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Flexural intensities on various plate-like structures with arbitrary boundary conditions
are calculated using measured and FEM yielded mobility. In doing so, a two-dimensional
spatial Fourier transform has been implemented along with a re"ned k-spectral "ltering
concept. Intensity is decomposed into individual contributions from bending moments,
twisting moments and shear forces. The source and energy sink localization and energy #ow
have been analyzed through these contributions. The e!ect of re#ections from the plate
edges and that of the uncorrelated noise, on the intensity, are discussed. It is shown that the
width of the k-"lters may have a non-negligible in#uence on the shape of the intensity "eld.
Damping in the structure can e$ciently control the edge re#ections and therefore help to
localize the energy sources and sinks. A link has been found, at certain excitation conditions,
between the radiated acoustic intensity and the active #exural intensity. It is also observed
that the classical method of studying the vibration transmission, using vibration amplitude
measurements, does not re#ect the transmitted vibration energy but rather provides
information on non-propagating, reactive energy. The FEM study, further explains some of
the experimental observations and suggests the possibility of applying intensity to complex
analytical models.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

In this pioneering work of 1970 [1] Noiseux undertook some experiments on plates that
produced original, but due to the lack of experimental sophistication, incomplete results.
The development of the structural intensity formulations by Pavic [2] led to a growing
interest in this "eld during the last two decades. However, the body of literature has mostly
focused on beams. Plate intensity formulae with terms comprised of "rst, second and third
order spatial derivatives pose quite an experimental challenge, especially when one has to
solve then through "nite di!erence techniques. Williams et al. [3] introduced the acoustic
holography technique to estimate structural intensity in plates. By measuring the acoustic
pressure on a plane parallel to the structural surface and by using the Green theorem, they
calculated the plate's surface velocity. The structural intensity was then estimated using
Pavic's formulae [2]. This approach enabled them to determine both structural and
acoustic intensities through sound pressure measurements and consequently to study
structural sound radiation problems. Another novel idea in this work consisted of the
utilization of the spatial Fourier transform (SFT) and k-space low-pass "ltering, rather than
traditional "nite di!erence techniques, to evaluate the spatial derivatives of the surface
velocity. These techniques were then applied to a free}free rectangular plate to localize the
excitation sources; but the structural modal behavior was not examined. The holography
022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.



34 A. NEJADE AND R. SINGH
technique needs to be extended to the study of bounded plates whose radiation behavior
includes the acoustic cancellation e!ects [4] or acoustically ine$cient frequencies.
Although very attractive, holography measurements themselves may also add a new and
signi"cant error source to already sensitive intensity calculations.

Application of the (SFT) has been addressed further in articles by Zhang and Adin Mann
[5, 6]. The authors carry out a parallel investigation of both Pavic's and Romano's [7]
intensity formulations; the latter incorporating additional terms related to the shear
deformation and rotary inertia e!ects. They show that at low frequencies, where such e!ects
are negligible, both formulations produce the same results. Their experimental work
considers the middle section of a large plate with large amount of damping and anechoic
boundaries. The focus is on the source localization and the in#uence of a rib on the intensity
"eld. Some issues regarding the utilization of k-space low-pass "ltering and spatial
windowing using band-pass k-"ltering are brie#y addressed. k-Space "ltering is further
treated by Spalding and Adin Mann [8]. In these latter works however, the e!ects of
boundary conditions and plate modes on the intensity "eld are not examined. Morikawa
and Ueha [9] have also approached the problem of plate intensity measurements through
the SFT. As a result of a comparative study, they establish the superiority of SFT over the
"nite di!erence method. These authors also examine the e!ects of low-pass k-space "ltering
on the intensity measurements and the optimal cut-o!wave number for such a "lter. Through
some experiments, they deduce an empirical relationship. Although good results are obtained
for their example (the middle section of a free}free plate but heavily damped outside the
measurement area), the behavior of such "lters still remains to be further investigated.

Other researchers tackle the problem of intensity in plates by using analytical
approaches. Gavric and Pavic [10] use the "nite elements (FEM) results to directly evaluate
the intensity as a scalar product of stress and the surface velocity. The FEM solutions
provide the stresses in the middle of element while the velocities are obtained at element
nodes. Through an interpolation, they project nodal velocities to the middle of elements and
hence calculate intensity at these points. The examples shown consider only simply
supported plates. This approach is dependent on the accuracy of the computational model,
especially when non-ideal boundary conditions are present. Bouthier and Bernhard [11]
consider the far "eld of an in"nite system and develop an approximate solution to the
#exural wave equation. None of the analytical approaches investigates the reactive intensity
and its correlation with structural modal characteristics.

In this article, the SFT approach is adopted to estimate #exural intensity in "nite plates
with arbitrary boundary conditions. The k-space "ltering is implemented in relation to the
modal superposition principal. Flexural intensity examples are demonstrated for plates
with non-ideal boundary conditions and free}free conditions and for an irregularly shaped
free}free plate. The free}free plates are used for source and damping patch localization and
deformation studies. Energy #ow, energy transmission and sound radiation issues are
investigated in the context of a gearbox top plate where the structural intensity and sound
intensity are studied in parallel. Finally, an analytical computation using "nite element
modelling is carried out to further investigate the e!ects of uncorrelated noise, edge
re#ections and damping on the intensity. A detailed analysis of the reactive part of intensity
aims for a clearer understanding of this entity.

2. FLEXURAL INTENSITY FORMULATION

In thin plate theory, i.e., with �
�
�h over the frequency range of interest, the e!ects of

shear deformation and the rotary inertia e!ects are ignored. The overall time-averaged
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intensity expressions in x and y directions are given by [2]
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For practical purposes, it is more convenient to evaluate time-averaged harmonically
varying intensities in the frequency domain. With=I (x, y, �)"F �w (x, y, t)�, the intensity
formulae adopt the following forms:
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The three terms in the brackets are associated with the shear force, the bending moment and
the twisting moment energy contributions respectively [2, 12]. The real part of ��

�
and ��

�
is

associated with the reactive part of the intensity.
In the following sections, di!erent components of the #exural intensity, i.e., contributions

from bending moments, shear forces and twisting moments will be represented individually.
For the sake of brevity we will call them bending moment, shear force and twisting moment
sub-intensities.

3. EVALUATION OF SPATIAL GRADIENTS

Intensity formulae (1) and (3) contain partial derivatives of up to the third order. To
evaluate these derivatives from discretized data, where the measurements (or analogous
analytical computations) are carried out at discrete spatial points, the approach proposed
by Williams et al. [3], rather than the "nite di!erence method, was used. This approach
employs the spatial Fourier transform for the calculation of the partial derivatives. This is
done by using the well-known formula
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Here, F and F�� are the direct and inverse 2-D spatial Fourier transforms, de"ned as
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Numerical algorithms used to calculate the spatial Fourier transforms from discretized
samples (spatial DFT, in this case), including MATLAB [13] in this work, produce
double-sided spectra. It is therefore necessary that, as equation (4) implies, each component
of the Fourier transform be multiplied by the related value of k as determined by [14]
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4. METHOD IMPLEMENTATION AND ERROR SOURCES

Since the intensity estimates in plate structures represent products of very small
quantities, they are very susceptible to measurement errors. Among many sources of error,
phase instability and noisy spectral components appear to be very important.

4.1. PHASE INSTABILITIES AND CHOICE OF EXCITATION

Because the intensity formulae (equations (3)) deal with complex velocities, the intensity is
very sensitive to the phase relationship among signals. Phase instabilities in cross power
spectrum estimations must be minimized to reduce intensity distortions. A proper choice of
the excitation signal is therefore important especially for a structure of large dimensions
and/or with low damping. This is because here, the reverberation time is long and when
excited by fast varying signals (such as random noise or chirp) the structure cannot reach its
steady state.

Although a pure tone tends to be the most stable choice, its application is obviously quite
time consuming even when a &&multi-sine'' is used (a synthesized signal, given by 
(t)"
A�



sin�



t, with arbitrarily selected frequencies �



). An alternative to the usage of a pure

tone signal is the swept sine excitation A sin�(t)t, with a slow sweep rate S, as suggested by
the ISO standard [15] on mobility measurements:
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The swept since excitation produced results as stable as those of pure sine excitation.

4.2. MODAL SUPERPOSITION AND SPECTRAL FILTERING

When a system is excited through a single frequency �, all of its eigenmodes are excited
but with various degrees of strength, as expressed by the well-known modal superposition
equation:
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The overall shape of the structure is therefore a speci"c combination of all its natural mode
shapes. The importance of the contribution of each mode to the overall shape depends on
the proximity of the corresponding eigenfrequency to the frequency of the excitation.
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The wave number spectra resulting from equation (5a) include contributions from the
various modes of the structure. In experimental situations, the uncorrelated noise may have
a signi"cant presence in the spectrum. This is particularly e!ective at wave numbers at or near
low energy modes and could cause signi"cant errors. The leakage caused by spatial data
truncation may also a!ect the k-spectrum. A combination of these phenomenon can be
observed in Figure 1(a), where a double-sided 2-D Fourier transform of velocities, measured
on a free}free steel plate, is illustrated. The plate was excited by a pure tone at 1432 Hz. The
strong k-components, seen at each corner, correspond to the structural wave number de"ned by
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and its adjacent modes. The other components represent the weak modes and uncorrelated
noise. Using a wide wave number spectrum in the calculation of intensity will therefore lead
to the presence of strong noise components observed in Figure 1(a). These may interact with
the intensity vectors, resulting in an &&smeared'' view of the "eld, as it will be further
discussed in section 6.2.7. To diminish such e!ects, the intensity "eld must incorporate
a limited number of k-components. To remove the unwanted components in k-spectra, we
apply a uniform spectral window to the discrete Fourier transform. One example of such
procedure is illustrated in Figure 1. Figure 1(a) represents a 2-D k-spectrum of a real plate
having strong noise components. Figure 1(b) illustrates the same spectrum where only two
k-components at each side of the structural wave number k



of the plate have been retained.

When, in a plate, the frequency of excitation equals the eigenfrequency of the mode (m, n),
then the structural wave number k



, calculated from equation (9), will match the

corresponding wave number r
���

"�r�
�
#r�

�
. In most cases, the excitation wave numbers

do not match any of the eigenmodes and therefore k


's lie between twomodal wave numbers

r
�

and r
���

(here p"1, 2, 32). In both cases however, the intensity information
is conveyed by the modal wave numbers r

���
, r

�����
, 2 , r

�
, r

���
, 2 , r

���
, where

q"0, 1, 2, 2 . These becomes less and less signi"cant as q increases, implying that most of
the desired information is still concentrated in the few pairs of spectral wave numbers (k's)
Figure 1. Measured double-side Fourier transform amplitude of a free}free plate when excited at 1432 Hz.
(a) &&Raw'' Fourier transform versus k

�
and k

�
; (b) transform with spectral "ltering. Filter covers two pairs of

k-components adjacent to k


.
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neighboring r
�
and r

���
. (Here, a distinction should be made between modal wave numbers

r


and spectral wave numbers k

�
. The latter represents the sampled wave number

components in discrete Fourier transform.) This fact is readily demonstrated by the high
amplitude components in Figure 1.

All the wave numbers associated with the excited modes of the structure do contain,
although in various degrees, information about the intensity "eld. But, they may also
include noise. The compromise here was to resort to k-"ltering (ideal "ltering of k-spectrum)
operations. The width 2q of these "lters depends on the selected number o f k-components
in the calculations. There may not, however, be a clear-cut rule as to the number of such
modes within the band.

4.3. SPECTRAL FILTERING PROCEDURE

In determining the position and the width of k-"lters, the k-domain resolution must be
considered. In the Fourier transformation of spatial data, the orthogonal components of the
spectral wave number k
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of the mode r
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, are given by the axial terms 
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where m, n"1, 2, 3, 2 (m, n"0, 1, 2, 2 for free boundaries). Relation (10) allows, by
a simple reiterative procedure, to identify the indices m and n of the closest mode to the
excitation k



. The spectral "lter is centered at k



and will include spectral wave numbers

(k-components) adjacent to k


. The number of pairs of k-components circumscribing k



determines the width of the uniform "lter. All the k-components outside the de"ned
bandwidth will be set to zero. Coe$cients 
 and � are determined by the spectrum
k-resolution and associated with the zero-padding operation as discussed below.

In space sampling, as in time sampling, one often needs a higher resolution to enable one
to represent particular cases, e.g., where the ¸ equals an odd multiple of 0)5�

�
or where

intermodal k-components are to be taken into consideration. To satisfy such requirements,
we have applied the well-known technique in discrete time signal processing, i.e., zero
padding. The coe$cients 
 and � in equation (10) are associated with the zero-padding
operation in the x and y directions respectively. With the original record length they should
be equal to 2, in which case the k-components closely correspond to multiples of �

�
. When,

however, the record length is doubled in any direction, through zero padding, the
corresponding coe$cient becomes equal to 1. This leads to the k-components closely
associated with 0)5�

�
. These coe$cients proportionally decrease when the record length in

the related direction is increased.
The spectral "ltering approach appears to be preferable to the low-pass "ltering concept

[3, 5, 9] since such "lters may include unwanted components at low waves numbers. Also,
depending on the choice of "lter cut-o! frequency, too many or insu$cient components
above k



may be included. A procedure similar to the proposed spectral "ltering has been

suggested earlier by Spalding et al. [8]. Our approach however relies on the structural
property (k



), rather than statistical calculations, to locate the useful wave number band.

5. EXPERIMENTS

In the following experiments, we explore the possibility of solving such problems as
locating sources and energy sinks, vibration energy transmission and acoustic radiation.
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They also aim for a detailed analysis of reactive intensity. Depending on the nature of the
investigation, several types of structure were used. In all the data acquisitions, the time
signals were weighted by a Hanning window and 64 spectral averages were made. The
swept-sine and multi-sine were selected as the excitation signals. Since in the case of
swept-sine, the sweeping time was longer than the record length, a time record overlap of
25% was implemented to avoid any loss of data. From the 256 transfer functions
(accelerances) associated with each set of vibration measurement, one 16�16 matrix was
extracted per excitation frequency. Each element of the matrix is the cross-mobility
(accelerance divided by j�), associated with one measurement point on the plate.

5.1. SOURCE AND DAMPING CHARACTERIZATION

These studies were implemented on an 890�890 mm�, free}free steel plate of 2)5 mm
thickness (Figure 2(a}c)) and on an irregularly shaped free}free steel plate of the same
thickness (Figure 2(d)). The measurements were made on a 270�340 mm� rectangular area
in the middle of each plate. It is important to note that the measurement area dimensions
are used as ¸

�
and ¸

�
, respectively, in equation (10). The argument behind this technique is

that even a small section of the plate contains the signatures related to all the excited modes.
In this work, zero padding has been used to double the record length and therefore enhance
the resolution by a factor of two.
Figure 2. Free}free plate con"gurations used for active intensity analyses: (a) undamped plate, (b) plate with
constraint layer damping concentrated at one corner on both faces, (c) plate with constraint layer damping along
all the edges and on both faces, (d) an irregularly shaped plate with the same con"guration of damping as in (b).
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The plates were excited by a shaker normal to the surface at the co-ordinates (80,
240 mm) with respect to the lower left corner of the measurement areas illustrated in
Figure 2. A force transducer was mounted between the plate and the shaker to provide the
reference signal. Two type of excitation signal were tested. One was a swept sine covering
the frequency range of 100}1600 Hz in 1)2 s and the other, a multi-sine signal comprising of
10 pure sines at selected frequencies, corresponding to some of the resonances as well as
o!-resonances of the plate. Both types of excitation produced similar results at common
frequencies. Surface velocity measurements were carried out on 16�16 grid using six phase
matched (within $0)13) 1)5 g accelerometers. Such light mass accelerometers were used to
avoid the e!ects of mass loading at the frequency range of interest. A multi channel FFT
analyzer was used for the sequential data acquisitions and calculation of the transfer
functions between the accelerations and the input force (Figure 3). Four experimental
con"gurations were considered as shown by Figure 2: (a) the undamped plate; (b) a plate
with constrained layer damping concentrated at one corner on both faces; (c) a plate with
constrained layer damping along all the edges and on both faces; (d) an irregularly shaped
plate with the same con"guration of damping as in (b).
Figure 3. Experimental and instrumentation schematic including the measurement grid representation.



FLEXURAL INTENSITY MEASUREMENT 41
5.2. REACTIVITY INTENSITY

The reactive #exural intensity "elds are investigated on the top plate of a gearbox
described in section 5.3 as well as a free}free plate (267�343�2)4 mm	). The latter is
excited, perpendicular to its plane, at a point of co-ordinates 80, 240 mm with respect to its
lower left corner.

5.3. STRUCTURE BORNE SOUND RADIATION AND ENERGY TRANSMISSION

A model of a rotorcraft gearbox was used to investigate the energy transmission from, as
well as the mechanism of generation of structure borne sound radiated by its top plate. The
plate's dimensions are ¸

�
"270 mm, ¸

�
"340 mm and h"6)35 mm. It is coupled to

the four lateral plates of the box by screws, providing almost rigid boundary conditions.
The whole gearbox is excited through its L-shaped shaft as illustrated in Figure 4. A force
transducer mounted between the shaker and the L-shaped shaft produced the reference
signal for the transfer functions (accelerances). Also, to estimate the structural intensity, the
same vibration measurement procedures and equipment as in sections 5.1 and 5.2 were
adapted to this structure. Acoustic intensity measurements however, were implemented
using an 8�8 grid. These measurements were carried out, in all three Cartesian directions,
on a surface parallel to and at 65 mm from the gearbox top plate (Figure 3). The intensity
probe microphones spacing was 50 mm for measurements at the frequencies below 1000 Hz
and 12 mm for the measurements at higher frequencies.

6. MEASURED RESULTS AND DISCUSSION

As a prelude to the analysis and to demonstrate the accuracy of spectral "lters, let us
consider the e!ects of the k-"lter width on a plate's deformations. Here we reconstruct the
Figure 4. The gearbox whose top plate has been studied. L-shaped shaft is excited by shaker.



Figure 5. E!ects of k-"lter width on plate deformations. (a) Measured deformation of the measurement area in
the middle of a free}free plate at 1058 Hz; (b) inverse calculation of the deformation using a "lter covering one pair
of components around k



; (c) using three pairs of components; (d) using "ve pairs of components.
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structural deformation using "ltered k-spectra and equation (4), where m and n are set to
zero. Figure 5(a) shows the measured deformation of the measurement area of the free}free
steel plate of Figure 2(a) at 1058 Hz. Figures 5(b, c) illustrate the reconstruction of the
deformation using spectral "lters of various widths, including, respectively, one, three and
"ve pairs of k-components around k



. It can be observed that, as the spectral "lter becomes

wider, the reconstructed deformation approaches the measured one (but with less noise).
This observation is qualitatively in accordance with the modal superposition principle and
it has been used to assess the performance of the spatial Fourier transform along with the
spectral "ltering procedure.

6.1. REACTIVITY INTENSITY

While investigating reactive intensity, spectral "lters did not appear to require a large
number of k-components. In all our cases, it was noticed that, when the excitation frequency
was close to one of the resonances of the plate, the "lter did not need to cover more than one
pair of k-components neighboring the structural wave number k



. At o!-resonant

frequencies, a slightly wider "lter was needed to cover two pairs of k-components. Larger
numbers of k-components introduced the &&smearing'' e!ects pointed out earlier. However,



Figure 6. Flexural deformation "eld of the gearbox top plate: (a) 475 Hz, (b) 1092 Hz, (c) 1278Hz, (d) 1362Hz.
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as it will be discussed later, in the context of active intensity, more components are needed
to account for near "eld e!ects related to sources and discontinuities.

First, we study the top plate of gearbox of Figure 4. This plate is almost rigidly "xed at its
outer boundaries resulting in very small displacements at the edges. This fact, combined
with a gradual decrease in the plate sti!ness with distance from the edges, produces a spatial
&cosine'window. It leads to a signi"cant reduction in spectral leakage in Fourier transforms
and consequently, to much more de"ned and recognizable structural deformations. Three
examples of intensity measurements, corresponding to four di!erent excitation frequencies,
are discussed next.

First, consider an example at 475 Hz, which is very close to the eigenfrequency of the (1, 1)
mode of vibration as shown in Figure 6(a). Total reactive #exural intensity and its
components are shown in Figure 7. Some of these reactive parts clearly show the
deformation patterns. The bending moment (Figure 7(b)) contribution reveals the
convergence of the energies at the extrema of the plate deformation, suggesting a relative
maximum of the reactive bending moment energy at vibration antinodes. In the shear force
contribution (Figure 7(c)), the convergence of the energy takes place at the in#ection points,
i.e., at the nodal lines. The twisting moment contribution of Figure 7(d) shows convergence
of energy toward the plate corners, where the other components are at their minimum.
However, quantitatively speaking, twisting moment contributions are too small (Table 1) to
leave a noticeable footprint on the total intensity "eld (note: sub-intensity "gures do not
have the same scale). The total reactive intensity in this particular case is subject to



Figure 7. Flexural reactive intensity "eld on the gearbox plate at 475 Hz. (a) Total intensity; (b) bending
moment contribution; (c) shear force contribution; (d) twisting moment contribution.
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signi"cant vector cancellations between the bending moment and shear force contributions
but ultimately the shear force contribution appears dominant.

Having the above well-de"ned intensity patterns in mind, a concrete example of the
e!ects of spectral "ltering can now be observed. Figure 8(a) represents the bending moment
sub-intensity of the above example, with no spectra "lter applied. No particular pattern is
detected in the "eld, suggesting strong cancellation e!ects (smearing) among the vectors due
to the action of the noise within the entire wave number range.



TABLE 1

Energy contribution (intensity vector amplitude integrated over the measurement surface) from
individual components of reactive intensity

Bending Shear Twisting
Structure Method Frequency (Hz) moment (%) force (%) moment (%)

A Experimental 475 (n.r.) 41 45)5 13)5
A Experimental 1092 (n.r.) 40 49 11
A Experimental 1278 (n.r.) 28 59)5 12)5
A Experimental 1362 (o.r.) 30 57 12
B Experimental 540 (n.r.) 56 37 7

Note: A: gearbox top plate; B: free}free plate; n.r.: near resonance; o.r.: o!-resonance.

Figure 8. Reactive bending moment sub-intensity "eld on the gearbox top plate at 475Hz: (a) no k-"lter used;
(b) using a low-pass k-"lter with f

�
"1)5 k



.
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The measured reactive intensity behavior is consistent in all cases studied by the authors
(at 11 di!erent excitation frequencies). Hence, for the sake of brevity, the following examples
will discuss only the bending moment and shear force sub-intensities.

Figures 6(b}d) represent the plate deformations at the excitation frequencies 1092 Hz
(near the modes 2, 1), 1278 Hz (near the mode 2, 2) and 1362 Hz (located between two
consecutive modes). Pairs of bending moment*shear force reactive sub-intensities are
illustrated in Figure 9(a, b) for 1092 Hz, Figure 10(a, b) for 1278 Hz, and Figure 11(a, b) for
1362 Hz. They all show consistent trends and re#ect the deformation in the same manner as
described in the previous example, i.e., vector convergence at anti-nodes for bending
moments and at nodal lines for shear forces.

Next, we analyze the case of a free}free plate, where only one excitation frequency of
540 Hz will be discussed. In Figure 12, the corresponding plate deformation can be seen. It



Figure 9. Reactive intensity "eld on the gearbox plate at 1092 Hz. (a) Bending moment sub-intensity; (b) shear
force sub-intensity.

Figure 10. Reactive intensity "eld on the gearbox plate at 1278Hz. (a) Bending moment sub-intensity; (b) shear
force sub-intensity.
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roughly demonstrates one wavelength in the x direction and no periodicity in the
y direction (2, 0 axial mode). Note that no curve "tting or smoothening procedure has been
used in this representation. Figure 13 shows the reactive shear force contribution. This



Figure 11. Reactive intensity "eld on the gearbox plate at 1362 Hz. (a) Bending moment sub-intensity; (b) shear
force sub-intensity.

Figure 12. Forced #exural deformation "eld of an undamped free}free plate at 540Hz.
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pattern in which the intensity vectors diverge at the extrema corresponds well to the plate
deformation.

The outcome of the examples above, i.e., reactive intensity representing the plate
deformations, suggests that the classical method of vibration transmission study, based on
vibration amplitude measurements, can only represent the reactive (non-propagating) part
of the energy and not the transmission.

It may now be interesting to compare the results with those obtained from the
application of a low-pass k-"lter, as evoked in section 4.3. All these "lters are basically



Figure 13. Reactive shear force sub-intensity "eld on the free}free plate at 540Hz.
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similar. The one chosen here is proposed by Williams et al. [3]. Figure 8(b) shows the
bending reactive sub-intensity obtained at a cut-o! wave number of k

�
"1)5 k



. No clear

indication of the natural mode (1, 1) can be observed here (as compared of Figure 7(b)).
Strong intensity vectors pointing toward the upper and lower edges of the plate imply high
displacement at these edges, which is obviously not the case.

6.2. ACTIVE INTENSITY

6.2.1. Excitation source near ,eld e+ects

In an in"nite plate, subject to #exural excitation by a point source, the following
conditions hold, at the excitation point: (1) angular displacements vanish; (2) the input force
emerges entirely as shear force; (3) the displacement is symmetric around the axis of
excitation. These conditions, along with the decaying behavior of near "elds, are expressed
in terms of Hankel functions of the second kind [12]. The Fourier transforms of such
functions produce exponentially decaying spectra that modulate the amplitude of the plate
modal components. In this investigation of active intensity, the free}free plate's dimensions
were 3}4 times greater than the #exural wavelength of the lowest excitation frequencies.
Hence, the plate practically satis"es the conditions 1}3, associated with in"nite plates.
Moreover, although in practical situations ideal point sources do not exist, here, the very
small area of excitation, compared to the applied wavelengths, justi"es the point source
assumption. A further important point, discussed in detail in the above reference, is the fact
that the power supplied to a plate by a point source is a real or active quantity (as is the
input impedance of a plate). This explains why the point sources can be localized in active,
and not reactive, intensity "elds.
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6.2.2. Free}free plate with damping treatment in one corner

In discussing free}free plates, special emphasis will be put on source}receiver localization
as one of the important tasks required from intensity investigations. In some cases, such as
in undamped plates with small dimensions, this task is quite tedious if not impossible. The
following experimental examples show that special treatments such as anechoic endings are
not always necessary for source/sink localization. These kinds of treatment, on the other
hand, may not be feasible or even judicious in practical situations.

Figure 14 represents the #exural intensity "elds calculated using measured data at
1058Hz. In Figure 14(a), the k-"lter covers two pairs of k-components surrounding the
structural wave number corresponding to 1058 Hz. The #ow of energy toward the damping
material is quite obvious. However, there is almost no evidence of the existence of the
source. By widening the k-"lter width to include four pairs of k-components, the intensity
"eld now clearly displays the position of the source (Figure 14(b)). Notice that a small
quantity of the source energy propagates away from the damping patches. The plate's
internal damping dissipates some of this energy and the rest is re#ected back from the plate
untreated boundaries. These re#ections however, are too weak to obscure the source
location.

The fact that the source localization requires a higher number of k-components to be
included in the inverse Fourier transformation, is related to the "eld con"guration. In the
region close to a source, i.e., at its near "eld, strong near "eld e!ects exist. Such
exponentially decaying "eld contributes components to the whole k-spectrum, also in
a decaying fashion. De"ning a source position requires a higher amount of information
than is necessary for the far "eld energy #ow descriptions. This information can be provided
only by a wider k-"lter, corresponding to a higher number of k-components or modes. In
practice however, too wide a "lter may introduce more noise leading to an excessive
Figure 14. Flexural active intensity "eld on the free}free plate with damping layers in a corner, at 1058 Hz.
(a) Calculated, with k-"lter covering two pairs of k-components; (b) covering four pairs of k-components.



Figure 15. Free}free plate with damping layers in a corner, at 496Hz. (a) Flexural active intensity; (b) bending
moment contribution; (c) shear force contribution; (d) twisting moment contribution.
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smearing of the "eld, as described earlier. Estimation of intensity, therefore, demands
a compromise in choosing the k-"lter width.

Figure 15 presents another example of the intensity in the plate at 496 Hz, where k


is

located between modes (0, 3) and (2, 2). In this "gure the total #exural intensity (Figure
15(a)) has been shown along with its three components, i.e., bending moment, shear force
and twisting moment contributions (Figure 15(b}d); again note in these sub-"gures, the
scales are not the same). As seen earlier, the twisting moment contribution appears to be
quite insigni"cant, compared to those of shear forces and bending moments (Table 2).



TABLE 2

Energy contribution (intensity vector amplitude integrated over the measurement surface) from
individual components of active intensity

Bending Shear Twisting
Structure Method Frequency (Hz) moment (%) force (%) moment (%)

A Experimental 496 (o.r.) 36 52 12
A Experimental 1058 (o.r.) 35 52 13
B Experimental 821 (o.r.) 34 53 13
B Experimental 1047 (n.r.) 40)5 50 9)5
B Experimental 1058 (n.r.) 34 54 12
B Experimental 1149 (n.r.) 33 54 13
C Experimental 543 (n.r.) 35 55 10
C Experimental 821 (o.r.) 38 50 12
D Experimental 553 (n.r.) 41 49 10
D Experimental 1443 (o.r.) 36 50 14
E Experimental 1092 (n.r.) 40 46 14
E Experimental 1362 (o.r.) 32 54 14
F FEM 483 (o.r.) 34 52)5 13)5
F FEM 836 (res) 41 47 12

Note: A: Free}free plate, damping in a corner; B: same without damping; C: same, damping all around the edges; D:
irregularly shaped free}free plate; E: gearbox plate; F: analytical FE model with �"0)5%; n.r.: near resonance; o.r.
o!-resonance; res: resonance.
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Accordingly, Figure 15 shows the relative insensitivity of the total intensity with regard to
the twisting moment contribution, and the dominance of the other two. The shear force on
the other hand, is the main component leading to the source localization, as it can be seen in
Figure 15(c). The reason is that at the source position, bending and twisting moments are
negligible while the shear forces are quite strong.

6.2.3. Free}free steel plate with no damping treatment

The same structure as in section 6.2.2, but with constrained damping layers removed, was
used in which only the plate's internal (and small) damping as well as some sound radiation
constitute the main mechanism of energy dissipation in the system. Because of the lack of
a concentrated energy sink or any localized absorption in such a system, it is not expected
that any regular and well-de"ned stream of energy be observed. This is because the energy
#ow pattern is conditioned by the edge re#ections and by the non-homogeneity of the
material property and internal damping. However, the possibility of source localization still
exists. In Figure 16, the shear force sub-intensities at 821 and 1149 Hz, display the source
location in an acceptable manner. In Figure 17(a) however, the shear force sub-intensity
corresponding to 1058 Hz, hardly reveals the source position, while in Figure 17(b)
(1047 Hz) no source is detected at all.

It can be argued that when high-energy modes are being excited (which is the case of 1058
and 1047 Hz, where the structure is being excited at or near its resonance frequencies) then
strong boundary re#ections are formed in the intensity "eld. These phenomena can obstruct
the source position. In contrast, the lower energy modes appear, when the excitation takes
place at o!-resonance frequencies (e.g., at 1058 and 1047Hz). The re#ected energies from the
plate edges are, in this case, weak and may be completely dissipated in their path.



Figure 16. Active shear force sub-intensity "eld on the free}free undamped plate: (a) at 821 Hz, (b) at 1149 Hz.

Figure 17. Active shear force sub-intensity "eld on the free}free undamped plate: (a) at 1058 Hz, (b) at 1047 Hz.
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6.2.4. Plate with constraint layer damping along all the edges

When the damping is provided all around the edges, the corresponding re#ections are
considerably weakened and therefore their impact on source localization, as observed in the
previous structure, is reduced. The sources are now easily detected even at resonance



Figure 18. Active shear force sub-intensity "eld on the free}free plate with damping along all the edges at
543 Hz (near-resonance).
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frequencies as shown in Figure 18 corresponding to the shear force sub-intensity at a near
resonance frequency of 543 Hz. This observation proves the argument presented in the
previous paragraph, with regard to the di$culty involved in source localization at
resonance frequencies. The energy streams #ow toward the edges. The pattern and direction
adopted by these streams are dictated by the non-uniformity of the damping patches and
the plate material.

6.2.5. Irregularly shaped free}free plate

The irregularly shaped plate of Figure 2(d) was processed in the same way as the regular
plates. It was found that a rectangular measurement zone could still be used on such an
irregular plate. This technique allows to visualize the #ow of energy and to localize the
source, as can be seen in Figure 19, where the active shear force sub-intensity corresponding
to the excitation frequency of 553 Hz is illustrated. This is an important result because it
suggests that the technique is adaptable for complex plate geometries, which is the case in
most realistic structures.

6.2.6. Active intensity on a gearbox plate

Two examples of active intensity will be discussed for this case. First, consider the
excitation at 1092 Hz. At this frequency the plate deformation is dominated by the mode
(2, 1) of the plate. Figure 20 represents the total active #exural intensity (Figure 20(a)) along
its components, i.e., bending moment, shear force and twisting moment contributions
(Figure 20(b}d)). The main (in terms of quantity, see Table 2) components, i.e., the shear
force and bending moment sub-intensities, and consequently, the total intensity itself,
clearly demonstrate a stream of energy coming from the right lateral plate of the box. This



Figure 19. Active shear force sub-intensity "eld on the free}free irregular plate at 553 Hz.
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energy #ows across the top plate and runs into the box's left lateral plate. Another example
corresponds to the excitation frequency of 1362Hz. In Figure 21, each sub-"gure represents
the total intensity at a di!erent spectral "lter width (the e!ect of the width is discussed in the
context of smearing, in the following sub-section). The intensity "eld looks more involved
than the preceding example. Here, all four lateral plates of the box seem to be active in
providing or receiving energy to or from the upper plate. The abnormally short intensity
vectors at the edges of the plate are the direct consequence of measurement noise. The plate
edges have been "xed to the rest of the box, using a number of screws. Hence, the amplitudes
of vibration at the edges are very small and lead to low measurement signal-to-noise ratios.

From the above examples, a conclusion may be drawn that is of important practical
consequence: although the displacement amplitudes along the plate's edges are quite small,
the overall intensity pattern shows a signi"cant amount of energy crossing them. This
further con"rms the conclusion drawn from the analysis of the reactive intensity
(section 6.1), i.e., in studying the transmission across discontinuities, high (normal) vibration
amplitudes do not necessarily imply a high energy transmission.

6.2.7. Smearing e+ects

In many intensity "eld representations, unexpected variation in the amplitude of the
intensity vectors may be observed in locations where neither energy sources nor sinks are
present. Such results may be interpreted as illogical and inaccurate, however, an important
reason may lie behind such phenomena referred to, in previous sub-sections, as &&smearing''
e!ect. Although plate-edge re#ections and non-uniformity of the material property and
damping distribution can cause such e!ects, they are mainly the consequence of the
accumulation of the uncorrelated noise within the k-"lters. Larger spectral k-"lters
incorporate more noise leading to more &&smearing'' in the intensity "eld. In Figure 21, four



Figure 20. Top plate of the gearbox at 1092 Hz. (a) Total active intensity; (b) bending moment sub-intensity;
(c) shear force sub-intensity; (d) twisting moment sub-intensity.

FLEXURAL INTENSITY MEASUREMENT 55
&&variants'' of the total intensity on the gearbox plate demonstrate the e!ects of widening the
k-spectral "lter. Figures 21(a}d) are related to the "lters that include 1, 2, 6 and 10 pairs of
k-components around k



respectively. It can be observed how wider "lters can lead to "elds

with irregularly localized changes in the norms of the intensity vectors. The analytical
studies (section 7) further con"rms noise as the main agent of the &&smearing''.



Figure 21. Smearing e!ect in the intensity calculations. Gearbox plate at 1362 Hz. (a) k-"lter covering one pair
of k-components adjacent to k



; (b) with two pairs of k-components; (c) with six pairs; (d) with 10 pairs.
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6.2.8. Acoustic radiation and -exural intensity

Theoretically speaking, the sound radiated from "nite rectangular free}free plates in the
subsonic region is insigni"cant. For this reason, the investigation on structure borne sound
was implemented on the top plate of a rotorcraft gearbox with "xed boundaries. The aim is
to explore the possibility of establishing a link between the #exural intensity and the
intensity of the associated sound radiation.

An extensive analysis, covering both subsonic (where �
�
(�


����
) and supersonic (where

�
�
'�


����
) frequency zones, has been carried out. The acoustic and #exural intensity "elds

were studied in parallel. These studies show that the evidence of sound radiation can be



Figure 22. Gearbox top plate: (a) deformation at 357Hz; (b) radiated sound intensity at 357Hz; (c) deformation
at 421 Hz; (d) radiated sound intensity at 421Hz.
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observed on #exural intensity "elds only in cases where a signi"cant portion of the surface
radiates. At subsonic regions this is true only when the motion of the whole plate is in phase,
e.g., at frequencies corresponding to 1, 1 modes. At the other frequencies, strong acoustic
cancelling e!ects [4] take place that dramatically reduce the radiating surface areas. These
e!ects are further reinforced by the presence of the multitude of eigenmodes excited by one
single excitation frequency. Two examples are presented here. Figure 22 illustrates the plate
deformations and the sound intensity at the frequencies 357 and 421 Hz, where the plate
goes through an in-phase motion. It can be seen that the radiation is emitted from a large
portion of the surface. Figure 23 represents the associated total #exural (a and c) and shear
force (b and d) active sub-intensities. The energy covergence to the middle of the plate,
where no energy sink is present, suggests the release of the energy into the air in forms of
radiation. This e!ect is more obvious in the shear force component of the intensity
suggesting also that the acoustic radiation be a$liated to shear forces rather than to the
moments.

At supersonic regions, although the overall radiation is higher than in subsonic zones, the
radiation surfaces are comprised of small patches as illustrated in two examples of
Figure 24. Here, no evidence of such radiation could be detected in the #exural intensity
"eld.



Figure 23. Structural intensity "eld on the gearbox top plate. (a) Total #exural intensity at 357Hz; (b) shear
force sub-intensity at 357Hz; (c) total #exural intensity at 421Hz; (d) shear force sub-intensity at 421Hz.
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7. FINITE ELEMENT ANALYSIS

In section 6.2.7, it was suggested that the &smearing' phenomenon would be caused by
uncorrelated noise and plate edge re#ections. It is interesting therefore, to examine the
validity of such arguments in an ideal system, i.e., free of noise and where the edge re#ections
could be controlled. To do so, a computational investigation is carried out using the "nite
element method. A steel plate of dimensions 900�900�2)5 mm	, E"2e�� Pa, �"0)3 and



Figure 24. Examples of radiated sound intensity, at supersonic region, from the gearbox top plate: (a) at
2220 Hz, (b) 2995Hz.
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�"7800 kg/m	 is modelled using the ANSYS software [17]. A harmonic force of unit
amplitude is applied on the plate at the coordinates (391, 378 mm). The model incorporates
a 50�40 grid providing 2000 four-node shell elements. Natural frequencies are obtained
through the block Lanczos solution [17] and the force response functions are calculated
using the modal superposition approach. Calculation of structural intensities was
subsequently carried out using the above complex transfer functions (cross-mobilities),
along with the formulas and techniques described in sections 2 and 3. These calculations
were implemented on a smaller (576�720 mm�) area in the middle of the plate that covers
32�32 nodes and includes the excitation point. Results from various types of ideal
boundary conditions were found to be consistent. Therefore only the clamped}clamped
boundary condition will be presented here, at two excitation frequencies of 483 Hz
(o!-resonance) and 836 Hz (resonance) and only the active intensity will be discussed.

It was hypothesized, in the previous sections, that smearing is caused mainly by
uncorrelated noise. If true, then in an ideal noise-free system, such as the present FE model,
widening of the k-"lter must not lead to smearing. It was indeed observed that "lters wider
than 4 (6, 10, 12, 16) pairs of k-components produced no noticeable change in the pattern of
the "eld.

Figure 25 shows the shear force intensity at 483 Hz. Here, the location of excitation
source is clearly displayed. The behavior of the intensity "eld is, however, erratic and
random energy streams are observed. This behavior, caused by interactions among
outgoing source energy and the plate edge re#ections, is in agreement with those observed
in the experimental results and discussed in sections 6.2.3 and 6.2.4. Also, notice that, by
increasing the amount of structural damping to the system (Figures 25(a}c) corresponding
to the damping ratios � of 0)5%, 5% and highly idealized 50%, respectively) a more regular
and symmetric "eld shape is obtained. It was also argued, in those subsections, that the edge
re#ections being even more energetic at resonance frequencies, may completely mask the
excitation source. The analytical example in Figure 26, corresponding to the resonance
frequency of 836Hz, further veri"es this analysis. Figure 26(a) represents the plate with
a structural damping ratio �"0)5% which is typical in steel. In this case no source can be
detected. When this ratio is increased to 5%, the source starts to emerge and the "eld
appears much less turbulent (Figure 26(b)). In the idealized case of �"50% (Figure 26(c)),
the intensity "eld emerges completely symmetric and the damping trend quite uniform. This
investigation shows the importance of some damping in source localization. Regarding the



Figure 25. Shear force sub-intensity "eld in the middle of FE modelled plate at o!-resonant frequency of
483 Hz; (a) with �"0)5%; (b) with �"5%; (c) with �"50%.
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quantitative comparison between the analytical and experimental investigation, one can
observe a reasonable consistency; various contributions to total #exural intensity, from
shear forces, bending and twisting moments, are quite similar in both cases (Table 2).

8. CONCLUSION

Use of spatial Fourier transforms in the estimation of structural intensity requires close
attention to the modal behavior of structures and the principle of modal superposition.
Although the vibration "eld of a structure is de"ned by all the excited modes, one cannot
include all these modes in the intensity calculations because, in the measured data, the
spectral k-components related to many of these modes may contain undesirable
information such as uncorrelated noise.

The method presented here uses an ideal band-pass "lter centered at the structural wave
number k



. The choice of the k-"lter bandwidth depends on the aim of the application, e.g.,

whether the sources or sinks are to be studied or the transmission paths. This choice
obligates a compromise between spectral information and noise.



Figure 26. Shear force sub-intensity "eld on the middle of FE modelled plate at resonant frequency of 836Hz:
(a) with �"0)5%; (b) with �"5%; (c) with �"50%.
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Flexural intensity includes contributions from the bending moments, the shear forces and
the twisting moments. The present study suggests that bending moment and shear force
reactive sub-intensity "elds represent the operating deformation shapes of the structure.
This observation leads to the following practical conclusion. In the classical method of
vibration transmission analysis, based on the measurement of vibration amplitudes, higher
amplitude on a certain transmission path would imply a higher vibration transmission
through that path. This is not necessarily true because, according to the present
investigation, the vibration amplitudes are in fact associated with the reactive intensity,
which is non-propagating. Such measurements may therefore be quite misleading in
transmission path analysis and ranking. Active structural intensity is the realistic approach
to such a problem.

Calculated active intensity "elds clearly display source and absorption locations, as well
as the energy paths even in irregularly shaped and in undamped plates with various
boundary conditions. In the case of transverse excitations, such as a shaker, the shear force
component is the most e$cient, among the three components of #exural intensity, in
identifying the source. The reason is that in this type of excitation, the moments (bending
and twisting) near the source are negligible.
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In undamped plates, at resonance frequency excitations, strong energy re#ections from
boundaries and discontinuities occur that may mask the source locations. It was observed,
in FEM investigations, that the introduction of more damping in the structure could
control the e!ects of the edge re#ections. However, further work is needed to develop
a di!erent technique, rather than addition of damping, to overcome the problem of source
obstruction at resonance frequencies.

Regarding the e!ects of sound radiation on #exural intensity, only at frequencies where
the motion of the whole plate is in phase, one can see a clear transformation of vibration
energy into sound energy, because a large area of the plate surface radiates. At other
frequencies, radiation takes place at small areas, leaving no possibility of visualization in the
#exural intensity "elds.
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APPENDIX A: NOMENCLATURE

D #exural sti!ness
f
�

resonant frequency
h plate thickness
k
�
, k

�
wave numbers in x and y directions respectively

k
���

mode (m, n) wave number
k



structural wave number
¸ spatial record length
¸
�
, ¸

�
record lengths in x and y directions respectively

m, n integers
N number of samples
r modal index
r
�
, r

�
wave numbers associated with mth and nth axial modes in x and y directions respectively

S frequency sweep rate
= displacement in frequency domain
=QI complex velocity in frequency domain
� structural damping ratio
� damping loss factor
�
�

modal loss factor
� cyclic frequency
�

�
undamped natural frequency

�



plate surface density
�
�

#exural wavelength
�

����

sound wavelength
� the Poisson ratio
�
�

eigenvector r
[�]

�
normal eigenvector r

" complex quantity
/ complex conjugate
� transpose of a matrix
��

�
average in time domain


	1. INTRODUCTION
	2. FLEXURAL INTENSITY FORMULATION
	3. EVALUATION OF SPATIAL GRADIENTS
	4. METHOD IMPLEMENTATION AND ERROR SOURCES
	Figure 1

	5. EXPERIMENTS
	Figure 2
	Figure 3

	6. MEASURED RESULTS AND DISCUSSION
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	TABLE 1
	Figure 8
	Figure 9
	Figure 10
	Figure 11
	Figure 12
	Figure 13
	Figure 14
	Figure 15
	TABLE 2
	Figure 16
	Figure 17
	Figure 18
	Figure 19
	Figure 20
	Figure 21
	Figure 22
	Figure 23

	7. FINITE ELEMENT ANALYSIS
	Figure 24
	Figure 25

	8 CONCLUSION
	Figure 26

	ACKNOWLEDGMENTS
	REFERENCES
	APPENDIX A: NOMENCLATURE

