (13)

Here, the mainlobe width is not the 3 dB down bandwidth, but the &&zero-crossing''
bandwidth. The moment of the microphone positions with respect to the mass center of the
array can be easily calculated, and it isM� d/4 and (M�!1)d/4 for even and odd values of
M respectively. Therefore, the moment per sensor (with respect to the y direction provided
that sensors are positioned on the x-axis) can be approximated as

m
�


"Md/4. (14)

Note that equation (14) yields negligible error even whenM is a relatively small number (for
example, there is a 4 per cent error for the caseM"5). From equations (13) and (14), the
moments per sensor can be related to the mainlobe widths for the case of linear regular
arrays, i.e.,

m
�


"�/bw. (15)

Note that variables M and d do not appear explicitly in equation (15).
In the case of two-dimensional regular arrays, it is reasonable to assume that the above

result can be applied in both the x and z directions, independently, i.e., the moments of
microphone positions about the z"0 and x"0 axes (provided that the mass center of an
array is positioned at z"0 and x"0) determine the mainlobe width in the k

�
and k

�
directions respectively.

Note that the above procedures were derived for fully populated arrays. However, it can
be seen in Figure 8 that the hyperbolic relation between the mainlobe widths and the
moment per sensor still holds for sparse arrays. In Figure 8, the root of the mainlobe width,
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bw
�
(in fact, the root of the mainlobe &&area'', which has the same dimension as the mainlobe

width in linear arrays) was used as the scale for the horizontal axis and instead of
investigating the relationships in the x and z directions independently, the polar moment
per sensor, m

�

, was used as the scale of the vertical axis since the apertures were square in

the present case. The constant used to "t the data was 1)87, i.e.,

m
�


"1)87/bw
�
. (16)

This constant appears to be universal in the sense that it is independent of the grid spacing
and the number of sensors.

The agreement between the data and the "tted curve seems to be good at least for the
array con"gurations generated by using segmenting schemes that ensure a degree of
&&squareness'' of the distributions of the microphones: small deviations from the hyperbolic
relationship can be observed for some array con"gurations generated by using segmenting
scheme 1 since the latter does not impose any restrictions on the microphone placement
(note that the distributions of the polar moments of the 16-microphone random arrays
generated by using a 12�12 grid based on segmenting schemes 1}3 are illustrated by means
of a sketch in Figure 8). Based on the present simulations and analysis, it is also reasonable
to suggest that the mainlobe widths of linear sparse arrays also depend strongly on the
moment of the arrays' microphone positions, even though this dependency has not been
rigorously investigated in the present study.

It was shown in reference [2] that elliptical arrays generally have smaller mainlobe
widths than do random arrays even when the latter have relatively larger aperture sizes.
That observation can be explained in terms of the array polar moment. Even though the
nominal array aperture sizes de"ned by the area within the envelope of the array
con"gurations of elliptical arrays are generally smaller than those of random arrays
generated on the rectangular aperture enclosing the elliptical arrays, the corresponding
polar moment of the elliptical array con"gurations can be larger since all of the
microphones are positioned around the edges of the array envelope.

Therefore, it is concluded here that the polar moment per sensor with respect to the
center of the microphone array, m

�

, should be used as a measure of the equivalent array

aperture size in the case of square, two-dimensional arrays. In the case of non-square arrays,
moments about the x- and z-axis determine the mainlobe width in the z and x directions
respectively. In that case, equation (14) may be used to de"ne the equivalent aperture
dimensions of a two-dimensionally sparse array con"guration. That is, based on the fact
that the aperture size of a linear regular array is approximately four times the moment per
sensor of the linear regular array, the equivalent aperture dimensions of a two-dimensional
array con"guration in the x and z directions, respectively, can be de"ned as four times the
moments of the sensors about the z- and x-axis, respectively, i.e., ¸

�
"4m

�

and ¸

�
"4m

�

where ¸

�
and ¸

�
are the equivalent aperture dimensions in the x and z directions.

3.3. RANGE OF THE MAINLOBE WIDTH DISTRIBUTION

The formulae for the mean value and variance of the squared magnitude of the aperture
smoothing function do not give direct information about the statistical properties of the
mainlobe widths or the peak sidelobe levels. In the present subsection, an approximate
method that can be used to predict the range of the most likely mainlobe widths (i.e., that
fall with the 1}99 percent range of the cumulative distribution) will be described.

A probability density function for the distribution of the 3 dB down mainlobe widths was
obtained based on 20 000, 16-microphone array con"gurations that were randomly



Figure 9. Bar graph of the probability density function for the distribution of the 3 dB down mainlobe widths
based on 20 000 16-microphone random arrays generated using segmenting scheme 2 on a 12�12 grid size. The
lower of the two horizontal lines plotted above the PDF represents the accumulated percentage of the distribution
(data); the upper horizontal line denotes the mainlobe widths that were obtained from corresponding variations
from the mean squared magnitude of the aperture smoothing function (theory).
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generated on a square 12�12 grid using segmenting scheme 2 and a grid spacing of 1/11m:
the probability density function is shown in Figure 9 where the cumulative distribution (in
two forms) is also shown above the bar graph. Note that a larger number of array
con"gurations was used here so that the distribution as well as the mean value could be
modelled more accurately. The probability density function for the distribution of the
mainlobe widths was observed to be skew-symmetric. Here the object was not to identify an
appropriate probability distribution model for the distribution of mainlobe widths, but to
"nd an approximate method for predicting the range of the mainlobe widths within which
fall most of the 3 dB down mainlobe widths.

As shown in Figure 7(a}c), the variance of the squared magnitude of the aperture
smoothing function from the mean value is large in the sidelobe regions. However, the
variance of the squared magnitude of the aperture smoothing function is small around the
mainlobe (it is zero at k

�
"k

�
"0), and therefore information about the mainlobe widths

can be well estimated by using equations (8) and (11). The mean value and the plus and
minus variation of the mainlobe 3 dB down (half-power) bandwidth can be obtained by
contouring the mean, mean#variation, and mean!variation surfaces of the squared
magnitude of the aperture smoothing function ( �A

�
��) at the !3dB plane and by

calculating the areas within these contours. Mainlobe widths were calculated for several
settings of the variation: $�, $1)5�, and $2)5�. The mean and standard deviation (�) of
�A

�
�� as a function of the wave number were obtained by using equations (8) and (11)

respectively. The 3dB downmainlobe width resulting from these calculations are shown on
the upper line in Figure 9, where the variation used to produce the result is indicated. It can
be seen that the mainlobe widths that correspond to $�, $1)5�, and $2)5� are not
positioned symmetrically with respect to the mean value of the mainlobe width (�"0). The
asymmetry is expected from the asymmetry in the probability density function of the 3 dB
down mainlobe width, which is also re#ected in the large di!erences between Figures 6(a)
and 6(b) and the relatively smaller di!erences between Figures 6(a) and 6(c).
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The lower of the two horizontal lines above the estimated probability density function in
Figure 9 represents the location of speci"c points in the cumulative distribution (obtained
by integration of the probability density function). It can be seen that 98 per cent of the
mainlobe widths lie between the values associated with the variation !1)5� and
a variation somewhere between #1)5� and 2)5�.

To test whether the value below which only 1 per cent of the mainlobe widths lie is well
predicted by calculating the 3 dB down mainlobe width from the (mean !1)5�) squared
aperture smoothing function for other grid sizes and other microphones, 2000 random
arrays were generated for each of nine di!erent grid sizes for the case of a 16-microphone
array designed according to segmenting scheme 2 and having a grid spacing of 1/11m. The
grid sizes considered here were 4�4, 5�5, 6�6, 7�7, 8�8, 12�12, 16�16, 24�24, and
48�48. For the case of 64-microphone arrays, a further 2000 random arrays were generated
in a similar manner for 10 di!erent grid sizes: 8�8, 9�9, 10�10, 12�12, 16�16, 20�20,
24�24, 28�28, 48�48, and 72�72. Note that for the cases 5�5 and 7�7 for the
16-microphone arrays and for the 9�9 case for the 64-microphone arrays the whole grid
cannot be divided evenly due to the odd numbers of grid points in the x and z directions:
thus the grid was horizontally divided below the central row and vertically divided left of
the central column of the grid in these cases. For each array realized in this way,
a zero-padded FFT with the number of points in each direction eight times greater than the
given nominal array size was used to evaluate the 3 dB down mainlobe widths. The grid
sizes tested in the present work for 16- and 64-microphone arrays, respectively, are shown in
Table 1 along with their interpretations in terms of, for instance, the total number of
possible array con"gurations. In Table 1, the &&best possible baselines number'' represents
the number of di!erent baselines that can be formed given a number of microphones, while
the &&number of baselines on grid'' represents the number of di!erent baselines that can be
formed given a grid. Thus the &&packing ratio'', de"ned as the best possible baselines number
divided by the number of baselines on the grid, represents the degree of population of
a number of microphones positioned on a grid in terms of baselines. The packing ratio of
a minimum redundant array con"guration would approach a value of unity.

Since the lower end of the mainlobe width distribution is of prime concern, the range of
mainlobe widths associated with $1)5� deviations were calculated for each grid size and
were compared with the range of mainlobe widths within which fall 98 per cent of the
mainlobe widths (i.e., 1}99 per cent in the cumulative distribution). A comparison of the
ranges of half power mainlobe bandwidths obtained from the 2000 randomly generated
array con"gurations and the predictive model for each grid size is shown in Figure 10(a) and
10(b) for 16- and 64-microphone arrays respectively. Note that the &&grid size'' used as the
vertical axis of Figure 10 is simply the total number of the grid points (for instance, 25 in the
case of a 5�5 grid). In Figure 10, the ranges of mainlobe widths obtained from the
randomly generated arrays are represented by the lighter gray bars, while the range of
the mainlobe widths associated with the $1)5� deviations of the squared magnitude of the
aperture smoothing functions are represented by the darker gray bars for each grid size
(note that there are no light bars for the cases of 4�4 (16-microphone arrays) and 8�8
(64-microphone arrays) since only a single fully populated array con"guration is allowed for
those cases). The symbol � within each bar represents the mean values of the mainlobe
widths.

It can be seen that the lower ends of the ranges and the mean values predicted by the
theory agree very well with those obtained from the simulations for larger grid sizes for both
the 16- and 64-microphone arrays. For the smaller grid sizes, the mean values of the
mainlobe widths are well predicted but the variations of the mainlobe widths were
overestimated by the theory. This follows since the variation of the squared magnitude of



TABLE 1

Grid sizes tested and corresponding packing ratios for each 16- and 64-microphone arrays

Number of microphones

(a) Best possible
baselines (lag)

numbers Grid size

Number of possible array
con"gurations (based on
segmenting scheme 1)

(b) Number of baselines
on grid

Packing ratio
"a/b

16
��
C

�
#1"121 4�4"16

��
C

��
"1 4�4#3�3"25 4)84

5�5"25
��
C

��
"2 042 975 5�5#4�4"41 2)95

6�6"36
��
C

��
"7 307 872 110 6�6#5�5"61 1)98

7�7"49
�	
C

��
"3)348�10�� 7�7#6�6"85 1)42

8�8"64
��
C

��
"4)885�10�� 8�8#7�7"113 1)07

12�12"144
���
C

��
"6)879�10�
 12�12#11�11"265 0)457

16�16"256
���
C

��
"1)007�10�� 16�16#15�15"481 0)252

24�24"576
���
C

��
"5)686�10�
 24�24#23�23"1105 0)110

48�48"2304
��
�

C
��

"2)860�10�
 48�48#47�47"4513 0)0268

64
��
C

�
#1"2017 8�8"64

��
C

��
"1 8�8#7�7"113 17)8

9�9"81
��
C

��
"1)284�10�� 9�9#8�8"145 13)9

10�10"100
�


C

��
"1)977�10�� 10�10#9�9"181 11)1

12�12"144
���
C

��
"6)112�10�� 12�12#11�11"265 7)61

16�16"256
���
C

��
"1)904�10�� 16�16#15�15"481 4)19

20�20"400
�


C

��
"1)299�10�� 20�20#19�19"761 2)65

24�24"576
���
C

��
"9)648�10�� 24�24#23�23"1105 1)83

28�28"784
���
C

��
"9)652�10	� 28�28#27�27"1513 1)33

48�48"2304 A very large number 48�48#47�47"4513 0)447
72�72"5184 A very large number 72�72#71�71"10 225 0)197
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Figure 10. Comparisons between the ranges of the 1}99 per cent of distributions of 3 dB downmainlobe widths
obtained from various sets of 2000 randomly generated arrays and the 3 dB down mainlobe bandwidths of the
$1)5� variations from the mean squared magnitude of the aperture smoothing functions for di!erent grid sizes.
Each pair of bars represents the comparison for each grid size. In each pair of gray bars, the lower, lighter bar
denotes the range obtained from simulated data, while the upper, darker bar denotes the range obtained from the
model. In each bar, the x's represent the mean values (50% and �"0 respectively). (a) 16-microphone arrays;
(b) 64-microphone arrays.
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the aperture smoothing function is overestimated for smaller grid sizes as discussed in
section 3.1. The most important conclusion to be drawn from this section, is that a mainlobe
width obtained from !1)5� variation of �A

�
�� can be used to estimate the 1 per cent

mainlobe width for the family of random arrays based on a speci"ed array con"guration.
Thus, before a search of the possible random arrays begins, a grid size, grid spacing and the
number of sensors can be appropriately determined according to a speci"ed requirement on
the mainlobe width.
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3.4. PROBABILISTIC DISTRIBUTION OF PEAK SIDELOBE LEVELS

Next, an approximate method that can be used to estimate the mean values and the
probability distribution of the peak sidelobe levels for randomly generated array
con"gurations is presented. Equations (8) and (9) can only yield the mean values and
variances of the sidelobe levels at each wave number and do not directly reveal information
about the mean value and the variances of the peak sidelobe levels since the latter, in
principle, can occur at all wave numbers except within the mainlobe region. The probability
density function of the peak sidelobe levels depends on those functions of level distributions
at each wave number in the sidelobe region. Note, however, that no information on the
nature of the probability distribution function of the sidelobe levels can be obtained from
equations (8) and (9).

3.4.1. Sidelobe level probability density functions

In the present work, the probability density function of the sidelobe level distribution was
modelled based on the distribution of sidelobe levels obtained from simulations. For two
locations in the wave number domain, for both 16- and 64-microphone arrays, the
distributions of the sidelobe levels were obtained from 20 000 randomly generated array
con"gurations (segmenting scheme 2, grid spacing 1/11m). For the 16-microphone array
case, the grid size used was 12�12, and the sidelobe levels were evaluated at (k

�
, k

�
)"

(0, !8)64) and (k
�
, k

�
)"(!31)57, !31)57) (refer to Figure 6 where the variance and the

mean levels of the squared magnitude of the aperture smoothing function over the domain
are shown). For the 64-microphone array, the grid size used was 24�24, and the sidelobe
levels were evaluated at (k

�
, k

�
)"(0, !4)32) and (k

�
, k

�
)"(!30)21, !30)21). In each

case, the "rst of these locations is one at which the peak sidelobe occurs in the mean squared
magnitude of the aperture smoothing function. The second location is that at which the
sidelobe at the lower left corner in the wave number domain occurs. Figures 11(a}d) shows
the probability density functions estimated from the simulations for each case. In the
"gures, the levels of the sidelobes are represented on a linear scale extending from zero to
one where a value of one represents the normalized peak level of the mainlobe at that
location.

It can be observed from the data shown in Figure 11 that the shape of the distributions
are not symmetric about their mean values, and that the shapes vary depending on position
in the wave number domain as well as on the number of microphones used in the array
con"gurations. An attempt was made to curve "t the sidelobe level distributions obtained
from the simulations by using conventional probability density functions.Weibull, Gamma,
Exponential, and Beta density functions were tested, and the Weibull density function was
found to yield the best "t with the data among the probability density functions tested. The
Weibull density function is de"ned as [11]

f
�
(x)"abx
�� e!a�bu(x), (17)

where x is the random variable and u(x) is the unity for x'0 and zero otherwise. The two
parameters in theWeibull distribution, a and b, are related to the mean,XM , and the variance,
��
�
, of the random variable, x, as follows:

XM "
�(1#b��)

a�


, ��

�
"

� (1#2b��)![�(1#b��)]�

a�


, (18, 19)

where � denotes the Gamma function. The two parameters a and b are uniquely related to
the mean value and the variance by equations (18) and (19), while the mean values and the



Figure 11. Plots of the probability density function for the distribution of the sidelobe levels obtained from
20000 random arrays generated based on segmenting scheme 2. Solid lines are curves "tted based on the Weibull
distribution: (a) and (b) are for 16-microphone arrays with a grid size of 12�12; (c) and (d) are for 64-microphone
arrays with a grid size of 24�24. Sidelobe levels were evaluated at (a) (k

�
, k

�
)"(0, !8)64), (b) (k

�
, k

�
)"(!31)57,

!31)57), (c) (k
�
, k

�
)"(0, !4)32), and (d) (k

�
, k

�
)"(!30)21, !30)21).
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variances at arbitrary positions in the wave number domain can be obtained by evaluating
equations (8) and (9). For each of the cases illustrated in Figure 11, the parameters a and
b were obtained by using the method described above, and the Weibull density function
"ttings are represented as solid lines in Figures 11(a}d). Good agreement was found in each
of the cases considered here, and so it was assumed that the distribution of sidelobe levels at
each position in the wave number domain follow the Weibull distribution.

3.4.2. Correlation of levels at two wave numbers

Recall, however, that the distribution of peak sidelobe levels itself may not follow the
Weibull distribution since the peak sidelobe does not occur at a "xed position in the wave
number domain. The peak sidelobe level can be identi"ed as the maximum level among the
levels in the neighborhood of the sidelobe regions where each of the probability
distributions of the level was modelled as following a Weibull distribution. In practice, the
levels of the squared magnitude of the aperture smoothing function are correlated at
neighboring wave numbers and uncorrelated at distant wave numbers. Lo [8] assumed that
the process of determining the peak sidelobe levels could be approximated as determining
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the maximum level among a "nite number of independent events of random variables. The
approach followed in the present study was based on the same idea.

Since the number of &&independent events'' through which the peak sidelobe level is
determined would depend on the area in the wave number domain over which a level
of the squared magnitude of the aperture smoothing function at a particular wave
number has a strong in#uence, it is of interest to look at the correlation between levels of
the function at two di!erent wave numbers. The degree of the correlation between
two random variables can be quanti"ed by the covariance of the two random variables.
The covariance is a joint moment and is de"ned as follows for two random variables, X
and > [10]:

cov[X, >],E[X>]!E[X]E[>]. (20)

The correlation coe$cient is a covariance normalized with respect to the standard
deviations of the random variables X and >, i.e.,

�
���

"

cov[X, >]

�
�
�
�

, (21)

where �
�

and �
�
represent the standard deviations of the two random variables X and

> respectively.
It is perhaps possible that the correlation coe$cient relating levels of the squared

magnitude of the aperture smoothing function at two wave numbers, k
�
and k

�
, can be

investigated theoretically. However, the derivation of the correlation coe$cient relating
levels of the squared magnitude of the aperture smoothing function at two wave numbers
for the case of random arrays generated based on segmenting scheme 2 would certainly be
Figure 12. The correlation coe$cient between the level of the squared magnitude of the aperture smoothing
function evaluated at k

�
"(!20, !20) and levels evaluated at other wave numbers, k

�
, for 16-microphone

random arrays with grid size 12�12.
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a tedious task, if not actually impossible. Here, the correlation coe$cient for the simpler
case of segmenting scheme 1 was derived instead, and that result is
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(22)

The correlation coe$cient was calculated by using equation (22) for the case of
16-microphone random arrays having a grid size 12�12 and a grid spacing of 1/11m.
A plot of the correlation coe$cient evaluated for a "xed k

�
"(!20, !20) and a varying

k
�
is shown in Figure 12. The wave number k

�
represents one of the peak locations of

sidelobes in the mean squared magnitude of the aperture smoothing function. It can be seen
that the correlation coe$cient decreases rapidly as the wave number k

�
moves away from

the wave number k
�
. Also note that an identical peak appears at k

�
"(20, 20), since

the squared magnitude of the aperture smoothing function is symmetric with respect to the
origin in the wave number domain. Thus the results of Figure 12 show that the levels of
the squared magnitude of the aperture smoothing function are almost uncorrelated with
that at k

�
"(!20, !20) outside the area very close to the peaks of the correlation

coe$cient.
Shown in Figures 13(a) and 13(b) are the 0)05-level contour lines of the correlation

coe$cient when k
�
was set to the each of the sidelobes locations of the mean squared

magnitude of the aperture smoothing functions: (a) for the case of a 16-microphone array
with grid size 12�12; (b) for the case of a 64-microphone array with grid size 24�24 (the
grid spacing in all cases was 1/11m). In the "gures, sidelobe peak locations (i.e., excluding
the mirror sidelobes) are denoted by x's. For the case of the 64-microphone array shown in
Figure 13(b), the central portion of the wave number domain was expanded so that it
included as many sidelobe peaks in the k

�
and k

�
directions as in the case of

the 16-microphone array. It can be found from equation (22) that the relative scales of the
contour lines with respect to the spacings between the sidelobe peaks is independent of
the grid size. From a comparison of Figures 13(a) and 13(b), it can also be observed that the
relative scale in the sidelobe region is not very sensitive to a change in the number of
microphones.

3.4.3. Probabilistic distribution of the peak sidelobe levels

The probability distribution function, F
�
(x), was then modelled based upon the above

observations. If the random variable,X (representing the peak sidelobe level), is assumed to
be determined by the maximum of a set of random variables, X

�
, then F

�
(x) can be

represented as the product of the probability distribution functions for the X
�
's: i.e.,

F
�
(x)"

��
�
���

F
�
�

(x), (23)

whereX
�
stands for the levels of the squared magnitude of the aperture smoothing function

evaluated at each of a "nite set of wave numbers, and ne represents the number of the wave
numbers. The "nite set of wave numbers in the sidelobe region should be selected, in
principle, so that it meets the following two conditions: each random level,X

�
, evaluated at

the ith wave number is independent of X
�
(iOj) evaluated at other wave numbers among



Figure 13. Contour plots for the 0)05-level correlation coe$cient when the wave number, k
�
, was set to

locations of sidelobe peaks in the mean squared magnitude of the aperture smoothing functions of
(a) a 16-microphone array with a 12�12 grid, and (b) a 64-microphone array with a 24�24 grid.
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the "nite set of wave numbers, and random levels evaluated at any wave number in the
sidelobe region (not necessarily in the "nite set of the wave numbers) are dependent on one
of the X

�
's.

Such a set of wave numbers should be distributed evenly in the wave number domain of
the sidelobe region since the correlation area was observed to be insensitive to change in
the location in the wave number domain as shown in Figure 13(a) and 13(b). In addition, the
quantity of the wave numbers to be considered (ne) depends linearly on the number of the
whole sidelobes (nws), de"ned as

nws"
�

�
���

w
�
, (24)
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where ns is the number of the sidelobes and w
�
is a weighting factor that depends on the

appearance of the sidelobes in �A
�
��: i.e., it is 1/2 for the case when only half of a sidelobe

appears, 1/4 for the case when only a quarter portion of a sidelobe appears, and is unity
otherwise. The weighting factor 1/2 would be assigned to the sidelobes at a boundary if an
odd number of grid points in either the x or z direction were speci"ed, while the 1/4
weighting factor would be assigned to the sidelobes at the corners if the number of grid
points in both the x and z directions were odd.

Furthermore, since the area of the neighboring region over which a level has correlative
in#uence is independent of the number of microphones (as was observed with reference to
Figures 13(a) and 13(b)), the number ne can be assumed to be dependent only on nws
regardless of the number of microphones used in the array con"gurations. The number of
whole sidelobes depends on the size of the grid (the number of whole sidelobes can be seen
to increase as the grid size increases as shown in Figures 7(a}c), where the number of whole
sidelobes happens to be the number of sidelobes in all cases). Therefore, ne can be
represented as

ne"nws�npow, (25)

where npow represents a proportionality constant that is independent of the number of
microphones in the array con"gurations. The number, npow, would be unity if the
correlation coe$cient plots of each of the sidelobe peaks were shaped like rectangular
columns of unit height and if those columns were assumed to divide the whole wave number
domain, except for the mainlobe region, without overlap or gaps. However, since the plot of
the correlation coe$cient is cone-shaped, as shown in Figure 12, npow should be other than
unity.

The product of ne probability distribution functions represented by equation (23) may be
approximated by using ns probability distribution functions for each of the sidelobe levels at
their peak locations and setting the total exponent power equal to ne as follows:

F
�
(x)"�

�

�
���

�F
�
�

(x)��
��

����
, (26)

whereX
�
is the random variable that stands for the levels evaluated at the sidelobe peaks in

�A
�
�� (the points denoted by x's in Figures 13(a) and 13(b)). It can be seen that multiple

probability distribution functions on the right-hand side of equation (23) are represented by
an identical probability distribution function evaluated at one sidelobe peak if npow is
greater than one, and a probability distribution function on the right-hand side of
equation (23) is approximated by an average of probability distribution functions evaluated
at multiple sidelobe peaks if npow is less than one.

The probability distribution function, F
�
�

(x), for the level distribution at the ith sidelobe
can be obtained by integrating the probability density function given by equation (17). To
estimate an appropriate value for the parameter npow, a few values of order unity were
tested. The predicted probability density functions f

�
(x) which can be obtained by

di!erentiating F
�
(x) in equation (26) with respect to x were compared with the probability

density functions obtained from 20 000 random array con"gurations for the cases of 16- and
64-micrphone random arrays, respectively (12�12 and 24�24 grid sizes, respectively,
segmenting scheme 2, and grid spacing 1/11m for both cases). The results are shown in
Figures 14(a) and 14(b) for 16- and 64-microphone random arrays respectively. Values of 1,
2, 3 and 4 for npowwere used in the prediction. It can be seen that the shape of the predicted
probability density function is almost independent of the change in the exponent power,
and that the predicted distributions agree reasonably well with the shape of the probability
density functions obtained from simulations both for 16- and 64-microphone arrays. The



Figure 14. Probability density functions for peak sidelobe level distributions obtained from 20 000 array
con"gurations randomly generated by using: (a) 12�12 grid and 16 microphones; (b) 24�24 grid and 64
microphones. Solid lines represent the prediction with varying the parameter, npow, in equation (26) from 1 to
4 (left to right).

Figure 15. Comparisons between the ranges of the 1}99 per cent points of distributions of the peak sidelobe
levels obtained from 2000 randomly generated arrays and those predicted by the model for di!erent grid sizes.
Each pair of bars represents the comparison for each grid size. In each case, the lower lighter bar denotes the range
obtained from simulated data, while the upper darker bar denotes the range obtained from the model. In each bar,
the x's represent the mean values: (a) for 16-microphone arrays and (b) for 64-microphone arrays.
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predicted probability density function shifts to the right as the power, npow, increases, but
the shift is not linearly related to the change in npow. For the 16-microphone case, a value of
about 3)5 for npow yielded a reasonable agreement with the simulations, while a value of 2)0
yielded a better agreement with the simulated data for the 64-microphone case. The reason
for the di!erence in the appropriate value of the parameter npow for the two cases is not
apparent at present. However, "xing the parameter at a value appropriate for one case
would not result in serious errors in the prediction for the other case.

In the present study, 2)0 was selected as the parameter npow, and the ranges of the 1}99
percent levels of the peak sidelobe level distributions (and the associated mean values) that
were predicted were compared with those obtained from each set of 2000 array
con"gurations randomly generated for the cases investigated earlier as shown in Figures
10(a) and 10(b). The results shown in Figures 15(a) and 15(b) are for the cases of 16- and
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64-microphone arrays respectively. For each grid size in those "gures, the range of the 1}99
per cent distributions obtained from the simulated data are shown as the lighter gray bars
while the ranges predicted by using the theory are denoted by the darker gray bars. The
mean values of the peak sidelobe levels are represented by x's within the bars.

For both the 16- and 64-microphone cases, the lower end of the range of the peak sidelobe
levels obtained from the simulated data increases as the total number of grid points
increases at a "xed grid spacing. This behavior is expected since the array becomes
progressively more sparse as the aperture size increases (given a "xed number of sensors),
and the model predicts this tendency with reasonable accuracy. For relatively large grid
sizes (i.e., greater than or equal to 8�8 for the case of the 16-microphone array, and 16�16
for the case of 64-microphone array), the theoretical model predicted the 1 per cent and the
mean levels with errors of less than 1dB. For relatively small grid sizes, the 1 per cent and
the mean levels are predicted to be larger than those values obtained from the simulations.
This also follows from the fact that equations (8) and (9) overestimate the mean and
variances of the squared magnitude of the aperture smoothing function for the case of
smaller grid sizes.

It is interesting to note that the microphones can be con"gured so that an array possesses
a lower peak sidelobe level than that of the corresponding fully populated array when the
grid size is slightly increased from that of the corresponding fully populated array. In Figure
15(b), for the cases of the 9�9, 10�10, and 12�12 grid sizes, it can be seen that there exist
array con"gurations that have lower peak sidelobe levels than that of the 8�8 fully
populated array con"guration whose peak sidelobe level is denoted by the symbol � in the
"gure. For the case of the 16-microphone arrays shown in Figure 15(a), a similar
phenomenon was observed for the case of the 5�5 grid size where those array
con"gurations are hidden in the non-appearing "rst 1 per cent of the distribution. In light of
the discussion presented in section 3.2, it is likely that those nearly fully populated array
con"gurations have smaller mainlobe widths than that of the fully populated array
con"guration since they have larger polar moments (see Figure 10(a) for the corresponding
ranges of mainlobe widths).

3.5. SUMMARY

In section 3, approximate methods were described that make it possible to estimate the
ranges of mainlobe widths and peak sidelobe levels, respectively, of randomly generated
array con"gurations given a speci"ed number of microphones and a grid size. In particular,
the method presented here makes if possible to estimate the lower bound (i.e., where the
distribution function"0)01) of the population of possible mainlobe widths without
modelling the probability distribution function of the latter since the mainlobe widths of
random arrays do not vary much from their mean value. In contrast, to estimate the range
of peak sidelobe levels, it was necessary to model the probability distribution function of the
peak sidelobe levels since the variance of the latter is in general large. In any particular
instance, the grid size and the number of microphones can be optimized by using the
predictive tools presented here to obtain random array con"gurations that meet the
requirements for the mainlobe width and the peak sidelobe level before starting
a computationally time-consuming search procedure.

For example, given a frequency range of interest, equation (1) can be used to estimate the
maximum allowable grid spacing. Given a requirement for a certain mainlobe width,
equation (9) in combination with equations (8) and (11) can be used to estimate the minimum
aperture size required. Then given a requirement for a speci"ed peak sidelobe level,
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equation (26) can be used (the Weibull parameters a and b at each sidelobe peak being
calculated from equations (18) and (19)) to estimate the minimum number of microphones
required, or to estimate the maximum aperture size allowed. If application of the mainlobe
width and peak sidelobe level criteria do not result in an intersection of aperture sizes, then
the number of microphones should be increased. Simulations that can be used to calculate
the range of the mainlobe widths and the peak sidelobe levels of the random array
con"gurations for various grid sizes (provided that the number of microphones is "xed)
should then be repeated until both the speci"ed peak sidelobe level and the mainlobe width
requirements are met. Equation (16) may be used to estimate the initial grid size to test in
the simulations. If the simulations indicate that the number of microphones is too small to
meet both requirements, simulations should be run for di!erent numbers (i.e., an increased
number) of microphones while "xing the grid size at that which meets the mainlobe width
speci"cation.

4. CONCLUSION

In the present work, a model was developed to predict the statistical properties of
two-dimensionally sparse arrays in which a number of microphones are randomly
positioned on a given grid. It was found that the model could be used to predict the range of
mainlobe widths and the probability distribution of the peak sidelobe levels with reasonable
accuracy for the cases of the grid sizes and the number of microphones tested here. For
relatively small grid sizes compared with the given number of microphones, the e!ects of
grid size were not negligible and the predictions deviated from the simulated data. To
improve the accuracy of the predictions for the case of smaller grid sizes, exact formulae
should be derived for the mean and variance of the squared magnitude of the aperture
smoothing function of random arrays whose microphones are, in practice, discretely
positioned (while not allowing more than one microphone to be positioned at one point).

From the simulated random array con"gurations generated based on di!erent grid sizes
for two di!erent numbers of microphones, it was observed that the mainlobe width of an
array con"guration is inversely proportional to the average polar moment of microphone
position about the mass center of the array con"guration. Also, it was observed that array
con"gurations with peak sidelobe levels lower than that of the fully populated array
con"guration can be obtained by randomly generating array con"gurations on a grid size
that is slightly increased from that of the fully populated array.
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