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It is known that the e!ect of a single crack in an axially vibrating thin rod is to cause the
nodes of the mode shapes move toward the crack. This paper is an analytical/experimental
investigation of the analogous problem for a thin beam in bending vibration. The
monotonicity property linking changes in node position and crack location does not hold in
the bending case. The analysis of the direct problem, however, shows that the direction by
which nodal points move may be useful for predicting damage location. Analytical results
agree well with experimental tests performed on cracked steel beams.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

This paper focuses on detecting a single crack in a beam when damage-induced shifts in the
nodes of the mode shapes of the beam in bending vibration are known.

Despite a very extensive literature on damage identi"cation through frequency
measurements, see, for instance, references [1}9], very little work has been done on using
changes in the nodes of the mode shapes to identify localized damage. In a recent paper,
Gladwell and Morassi [10] investigated the e!ect of a single crack on the nodes of free
vibration modes of a thin rod in longitudinal vibration. By simulating damage induced by
a spring, it was shown that nodes move toward the crack, that is, each node located to the left
of the crack in the undamaged con"guration moves to the right, and each node on the right
of it moves to the left. This means that for every principal mode, which has at least two
nodes, there is exactly one neighboring pair of nodes which move toward each other, and
the crack is located between them.

The paper [10] left an important question unsolved, namely, the capability to extend this
result to cracked beams in bending vibration. Although desirable for the application of
diagnostic methods, the existence of a result of this type is all but obvious. In fact, the
monotonicity property found in reference [10] is a consequence of the oscillation and
separation theorems for solutions of the Sturm}Liouville operator governing the axial
vibration of a thin rod, see references [11, 12]. General properties of this kind become more
involved for the fourth order di!erential operator of the bending vibrations of a beam, see,
for instance, the classical paper by Leighton and Nehari [13]. In particular, on adapting the
Comparison ¹heorem 5.1 contained in reference [13], one can show that the bending
analogue of the monotonicity property found in reference [10] involves conjugate points
(associated with one end of the beam) and crack location, that is conjugate points move
toward the crack. Conjugate points are points of the beam axis given by the intersection of
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.
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two special solutions of the di!erential operator governing the bending vibrations [13].
Unfortunately, unlike nodal points, conjugate points lack a clear physical interpretation;
therefore, since their variations cannot be measured, damage location cannot be deduced.
Considering the e!ect of a crack on the nodal points of #exural modes, the insertion of
a crack in some areas of the beam axis was found to cause some nodes to shift away from the
damaged area. This e!ect does not apply to axial modes. Despite no monotonicity property
being found to exist between nodes and crack location, a parametrical analysis of the
bending problem proved useful to characterize the areas of the beam axis where a crack
causes nodes always to shift along the same direction, for varying damage severity, in
originally uniform beams with general boundary conditions. In the examined cases, the
signs of nodal shifts in the "rst three/four vibration modes proved essential to assess crack
location with good accuracy.

Experimentally, node positions are easier to measure than mode shapes; roughly
speaking, they only require the detection of modal component sign, rather than a set of
measurements of magnitudes. The dynamic tests performed on slender steel beams with
cracks of di!erent severity supported the analytical predictions. This suggests that the
proposed method may be used for crack detection in practical situations.

2. CRACK-INDUCED CHANGES IN NODE POSITION

The physical model, which will be thoroughly investigated herein, is a free}free uniform
Euler}Bernoulli beam, with an open crack at the cross-section of abscissa s. According to
Freund and Herrmann [14], and since only bending vibration is considered, the crack is
represented by the insertion of a massless rotational elastic spring at the damaged
cross-section. The sti!ness K of the spring may be related in a precise way to the geometry
of damage as suggested, for example, by Dimarogonas and Paipetis [15]. The eigenpair
(�(�), ��) of the undamped bending vibrations of the cracked beam satis"es the following
dimensionless boundary value problem:

���(�)"��� (�) for � 3(0, �)� (�, 1), (1)

��(�)"0"����(�) at �"0 and �"1, (2)

where the jump conditions

[�(�)]"[��(�)]"[����(�)]"0, ���(�)"[��(�)], (3, 4)

hold at the cross-section where the crack occurs. In the equations above, [� (�)],
(�(��)!�(��)) denotes the jump of the function � (�) at �"�. The dimensionless
quantities �, �, �� and � are de"ned as follows:
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where ¸ is the beam length, I represents the moment of inertia of the cross-section, E is the
Young's modulus of the material, 	 is the linear mass density and the natural frequency of
vibration is denoted by 
. By using standard techniques to solve the boundary value
problem (1}4), the eigenvalues �� are the in"nite sequence 0"��

�
(double

zero)(��
�
(��

�
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(2 of zeroes of the characteristic equation
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#��[!cosh � sin �!cosh(1!2�) � sin �#2 cosh �� sin ��

#2 cosh(1!�) � sin(1!�) �# cos � sinh �#cos(1!2�) � sinh �

!2 cos �� sinh ��!2 cos(1!�) � sinh(1!�) �]"0. (6)

Only strictly positive eigenvalues will be considered hereafter, i.e., the rigid vibrating modes
associated to ��

�
"0 will be omitted. The vibrating mode corresponding to the eigenvalue

�� is given by

�(�)"C
�
(cosh ��#cos ��)#D

�
(sinh ��#sin ��) for � 3(0, �), (7)

� (�)"C
�
(cosh � (1!�)#cos � (1!�))#D

�
(sinh � (1!�)#sin � (1!�)) for � 3(�, 1),

(8)

where coe$cients C
�
, D

�
, i"1, 2, may be written as

C
�
"1, (9)

D
�
"

1

f (�)
[!cos ��#cos(1!�) � cosh �!cosh ��#cos � cosh(1!�) �

!sin(1!�)� sinh �#sin � sinh(1!�) �], (10)
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[!cosh �� sin �#cosh � sin ��#sin(1!�) �

!cos �� sinh �#cos � sinh ��#sinh(1!�)�], (11)

D
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1

f (�)
[!cos(1!�) �#cos �� cosh �#cos � cosh ��

!cosh(1!�) �!sin �� sinh �#sin � sinh ��], (12)

with

f (�)"!cosh(1!�) � sin �#sin ��#cosh � sin(1!�) �

!cos(1!�) � sinh �#sinh ��#cos � sinh(1!�) �. (13)

The undamaged beam corresponds to KPR, or, equivalently, to �P0; let (����
�

(�), ��
��

)
be the mth undamaged eigenpair. It is well known that ����

�
(�), m*1, has (m#1) simple

zeros (nodes) �����
�

����
���

in the interval [0, 1], e.g., 0(����
�

(2(����
���

(1, see reference
[13]; the same property holds true for the mth mode of the damaged beam. For future
convenience, one should recall that the bending moment M���

�
(�),!EI�����

�
(�), m*1,

coincides with the mth vibrating mode of the undamaged beam under clamped}clamped
boundary conditions. Then,M���

�
(�) has a double zero at �"0 and �"1, and it has (m!1)

simple zeroes �����
�	

����
���

in the interval (0, 1), e.g., 0(����
��

(2(����
����

(1. Finally, it
must be noted that if the crack is located at a cross-section of abscissa � for which
M���

�
(�)"0, then the related eigenpair is insensitive to damage, that is (����

�
(�), ��

��
),

(����(�), ��
�
). In fact, it can be easily seen that the undamaged vibrating mode identically

satis"es the di!erential equation (1), boundary conditions (2) and jump conditions (3)
and (4).
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If the exact expression describing the vibration modes of a damaged beam is known, one
can parametrically assess the e!ect of a crack on the nodes of vibration modes when the
normalized values of � position and � damage severity vary. In particular, Figures 1}5
illustrate the plane domains (�, �) corresponding to positive signs (positive nodal
displacement domain, PNDD, highlighted in Figures 1}5) and negative signs (negative nodal
displacement domain, NNDD, complementary to the former) of the shift a!ecting a generic
node in the "rst "ve vibration modes. Negative domains, NNDD, (and positive PNDD,
respectively) correspond to the values of position/damage severity pairs (�, �) which, for the
node under exam, produce shifts to the left (and to the right, respectively) in the coordinate
system elected to represent the points of the beam axis. The variance range for the
dimensionless parameter � in Figures 1}5 is selected so as to include the most signi"cant
cases arising in applications, that is, low and medium damage.

It should be recalled that for longitudinal vibrations of a cracked beam, the NNDD of the
ith node ����

�
of the mth vibration mode corresponds to the band �(����

�
of the plane

(�, �,EA/K¸), from which the lines parallel to the axis � described by equation �"����
� 	

must be subtracted, where ����
� 	

(����
�

and ����
� 	

describe the abscissas of the sections where
the axial force N���

�
(�),EAw����

�
(�) is zero, see reference [10]. In the expressions above, EA

is the axial rigidity of the beam, ¸ is its length, K is the rigidity of the translational spring
used to simulate damage and w���

�
(�) is the axial displacement a!ecting the section of

abscissa � in the mth vibration mode of the undamaged beam.
The bending case, as shown in the "gures above, is considerably di!erent. In fact,

considering a generic node, the plane (�, �) is divided into several subsections where
boundaries are no more de"ned by lines parallel to the �-axis. Despite this, except for some
cases like, for instance, the second vibration mode, the boundaries separating the
Figure 1. Positive (PNDD, highlighted) and negative (NNDD) nodal displacement domain of the "rst (a) and
second (b) node of the "rst bending mode.



Figure 2. Positive (PNDD, highlighted) and negative (NNDD) nodal displacement domain of the "rst (a),
second (b) and third (c) node of the second bending mode.
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subsections belonging to either NNDD or to PNDD are little a!ected by large variations of
� and are therefore approximately parallel to the � axis.

A parametrical analysis shows a di!erent behavior in external nodes (that is, nodes
corresponding to the minimum, ����

�i�
,����

�
, and maximum, ����

���
,����

���
, values of the

abscissas of the nodal points) and in the remaining internal nodes.
Let us concentrate on the modes m*3 and consider the e!ects of a crack on the ith

internal node, where 2)i)m. The corresponding NNDD is the union of:

(1) a rectangular band �(����
���	

, from which a left band adjacent to the line �"����
���	

and the bands located alternately to the right and to the left of the lines �"����
�	

,
where 1)k)(i!2), must be subtracted. The latter bands are very narrow along
direction � and only few thousandths of the beam length, see, for example, Figure 6;
for this reason, these bands are simply denoted by means of broken vertical lines in
Figures 3}5;

(2) a right band adjacent to the line �"����
���	

;
(3) very narrow bands along direction � (only few thousandths of the beam length),

alternately located to the left and to the right of the lines �"����
�	

, where
m!1*k*i (broken vertical lines in Figures 3}5).



Figure 3. Positive (PNDD, highlighted) and negative (NNDD) nodal displacement domain of the "rst (a),
second (b), third (c) and fourth (d) node of the third bending mode.
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The NNDD of the node with ����
�i�

,����
�

for the vibration modes where m*3 is the
combination of:

(1) a rectangular band �(����
� 	

;
(2) very narrow bands along direction � (only few thousandths of the beam length)

alternately located to the left and to the right of the lines �"����
�	

, where
m!1*k*2 (broken vertical lines in Figures 3}5).

The NNDD of the node with ����
�
�

,����
���

is, for symmetry reasons, complementary to the
NNDD associated to the node ����

���
,����

�
.

The e!ects of a crack on the nodes of the "rst and second vibration modes do not fall in
the descriptions above and are distinguished by di!erent characteristics, see Figures 1 and 2.



Figure 4. Positive (PNDD, highlighted) and negative (NNDD) nodal displacement domain of the "rst (a),
second (b), third (c), fourth (d) and "fth (e) node of the fourth bending mode.
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By way of example, the NNDD of ����
�

is approximately equal to the rectangular
band �(0)4, although the associated bending moment M���

�
(�) is not zeroed in (0, 1).

Concerning the second mode, the NNDD corresponding to an external node is con"ned
by a curve that, for some crack locations, is deeply a!ected by the value of damage
severity.

Results similar to the ones illustrated above were found in uniform beams with di!erent
boundary conditions.



Figure 5. Positive (PNDD, highlighted) and negative (NNDD) nodal displacement domain of the "rst (a),
second (b), third (c), fourth (d), "fth (e) and sixth (f ) node of the "fth bending mode.
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Figure 6. Shift (� �
�
�

(damaged)!��
�
�

(undamaged)) of the second node of the third bending mode versus crack
position (�"0)1).
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3. EXPERIMENTAL RESULTS

Section 2 deals with the description of NNDDs and PNDDs of the nodes of the "rst
modes of a free}free uniform beam in bending vibration. Their practical utility for diagnosis
purposes is obvious: tests show the signs of modal shifts, which are then entered in the
graphs of Figures 1}5 to identify the areas where damage is likely to be located.
A cross-analysis of results for each node of the examined vibration modes and the
intersection of the areas where damage is likely to be located can lead to greater accuracy in
detection of crack location. Aiming to account for the prospective practical use of the
proposed identi"cation technique within the analysis of real cases, the present section is
devoted to outlining some applications of experimental character. Some applications to
vibrating cracked steel beams under free}free boundary conditions shall be hereinafter
considered.

The experimental models are two double T steel beams (T1 and T2) of the series HE100B
represented in Figure 7. Each specimen has length ¸"4)00 m and was hung by means of
two steel wire ropes "xed at 0)80 m from both ends to simulate free}free boundary
conditions. The two beams were damaged by saw-cutting the transversal cross-section at
1)80 m (�


�
"0)45), 1)25 m (�


�
"0)3125) from the left end for beam T1 and beam T2

respectively. Two damaged con"gurations D1 and D2 obtained by introducing cracks of
progressive depth were studied, see Figure 7. The scope of the experiment was to measure
the shift induced by cracks on the nodes of the low bending vibration modes of the beams.

The technique used to estimate the position of a node is similar to that used in reference
[10] and it is based on detecting the phase angle change of the inertance response function
between two points of the beam axis including the node. The key notion is that, even though
the amplitude of each inertance term is very small near a node, the phase angle is
measurable, and should be equal to #90 or !903 in the ideal undamped case. The node is
located by "nding two neighboring points between which the phase angle changes sign.
Figure 8 shows a typical inertance term measured near a node of a cracked beam.

Throughout dynamic testing, the #exural response of the beam was measured at one end
by a piezoelectric accelerometer PCB 308B02 (weight 72 g). By moving the location of the



Figure 7. Experimental model (a), damage con"gurations (b) and measurement grid nears a node position (c).
Lengths in mm.
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impulse force hammer PCB 086B03 used to excite the specimen, inertance was measured at
a grid of points close to an estimated position of each node. The estimate for the undamaged
beam was the expected analytical node position. The corresponding initial estimate for the
cracked beam was the measured node position for the undamaged beam. This choice was
motivated by the observation that the position of a node is a continuous function of damage
severity. With the above experimental set-up, each node position was estimated within
$5�10�
 m.

Tests were run according to an impulse technique. The signals were acquired with
a sampling frequency of 51)2 KHz by a dynamic analyzer HP 35670A and then decimated in
time in order to obtain aliasing free data in the considered frequency range. The input signal
was weighted by means of a force window, while an exponential window was adopted to
force to zero the amplitude of the structural response within the acquisition time. Signals
were then considered in the frequency domain to measure the relevant frequency response
term (inertance). The interpretation of measurements was limited to the "rst "ve modes.
Throughout the experiments, zoom analysis was performed, with a resolution of 1/16 Hz in
the interval ( f

�
!12)5 Hz, f

�
#12)5 Hz) around each natural frequency f

�
. In all cases, each

inertance term was evaluated as the mean of "ve impulsive tests. The measured inertance
function for both undamaged and damaged con"gurations was quite regular and close to



Figure 8. Typical behavior of the inertance near a node of a mode shape (fourth node of the fourth mode, beam
T1, damage D1). (a) Just to the left of the node; (b) at the node; (c) just to the right of the node.
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that expected for a one-dimensional model of a bending vibrating beam. The well-separated
vibration modes and the very small damping e!ects allowed identifying natural frequencies
and the phase angle by means of the single mode technique.

The measurements are summarized in Tables 1 and 2 (node location) and in Tables 5 and
6 (natural frequencies), while Tables 3 and 4 show the experimental node shifts due to the
crack.

For the interpretation of dynamic tests on the undamaged con"guration, the classical
one-dimensional model for bending vibrations of uniform thin beams was adopted.
Mass density was evaluated from the measured total mass, while bending sti!ness
was calculated by taking the measured value as the fundamental frequency of the
beam. A comparison between experimental and theoretical frequencies is shown in Tables
5 and 6: agreement is quite good, with percentage errors increasing as the order of the
modes rises.



TABLE 1

Experimental and analytical (within parentheses) node locations for beam ¹1 (lengths in
meters). Beam length ¸"4 m, abscissa of the cracked cross-section s


�
"1)8 m

Mode First Second Third Fourth Fifth Sixth
State number node node node node node node

Undam. 1 0)905 3)095
(0)897) (3)103)

2 0)530 2)000 3)475
(0)528) (2)000) (3)472)

3 0)380 1)430 2)575 3)615
(0)378) (1)423) (2)577) (3)622)

4 0)305 1)110 2)000 2)885 3)700
(0)294) (1)107) (2)000) (2)893) (3)706)

5 0)245 0)915 1)645 2)355 3)085 3)755
(0)240) (0)906) (1)637) (2)363) (3)094) (3)760)

Damage 1 0)920 3)045
D1 (0)907) (3)074)

2 0)525 2)005 3)465
(0)528) (2)009) (3)466)

3 0)390 1)440 2)535 3)600
(0)392) (1)443) (2)543) (3)609)

4 0)305 1)125 1)990 2)870 3)695
(0)299) (1)120) (1)990) (2)873) (3)701)

5 0)250 0)930 1)645 2)335 3)070 3)750
(0)244) (0)922) (1)642) (2)342) (3)079) (3)756)

Damage 1 0)960 2)960
D2 (0)925) (3)022)

2 0)510 1)995 3)455
(0)526) (2)018) (3)458)

3 0)410 1)470 2)510 3)590
(0)411) (1)471) (2)506) (3)591)

4 0)305 1)130 1)980 2)850 3)690
(0)305) (1)130) (1)977) (2)853) (3)696)

5 0)255 0)940 1)650 2)325 3)060 3)745
(0)248) (0)937) (1)650) (2)326) (3)064) (3)752)
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Measurements on the damaged con"guration were interpreted by using the
mathematical model discussed in section 2. For each damage con"guration, the constant
� was obtained by assuming that position � of the crack is known and by taking the
measured value as the fundamental frequency of the cracked beam. Tables 5 and 6 compare
the analytical estimates and the measured values of the "rst "ve frequencies: modelling
errors are comparable to those of the classical model of an undamaged beam. Tables 1
and 2 show that there is a good agreement between the experimental and theoretical values
of node location. It should be noted that, meeting analytical expectations, the insertion of
the crack in beam T2 caused the node ����

���
, m"1, 2, 3, and the second node of the fourth

vibration mode to shift away from the damaged section.
Finally, taking into account the results of section 2, Tables 3, 4 and Figures 1}5 can be

used for localizing the crack. Regarding beam T1 (s

�

"0)45¸), for example, knowledge of
the changed sign of nodes of the "rst mode only allows locating the crack within the interval
(0)4¸, 0)6¸). Considering higher modes, the interval of possible damage position is reduced
to (0)43¸, 0)46¸). By using the same procedure for beam T2 (s


�
"0)3125¸), the crack can



TABLE 2

Experimental and analytical (within parentheses) node locations for beam ¹2 (lengths in
meters). Beam length ¸"4 m, abscissa of the cracked cross-section s


�
"1)25 m

Mode First Second Third Fourth Fifth Sixth
State number node node node node node node

Undam. 1 0)910 3)075
(0)897) (3)103)

2 0)520 2)000 3)475
(0)528) (2)000) (3)472)

3 0)375 1)425 2)570 3)620
(0)378) (1)423) (2)577) (3)622)

4 0)295 1)105 1)995 2)890 3)700
(0)294) (1)107) (2)000) (2)893) (3)706)

5 0)245 0)910 1)635 2)360 3)090 3)755
(0)240) (0)906) (1)637) (2)363) (3)094) (3)760)

Damage 1 0)860 3)050
D1 (0)863) (3)076)

2 0)510 1)910 3)440
(0)523) (1)919) (3)442)

3 0)370 1)420 2)550 3)615
(0)376) (1)422) (2)561) (3)618)

4 0)300 1)100 1)980 2)875 3)695
(0)298) (1)097) (1)984) (2)882) (3)703)

5 0)260 0)920 1)560 2)290 3)055 3)740
(0)251) (0)921) (1)566) (2)300) (3)060) (3)750)

Damage 1 0)815 2)945
D2 (0)813) (3)004)

2 0)485 1)800 3)395
(0)494) (1)802) (3)392)

3 0)370 1)415 2)540 3)605
(0)372) (1)418) (2)544) (3)614)

4 0)305 1)095 1)965 2)865 3)695
(0)304) (1)095) (1)964) (2)867) (3)699)

5 0)265 0)930 1)515 2)245 3)030 3)740
(0)262) (0)931) (1)508) (2)240) (3)027) (3)742)

CRACK LOCATION IN VIBRATING BEAMS 927
be located within the interval (0)28¸, 0)32¸). Damage severity and the specimen features
were probably decisive in successful identi"cation; with less severe damage, the sensitivity of
the problem to data accuracy may become important.

4. CONCLUSIONS

This paper has been focused on detecting a single crack when damage-induced shifts in
the nodes of the mode shapes of a beam in bending vibration are known. It was shown how
the direction by which nodal points shift may be used to estimate the location of damage.
Analytical results agree well with experimental tests performed on cracked steel beams. This
suggests that it may be possible to use the method in practical situations including, in
perspective, more complex vibrating systems and less restrictive classes of damages. The
present results represent the "rst step of a line of research on the damage-induced changes in
the null set of eigenfunctions of vibrating systems. In subsequent papers, we plan to extend



TABLE 3

Experimental and analytical (within parentheses) node shifts due to the crack for beam ¹1.
Shifts �����

�
of the ith node of the mth mode: �����

�
"����

��
!����

��
(lengths in meters)

Mode First Second Third Fourth Fifth Sixth
Damage number node shift node shift node shift node shift node shift node shift

D1 1 0)015 !0)050
(0)011) (!0)030)

2 !0)005 0)005 !0)010
(0)000) (0)009) (!0)005)

3 0)010 0)010 !0)040 !0)015
(0)014) (0)020) (!0)034) (!0)013)

4 0)000 0)015 !0)010 !0)015 !0)005
(0)005) (0)013) (!0)010) (!0)019) (!0)005)

5 0)005 0)015 0)000 !0)020 !0)015 !0)005
(0)004) (0)016) (0)005) (!0)021) (!0)015) (!0)004)

D2 1 0)055 !0)135
(0)028) (!0)081)

2 !0)020 !0)005 !0)020
(!0)003) (0)018) (!0)014)

3 0)030 0)040 !0)065 !0)025
(0)033) (0)048) (!0)071) (!0)031)

4 0)000 0)020 !0)020 !0)045 !0)010
(0)011) (0)023) (!0)023) (!0)040) (!0)010)

5 0)010 0)025 0)005 !0)030 !0)025 !0)010
(0)008) (0)032) (0)014) (!0)038) (!0)030) (!0)008)

TABLE 4

Experimental and analytical (within parentheses) node shifts due to the crack for beam ¹2.
Shifts �����

�
of the ith node of the mth mode: �����

�
"����

��
!����

��
(lengths in meters)

Mode First Second Third Fourth Fifth Sixth
Damage number node shift node shift node shift node shift node shft node shift

D1 1 !0)050 !0)025
(!0)034) (!0)027)

2 !0)010 !0)090 !0)035
(!0)005) (!0)081) (!0)030)

3 !0)005 !0)005 !0)020 !0)005
(!0)002) (!0)001) (!0)015) (!0)004)

4 0)005 !0)005 !0)015 !0)015 !0)005
(0)004) (!0)010) (!0)016) (!0)011) (!0)003)

5 0)015 0)010 !0)075 !0)070 !0)035 !0)015
(0)011) (0)016) (!0)070) (!0)064) (!0)035) (!0)009)

D2 1 !0)095 !0)130
(!0)083) (!0)099)

2 !0)035 !0)200 !0)080
(!0)035) (!0)198) (!0)080)

3 !0)005 !0)010 !0)030 !0)015
(!0)006) (!0)005) (!0)033) (!0)008)

4 0)010 !0)010 !0)030 !0)025 !0)005
(0)010) (!0)015) (!0)036) (!0)026) (!0)007)

5 0)020 0)020 !0)120 !0)115 !0)060 !0)015
(0)021) (0)025) (!0)128) (!0)123) (!0)067) (!0)018)
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TABLE 5

Experimental and analytical frequencies f
�
of beam ¹1. Abscissa of the cracked cross-section

s

�

"1)8 m. (1) EI"9)5888�10� N m�, 	"20)775 kg/m, ¸"4)0 m. (2)K"2)058�10� N m/rad
(�"0)116). (3) K"4)501�10� N m/rad (�"0)533). Frequency values in Hz. � f

�
%"

( f
�
(model)!f

�
(exp.))/ ( f

�
(exp.))�100

Undamaged (1) Damage D1 (2) Damage D2 (3)

f
�

Exp. Model �f
�
% Exp. Model �f

�
% Exp. Model �f

�
%

f
�

47)813 47)813 0)0 42)188 42)188 0)0 31)375 31)375 0)0
f
�

129)375 131)797 1)8 127)375 129)927 2)0 124)438 127)028 2)1
f



245)188 258)375 5)4 231)813 242)745 4)7 214)750 223)518 4)1
f
�

387)563 427)107 10)2 375)625 413)298 10)0 365)625 399)607 9)3
f
�

551)063 638)024 15)8 531)125 617)543 16)3 523)313 598)279 14)3

TABLE 6

Experimental and analytical frequencies f
�
of beam ¹2. Abscissa of the cracked cross-section

s

�

"1)25 m. (1) EI"9)5137�10� N m�, 	"20)775 kg/m, ¸"4)0 m. (2)K"1)983�10� N m/rad
(�"0)120). (3) K"4)120�10� N m/rad (�"0)577). Frequency values in Hz. �f

�
%"

( f
�
(model)!f

�
(exp.))/( f

�
(exp.))�100

Undamaged (1) Damage D1 (2) Damage D2 (3)

f
�

Exp. Model �f
�
% Exp. Model �f

�
% Exp. Model �f

�
%

f
�

47)625 47)625 0)0 44)125 44)125 0)0 34)938 34)938 0)0
f
�

129)250 131)280 1)6 116)563 118)363 1)6 100)375 101)121 0)7
f



245)000 257)362 5)1 240)125 252)255 5)1 235)125 246)542 4)9
f
�

387)125 425)432 9)9 380)813 417)279 9)6 373)625 406)368 8)8
f
�

550)375 635)522 15)5 511)563 589)495 15)2 491)375 551)066 12)2
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the proposed technique to one-dimensional vibrating systems with di!used cracking and to
two-dimensional systems with localized defects, such as plates and shells with holes or line
cracks.
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