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The e!ect of inviscid plug #ow on the stability of several hydroelastic systems is
investigated by determining the absolute or convective nature of the instability from the
linear dispersion relation. The #uid-structure systems consist of plates and membranes with
bounded and unbounded #ow. A method is proposed to derive systematically in parameter
space the boundary between convective and absolute instability, based on the particular
symmetries of the dispersion relation as originally noted by Crighton and Oswell. This
method is then applied to the case of plates with superimposed tension, thick plates with
rotary inertia and walls made of plates or membranes bounding channel #ow, oscillating in
a sinuous or varicose mode of deformation. A relation is drawn with solutions by previous
authors for plates, for pipes and for the Kelvin}Helmholtz instability with surface tension.
To illustrate these results some temporal evolutions are calculated by using an integration in
the wavenumber space. Based on the large set of new cases solved in the paper some general
trends are discussed as to the in#uence of #ow velocity, con"nement and structural sti!ness
on the existence of absolutely unstable waves in inviscid hydroelastic systems.

� 2002 Published by Elsevier Science Ltd.
1. INTRODUCTION

Flexible structures submitted to #ow may vibrate for various reasons including
turbulence-induced forces, vortex shedding or #utter [1}4]. Practical evidence of the latter
case is found in phenomena such as snoring, collapse of blood vessels, #utter of airborne
panels or the instability of #uid conveying pipes. Most of the models of such systems have
addressed the case where the vibrating structure is of "nite length in the direction of #ow,
and the onset of instability has been tracked from the evolution of the free vibration modes
as #ow rate is gradually increased. Results of important engineering applicability have been
derived; see for instance, references [1}4].

A more local approach considers the conditions for the stability of elastic waves that
develop in an elastic structure unbounded in the streamwise direction. Plates, membranes,
shells and pipes in con"ned or uncon"ned #ows have been considered in the literature
[5}9]. A further step in that direction is to single out among unstable waves those that are
absolutely unstable, i.e. that are not washed away by the #ow but eventually contaminate
the whole domain. In the general case rather complex e!ects have been found which involve
couplings between the #ow instability and the structural instability, see references [10}13].
Considering inviscid uniform #ow yields much simpler systems and allows one to derive
analytically the dispersion relation. Under this assumption, absolute instability has been
022-460X/02/$35.00 � 2002 Published by Elsevier Science Ltd.
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analyzed in generic situations of plates [10, 14}20], membranes [15, 21], shells [17] and
pipes [22}24].

In all these cases, it has been observed that the #ow velocity promotes absolute
instability. Conversely, tension of the structure or foundation sti!ness seems to delay such
transitions [17, 19, 20, 23, 24]. Flow con"nement apparently plays a complex role, much
dependent on the nature of the structural sti!ness [25, 26]. While absolute instability is not
likely to occur in plates as soon as a small curvature sti!ens it [17], or in #uid-conveying
pipes [24], most systems with a tension rigidity have been found to be absolutely unstable
as soon as they become unstable [21, 24, 26].

The goal of the present paper is to systematically determine in parameter space the
regions of absolute instability of a variety of structures unbounded in the stream-wise
direction under inviscid uniform plug #ow. The relation between the above-mentioned
situations is also sought to clarify some apparent contradictions or di!erences. The
long-range objective is to shed some light on the global dynamics of the systems of "nite
lengths starting from their local behaviour, as in references [27, 28]. Though dissipative
e!ects are known to play a role in those instability mechanisms we disregard them in
the present analysis.

Consider a slender elastic structure of in"nite length in the x direction supporting linear
travelling waves so that the local displacement vector is

�
�
(x, y, z, t)"X

�
(y, z)e��������, (1)

whereX
�
(y, z) denotes the modal shape in the cross-section of the structure. In the absence of

#uid, the dynamic equations of the structure yield a linear dispersion relation between the
wave number k and the circular frequency �, which one can write as

S(k)!��M(k)"0. (2)

where S and M are the sti!ness and mass functions respectively. In an appropriate
dimensionless form, as will be speci"ed later for each case, this would typically apply to thin
plates in bending (S"k�, M"1), thick plates with rotary inertia (S"k�, M"1#k�) or
membranes (S"k�, M"1). Note that equation (2) applies only to conservative systems,
and does not even apply to all of them. Typically, models where the motion of the structure
is not reducible to one displacement "eld, equation (1), cannot be considered simply in this
approach, S andM being matrices. This would be the case for high order plate theories and
most of shell theories where local displacements and rotations are coupled variables.

In the presence of inviscid plug #ow along the axis of the slender structure, the boundary
motion modi"es the #ow velocity into

U
�
";e

� �
#u

�
, (3)

where; is the plug #ow velocity and �u � is the perturbation velocity such that �u ��;. The
continuity condition at the boundary � between the #uid and the structure is [4]

u
�
) n
�
"�

��
��t
#;

��
��x� ) n

�
, (4)

where n
�
is the normal unit vector at the boundary. We may de"ne a velocity potential

� such that u
�
"�

�
�, which is conveniently written as

�(x, y, z, t)"!i (�!;k)�
�
(y, z)e��������. (5)
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The continuity equation ��"0 implies that the reduced potential �
�
actually depends on

the wave number k through

�
��
�

�
!k��

�
"0, (6)

where the Laplacian operator �
��

refers only to derivatives in the y and z directions. In
terms of this potential, the boundary condition (4) is

�
� ��

�
�

) n
�
"X

�
) n
�
, (7)

where the gradient operator �
��

refers only to derivatives in the y and z directions. The
resulting pressure is given by the "rst order terms in the momentum equation

p"!� �
��
�t

#;
��
�x�"� (�!;k)��

�
ei�������. (8)

The force acting on the slender body projected on the modal shape X
�
is

f"(�!;k)�� ��

(!�
�
X
�

) n
�
) dS. (9)

The original dispersion relation for the structure, equation (2), is therefore modi"ed by
taking into account the external force due to the presence of the #owing #uid, equation (9).
Now, upon introducing a control parameter, say 	, representing a geometrical or
mechanical property of the system, it becomes

D(�, k; ;, 	)"S (k, 	)!��M(k, 	)!M
�
(k, 	)(�!;k)�"0, (10)

where the added mass function has been de"ned by

M
�

"��
/�

(!�
�
X
�

) n
�
) dS. (11)

Typical geometries that are considered in this paper have the following dimensionless added
mass function: M

�
"1/�k� for a #uid domain of in"nite extent as in reference [16],

M
�
"1/(k tanh k) orM

�
"k/tanh k for a domain of "nite width [8, 24]. Equation (10) is the

general dispersion relation that we consider from now on.
The temporal evolution of a spatially harmonic wave of real wave number k is

characterized by the frequencies which are solutions of (10), namely

�
�

"

;kM
�
$[S (M#M

�
)!;�k�MM

�
]���

M#M
�

. (12)

The condition of stability of the wave is that the imaginary part of � is negative or zero so
that

S (M#M
�
)!;�k2MM

�
*0 (13)

for all real wave numbers k. The critical velocity that brings about instability therefore is

;
	
(	)"Min

��
��
��
S(k)(M (k)#M

�
(k))

k�M(k)M
�
(k) �

���
. (14)
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Beyond this #ow velocity waves of wavenumber k such that inequality (13) is violated grow
with time while others remain neutrally stable.

To further characterize this instability, let us consider the long time behaviour of the
impulse responseG(x, t) of the system, following reference [29]. The developing instability is
said to be convective when the wavepacket generated by the impulse is ultimately convected
away from the source so that lim

���
�G(0, t) �"0. Conversely, the instability is said to be

absolute when the growing wavepacket contaminates the entire domain, upstream and
downstream so that lim

���
�G(0, t) �"R. In practice, the convective or absolute nature of

the instability may be derived directly from the analysis of the dispersion relation (10)
without calculating explicitly G(0, t) [30]. It is needed only to consider the absolute
frequency and wavenumber, �

	
and k

	
implicitly de"ned by

D(�
	
, k

	
)"0 and

�D
�k

(�
	
, k

	
)"0, (15)

the absolute or convective nature of the instability being determined by the sign of the
imaginary part Im(�

	
). It is said to be absolute if Im(�

	
)'0 and convective if Im(�

	
))0.

In fact, this criterion is not precise enough as it stands and must be con"rmed by a branch
analysis in the complex k-plane: the root (�

	
, k

	
) must be associated, as Im(�) decreases

from large positive values, with pinching of two branches of the dispersion relation
k�(�) and k� (�) that originate respectively in the upper and lower halves of the complex
k-planes [30].

Our aim is to determine for various systems the value of the #ow velocity where the
instability, if any, shifts from being convective to absolute or vice versa. This will be referred
to as the transition velocity, ;

�
, which depends on the control parameter 	. Because of the

symmetries of the dispersion relations pertaining to di!erent structures in the presence of
uniform plug #ow, previous authors [16, 17, 19, 23, 31] have pointed out that transition
takes place at the triple root of the dispersion relation,

D (�
�
, k

�
; ;

�
, 	)"

�D
�k

(�
�
, k

�
; ;

�
, 	)"

��D
�k�

(�
�
, k

�
; ;

�
, 	)"0, (16)

and that the corresponding wavenumber k
�

is real. This common feature is related to the
symmetries in space and time of the dispersion relation for the structure, equation (2), and to
the inviscid nature of the #ow, yielding in all cases the (�!;k)� factor. Note that equation
(16) is also of interest in the range of stability to derive the transition between evanescent
and neutral set of waves [28].

In the general case, the transition velocity ;
�

may not be explicitly calculated from
equation (16). In the next section, we propose a systematic procedure to derive the transition
curve ;

�
(	) in parameter space. We then apply it to a large variety of hydroelastic systems.

The results are used to explore the e!ect of di!erent physical parameters on the onset of
absolute instability.

2. METHODOLOGY

Though the transition velocity ;
�
(	) may not generally be derived explicitly from

equation (16), it may, in some cases of polynomial dispersion relations, be obtained as an
implicit relationship between ;

�
and 	 when k

�
is varied, see reference [19]. This is

generalized here to a much wider set of problems by considering a change of variables from
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(�, k,;, 	) to (�,K,<, 
) such that the dispersion relation reduces to the convenient form

D (�,K; <, 
)"R(K)!��!
F(K)(�!<K)�"0. (17)

Provided that �k/�KO0 the transition equation (16) still is in terms of D

D (�
�
,K

�
; <

�
, 
)"

�D
�K

(�
�
,K

�
; <

�
, 
)"

��D
�K�

(�
�
,K

�
; <

�
, 
)"0. (18)

Upon using the particular form of D and of its derivatives, one may give after some
algebra a parametric de"nition of <

�
, 
 and �

�
as K

�
is varied on the real axis,

<�
�
(K

�
)"

R!���F
(�#K

�
)�
, 
 (K

�
)"

�
<�

�

, �
�
(K

�
)"(�#K

�
)<

�
(19)

with �"(!b!�b�!ac)/a; �"R�/(F���!2�F); a"R
F�!R�F
; b"2R�F�!S
F;
c"!2R�F, where ( )� refers to the derivative with respect to K. This allows one to de"ne
implicitly the relation between the transition velocity ;

�
, and the physical parameter 	. It

should be noted here that this solution based on equation (16) allows one to derive the
transition curve in the (;

�
, 	) plane, but does not determine which side of this curve is

associated with absolute instability (see also reference [31]). This would require the
calculation of the absolute frequency at some particular location, with the adequate branch
analysis in the complex k-plane. In the next sections we take advantage of the results given
by other authors for some particular cases to determine the side of the transition curve
where absolute instability prevails.

The transition velocity ;
�

should also be compared with the critical velocity for
instability ;

	
(	) de"ned by equation (14). In terms of the new set of variables this critical

velocity may also be given parametrically as a function of the real critical wavenumber
K

	
as

<
	
(K

	
)"�

R�F�
R(F�K�

	
#2FK

	
)!R�FK�

	
�
���

, 
 (K
	
)"

R

(<�K�
	
!R)F

. (20)

3 PLATES AND MEMBRANES

The uniform #ow of an inviscid incompressible #uid above a #at plate with bending
rigidity, Figure 1(a), has been considered by Brazier-Smith and Scott [14], Carpenter and
U

U (a)

(b)

T T

Figure 1. Uniform #ow on a #exible surface: (a) plate model; (b) membrane model.



304 E. DE LANGRE
Garrad [15], Crighton and Oswell [16] and Abrahams and Wickham [18]. The
corresponding dispersion relation is

Bk�!m��!�
1

�k �
(�!;k)�"0, (21)

where B and m are, respectively, the bending sti!ness and the mass per unit surface of the
plate, � and ; being the #uid density and #ow velocity. Upon using the dimensionless
variables ;I ";m
��/�B���, k� "km/� and �J "�m���/��B���, it becomes

k� �!�J �!

1

�k� �
(�J !;I k� )�"0. (22)

Instability appears at the onset of #ow velocity,;I
	
"0 and a transition from convective to

absolute instability is found [14}16] at

;I
�

"�
2�5�

3
 �2!

15���

2 ��
���

K0)074. (23)

A similar but simpler problem has been considered by Kelbert and Sazonov [21], with
a tension-induced rigidity (&&membrane'' model) instead of the bending rigidity (&&plate''
model), Figure 1(b). The corresponding dispersion relation is

¹k�!m��!�
1

�k �
(�!;k)�"0, (24)

where ¹ is the tension applied in the plane of the membrane. Upon using new dimensionless
variables pertaining to tension, ;M ";m���/¹���, k� "km/� and �N "�m
��/�¹���, it
becomes

k� �!�� �!

1

�k� �
(�N !;M k� )�"0. (25)

As the #ow velocity is increased instability sets in at ;M
	
"1, and it is convective up to the

value of

;M
�

"(6�3!9)���K1)18, (26)

where it becomes absolute [21].
Using the methodology proposed in the present paper, one may now study the gradual

transition from a sti! plate, equation (23), to a tensioned membrane, equation (26), by
considering a plate with superimposed tension, the ratio between the corresponding
rigidities being varied. The dispersion relation combining bending and tension rigidities is

Bk�#¹k�!m��!�
1

�k �
(�!;k)�"0. (27)

and is, in the dimensionless variables pertaining to bending,

k� �#¹I k� �!�J �!
1

�k� �
(�J !;I k� )�"0, (28)
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where the dimensionless tension ¹I "m�¹/��B scales the ratio between rigidity induced by
tension and that from bending. Upon introducing �"¹I ��J , K"¹I k� , <"¹I ;I , 
"¹I the
dispersion relation becomes

D (�,K; <, 
)"K�#K�!��!

1

�K �
(�!<K)�"0. (29)

It displays the convenient form of equation (17), with R (K)"K�#K� and F (K)"1/�K �.
Upon using equation (19) the computation of the transition velocity <�

�
versus the

parameter 
 is straightforward, and the e!ect of tension and velocity on the nature of the
instability may be derived. For the sake of clarity, one can here use the combined
dimensionless velocity

;H"

;

�(¹/m)#(��B/m
)
"

;I
�¹I #1

"

;�

�1#1/¹I
. (30)

such that, for small tensions, ¹I �1, one has ;HK;I , and for large tensions ¹I �1,;HK;� .
In terms of this velocity, the stability diagram is shown in Figure 2, including the instability
threshold given by equation (14). At the low values of the tension parameter, the solution of
Crighton for a plate [16] is obtained, with a very low instability threshold ;I

	
K0 and

absolute instability arising at ;I K0)074. Conversely, for high tensions the solution of
Kelbert [21] for pure membranes is obtained, with a critical velocity ;�

	
"1 and

a transition velocity ;�
�

K1)18. These limits allow one to determine the side of the
transition curve where absolute instability prevails, here above the curve.
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Figure 2. Domains of absolute instability (AI), convective instability (CI) and stability (ST) for a plate with
superimposed tension. (- - -) Limit of Crighton and Oswell [16] for a plate without tension. (- ) - ) -) Limit of Kelbert
and Sazonov [21] for a pure membrane. (�) Approximate solution of Peake and Sorokin [19] for a sandwich panel
case.
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The results of Figure 2 show that a small amount of tension is su$cient to modify
signi"cantly the propagation of waves on the plate. First, instability appears at non-zero
#ow velocity. Second, the domain of convective instability is signi"cantly reduced. This may
be related to the analysis of Peake [17] regarding the in#uence of sti!ness due to curvature
on absolute instability in plates. A very small amount of curvature was found to increase
signi"cantly both the critical and the transition velocities. As previously noted [24, 17] the
pure plate con"guration seems to yield rather pathological results.

Some relationmay also be found with the work of Peake and Sorokin [19] on a sandwich
panel case. The dispersion relation they consider as a limit case of a more general problem
reads, using our variables,

k� �#¹I k� �#�!�J �!

1

�k� �
(�J !;I k� )�"0, (31)

and the transition velocity is given in the range of 0)¹I )0)3 while �"¹I �/80 is found to
have a small in#uence. In Figure 2 the corresponding point with ¹I "0)3 and ;HK0)53
falls near our transition curve.

We consider now the in#uence of rotary inertia in the plate, using the dispersion relation

Bk�!Jk���!m��!�
1

�k �
(�!;k)�"0, (32)

where J is the rotary inertia of the plate section. In dimensionless form this is

k� �!(1#�k� �)�J �!

1

�k� �
(�� !;I k� )�"0, (33)

with �"��J/m
. A fully consistent model for a thick plate should include the e!ect of shear
deformation (see reference [32, 33]). The dispersion relation would then contain a term
�� which may not be taken into account easily in the present approach. It should
nevertheless be noted that for a plate of uniform density �

�
and thickness h the

dimensionless inertia � scales as (�/�
�
)� whereas the coe$cient associated with shear

deformation scales as (�/�
�
)�. It may be inferred that equation (32) has some relevance for

(�/�
�
)�1.

Upon using a further transformation �"��� , K"��k� , <"��;I , 
"��, one
obtains the generic form

D (�,K; <, 
)"
K�

1#K�
!��!


1

�K �(1#K�)
(�!<K)�"0. (34)

The domain of absolute instability is readily derived in terms of the rotary inertia parameter
� and the #ow velocity ;� , see Figure 3. The reduced rotary inertia � is seen to promote
absolute instability. This may be analyzed in terms of wave velocity. In the absence of #uid,
the phase velocity using equation (32) with �"0, is

c�"�
�
k�

�
"

Bk�

m#Jk�
, (35)

which has an upper bound c
�

"�B/J. In Figure 3 it appears that for ��1 absolute
instability sets in as soon as

;I '1/��, (36)
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Figure 3. Domain of absolute instability (AI) for a plate with rotary inertia. (- - -) Upper limit of phase velocity
in the plate without #uid, equation (36).
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which in dimensional variables is;'c
�
. In that particular case, absolute instability arises

when the #ow velocity becomes larger than all phase velocities in the plate.

4. CHANNEL FLOW

Consider now the case of two identical parallel plates of in"nite extent bounding a plane
channel of width 2e. When the two plates are restricted to have the same transverse
displacement, they are subjected to a sinuous mode of deformation as opposed to a varicose
mode, Figure 4(a), the transverse displacement being governed by the dimensionless
dispersion relation [8, 26]

k� �!�� �!
tanh k� e�

k�
(�J !;� k� )�"0, (37)

with the dimensionless channel width e� "�e/m. The generic change of variables is now
made, where �"e� ��J , K"e� k� , <"e�;� , 
"eJ and the dispersion relation becomes

D(�,K; <, 
)"K�!��!

tanhK

K
(�!<K)�"0. (38)

The transition velocity<
�
may be numerically derived. This is now expressed in terms of the

dimensionless velocity ;I , Figure 5(a), as a function of the dimensionless channel width, e� .
For asymptotically large channels the transition curve is consistent with the limit value of
equation (23) for a plate. This limit allows one to determine which side of the transition
curve is the zone of absolute instability, here above the curve.
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Figure 4. Plates with channel #ow. (a) Sinuous deformation of walls in channel #ow, (b) varicose deformation of
walls in channel #ow, (c) rigid wall at a "nite distance from the #exible plate.
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Figure 5. Domain of absolute instability (AI) for plates bounding channel #ow. (- - -) Single plate with
unbounded #uid domain, equation (23) [16]. (a) Sinuous mode, (- . - . -) limit for a thin channel, eJ "8, [24],
(b) varicose mode, (- . - . -) limit for a thin channel, equation (42).
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The limit e� "8 observed in Figure 5(a) may be understood by considering a long
wavelength approximation in equation (37), namely �"2�/k�e. In that limit one has
k� e� �1 so that tanh k� e� Kk� e� and the dispersion relation reduces to

k� �!�J �!e� (�� !;I k� )�"0. (39)

This is identical in form with the dispersion relation for beam-like motions of
a #uid-conveying pipe, see reference [1}4]. In that case, [22, 24], the transition between
absolute and convective instability takes place at a dimensionless mass ratio
�"e� /(e� #1)"8/9, i.e., e� "8.

The case of opposite displacement of the two plates, i.e., that of varicose modes
Figure 4(b), yields a similar dimensionless dispersion relation

k� �!�� �!

1

k� tanh k� e�
(�� !;I k� )�"0. (40)

This also applies to the case of a rigid wall at a distance e from the #exible plate, Figure 4(c).
Upon using the same variables <, K, � and 
 and the same procedure as above, but now
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with F (K)"1/(K tanhK), the transition curve may also be derived, Figure 5(b), see also
reference [26]. Again the limit case ;I "0)074 is obtained in the limit of large channels and
allows one to de"ne the side of the transition boundary where absolute instability prevails.
For channels of very small width, equation (40) reduces to

k� �!�J �!

1

e� k� �
(�� !;I k� )�"0, (41)

and the direct use of criterion (16) gives the exact transition velocity:

;� "
2���3�

5���
1

�e�
K

0)228

�e�
. (42)

When plotted in Figure 5(b), this limit is found to be consistent with our results for the more
general case. It should be noted that Walsh [8] observed that the particular value of

�e� ;I "0)228 caused a &&coalescence of roots'' in this system. Figure 5 shows that the
solution of Crighton and Oswell [16] for the in"nite plate applies only to very large
channels, typically e� '10, that is in terms of dimensional parameters �e'10 m.
Combining Figures 5(a) and 5(b) shows that plates bounding channel #ow undergo absolute
instability through the sinuous mode of deformation "rst.

Let us now consider similar channels with walls made of membranes instead of plates.
For a sinuous mode of deformation the linear dimensionless dispersion relation is

kM �!�� �!
tanh kM e�

kM
(�� !;M kM )�"0, (43)

with eN "�e/m. In this particular case of membranes where R(K)"K� the critical velocity
may not be derived by using the parametric de"nition of equation (20), which provides only
the limit value ;M

	
"1 for eN PR. With the use of the original de"nition of the critical

velocity, equation (14), one has here

;M
	
"�

1#eN
eN �

���
. (44)

With a further change of variables �"eN �, K"eN kM , <";M , 
"eN , the generic form of the
dispersion relation becomes

D(�,K; <, 
)"K�!��!

tanhK

K
(�!<K)�"0 (45)

and the transition velocity may be plotted in terms of the channel width, see Figure 6(a).
Here the particular solution of Kelbert and Sazonov [21], equation (26), is obtained for

wide channels eN �1. This proves that the domain of absolute instability stands above the
transition curve. The particular case of small width eN �1 is directly obtained from the
transition relation as

;M
�
"1/�eN . (46)

In this limit the waves are not dispersive and there is no relevance in using the concept of
absolute instability. These results are fully consistent with those obtained in reference [24]
for a tensioned pipe conveying #uid.
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Figure 6. Domain of absolute instability (AI) for membranes bounding channel #ow. (- - -) Single membrane
with unbounded #uid domain, equation (26) [21]. (a) Sinuous mode, (- ) - ) -) limit for thin channel, equation (46),
[24], (b) varicose mode, (- ) - ) -) limit for thin channel, equation (49).
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As far as varicose modes are concerned, instability arises at the critical velocity ;M
	
"1

and the reduced dispersion relation becomes

D(�,K; <, 
)"K�!��!

1

K tanhK
(�!<K)�"0. (47)

The transition curve is given in Figure 6(b), see also reference [26]. Again, the limit for wide
channels is consistent with the solution of Kelbert and Sazonov [21]. In the limit of small
channel width the dispersion relation is

kM �!�� �!

1

eN kM �
(�� !;M kM )�"0 (48)

and the transition velocity may be explicitly calculated as

;M
�
"

2���

3
��
K1)09. (49)

This particular value is also found here as the lower limit of the general case, Figure 6(b).
Combining Figures 6(a) and 6(b) shows that membranes bounding channel #ow undergo
absolute instability through the varicose mode of deformation "rst, in contrast with walls
made of plates.

5. RELATION WITH THE KELVIN}HELMHOLTZ INSTABILITY

Let us now analyze unstable waves propagating in a membrane bounded by two #uids,
Figure 7, with a plug #ow of velocity ; and density �

�
on one side and still #uid with

density �
�
on the other side. The dispersion relation is similar to equation (24) with a new
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Figure 7. Kelvin}Helmholtz instability with a membrane at the interface between the two #uids.
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inertia term associated with the still #uid domain, namely

¹k�!�m#�
�

1

�k �� ��!�
�

1

�k �
(�!;k)�"0. (50)

The particular case of a massless membrane, m"0, models the Kelvin}Helmholtz
instability with surface tension [34, 31]. Conversely with �

�
"0 one can model the case of

uniform #ow along a #exible membrane, as discussed in the preceding sections. We now
seek to relate these two extreme cases by varying the mass ratio in the system.

Using the dimensionless variables pertaining to tension with �
�
as the reference density

we have

kM �!�1#

�
�kM �� �� �!

1

�kM �
(�� !;M kM )�"0, (51)

where �"�
�
/�

�
is the mass ratio between the two #uids. Note that here no gravity e!ects

are considered. The critical velocity as given by equation (14) is here

;M
	
"Min

�� �
kM �#kM (1#�)

kM #� �
���

. (52)

It abruptly varies from;M
	
"1 for �"0 (uniform #ow over a #exible membrane) to ;M

	
"0

as soon as a domain of still #uid exists, �'0. The dispersion relation is now transformed
into

D(�,K; <, 
)"
�K �K�

1#�K �
!��!


1

1#�K �
(�!<K)�"0, (53)

upon using the particular change of variables �"�/�, K"kM /�, <";M , 
"1/�.
Using again the parametric de"nition of the transition velocity, one may give its

dependence on the mass ratio �, Figure 8. In the limit of ��1 where the still #uid vanishes,
one obtains the solution of equation (26) for a membrane submitted to a uniform #ow. It
appears that for �'1/3, i.e., �

�
'�

�
/3, the instability is always absolute. At the particular

value of �"1, and without considering any mass at the interface,m"0, Triantafyllou [31]
showed that absolute instability sets in as soon as ;'0. Our results of Figure 8 yield that

absolute instability is found when ;�m/¹'0, that is when ;'0 for any value of
m except for the limit case m"0, where the solution of reference [31] applies. This shows
full consistency between our results and those of reference [31].
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6. TEMPORAL RESPONSE

In order to illustrate these transitions from convective to absolute instability we may
consider the time evolution of the systems described by equation (17) following a particular
set of initial condition. Let y (X,¹) be any variable of interest in the structure, X and
¹ being the space and time variables associated withK and � for each particular case. With
Gaussian initial conditions, i.e., considering the evolution of an initial hump of unit
amplitude

y(X, 0)"e�����	 ��;
�y
�t

(X, 0)"0, (54)

the temporal evolution is obtained as a Fourier integral

y (X,¹)"RE ��
��

��

(��ei������
��#��ei������

�� ) dK� , (55)

where the coe$cients �� and �� are such the initial conditions (54) are satis"ed and where
��(K) are the solutions of the dispersion relation (17). These conditions yield

��"

X
	

4�� �1G


<FK
� � e���	�����; ��"


<FK$�

1#
F
, (56)

with ��"R(1#
F)!
F<�K�. This integration with respect to K is valid only if the
range of unstable wavenumbers is bounded so that non-causal situations are avoided (see
also reference [24]).
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Figure 9. Temporal evolution of plates bounding channel #ow to a Gaussian initial condition
y(0, t)"exp(!xJ /xJ

	
)� with xJ "10, moving in a varicose mode of deformation. The gray region is the domain in

time}space where the plate displacement exceeds the maximum of the initial condition. (a) Case of convective
instability ;I "0)05, (b) case of absolute instability ;I "0)20. In both cases eJ "10.
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We apply this procedure to derive the evolution of the channel with walls made of plates,
moving in a varicose mode, con"guration of equation (40), Figure 5(b). For a set of
parameters where the instability is convective (e� "10 and ;I "0)05), Figure 9(a), the
domain of the plate where the amplitude exceeds the maximum of the initial condition,
�y �'1 is seen to widen while being convected out. Conversely, for larger values of the #ow
velocity, (eJ "10 and ;I "0)20), Figure 9(b), the instability contaminates the upstream part
of the plate and it is clearly absolute as predicted.

7. EFFECT OF PHYSICAL PARAMETERS ON THE NATURE OF THE INSTABILITY

The e!ect of the plug #ow velocity ; on the existence of absolute instabilities has been
discussed in the particular case of #uid-conveying pipes in reference [24]. It was noted that
#ow velocity plays a double role in the dynamics of the system: by advecting perturbations
it favours convective instabilities, but its in#uence on growth rates might lead to absolute
instabilities. In all the cases considered in the present paper, as well as those analyzed by
previous authors [10, 14}17, 21}24], it appears that the instability always becomes absolute
at su$ciently large #ow velocity.

The sti!ness and mass functions of the structure, S(k) and M (k), have also a strong
in#uence on the nature of unstable waves. In our results a signi"cant di!erence exists
between the e!ect of a sti!ness function of the fourth order in k (plate) and that of the second
order (membrane). For plates, Figures 3 and 5, large domains of convective instability are
found. For membranes, Figure 6, instability becomes absolute slightly above the critical
velocity. These conclusions are in fact opposite to those obtained in the comparison
between #exural and tensioned pipes, as discussed in reference [24]. A simple but improper
interpretation was then proposed to relate the prevalence of convective instability to
bounded phase velocities, found in tensioned pipes. It was then thought that a bounded
phase velocity would ultimately be overcome by advection, thereby bringing about
convective instability. The new results given in Figure 3 prove that this is not the case: by
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introducing a rotary inertia the phase velocity in the plate is bounded but absolute
instability is nevertheless found to prevail. In fact, in the limit of large inertia, absolute
instability sets in precisely when the #ow velocity becomes larger than the phase velocity of
waves in the plate.

The e!ect of added mass is also of crucial importance. In the frame of the inviscid #uid
model all forces exerted by the #ow are scaled by the added mass function M

�
(k). Added

mass depends on the wavenumber k and the geometry of the #uid domain through the
velocity potential �

�
, equation (11). Consider here the mass ratio

� (k)"
M

�
(k)

M(k)
(57)

which is, for a given wavenumber, the relative proportion between the inertia convected
with the #ow velocity M

�
(k) and the inertia of the structureM(k), including that of the still

#uid in the case of the Kelvin}Helmholtz instability. Note that several parameters in#uence
�: the ratio between the #uid density and that of the structure, the wavenumber, and the
con"nement, which is the reduction of the cross-section of the #uid domain. The latter
parameter is known to increase the addedmass. All the results of the preceding sections may
be reanalyzed in terms of the mass ratio � instead of the geometrical parameters. To do so
we shall use the common length scale �"m/� and evaluate � at the non-dimensional
wavenumber kM "k� "1. The results obtained in the preceding section for plates with rotary
inertia, and for sinuous and varicose modes of plate walls with channel #ow, Figures 3 and
5, are now shown in terms of the mass ratio, Figure 10(a). A good continuity is found
between these results which indicates that � satisfactorily takes into account the
con"nement e!ect. Clearly, increasing the con"nement, and therefore the moving mass,
promotes convective instability in plates whatever the geometry of the #uid domain. The
results of Figure 6 pertaining to wave propagation in membranes with channel #ow are also
shown, in Figure 10(b), displaying also a good continuity. In that case the mass ratio
� seems to favour absolute instability in contrast with the case of plates. This may be
10
_3 10

_2 10
_1 10

_1
100 100101 101102 103

 

 

102

101

100

10
_1

10
_2

1

2

3

4

5

AI

AI

U
_

U
~

(a) (b)


 


Figure 10. The e!ect of ratio between moving and non-moving mass on the domain of absolute instability.
(a) Plates (- . - ) plate with rotary inertia, (- -) channel in a varicose mode of deformation, (*) channel in a
sinuous mode of deformation; (b) membranes (- -) channel in a varicose mode of deformation, (*) channel in
a sinuous mode of deformation.
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understood by considering that the added mass also plays a role in a negative sti!ness term
of the dispersion relation namely through !;�M

�
k�. For membranes where the structural

sti!ness also varies in k�, this results in a non-zero critical velocity, as found in the preceding
sections. In Figure 6, it may be seen that the variation of the transition velocity ;

�
closely

follows the trends of the critical velocity.
We now gather all the results of the present paper on the same graph by plotting the

di!erence between the transition velocity and the critical velocity, namely;H
�

!;H
	
, versus

the mass ratio �, Figure 11. All transition curves increase with the mass ratio, so that we
may assert that moving mass generally promotes convective instability in inviscid
hydroelastic systems.

8. CONCLUSION

We have proposed a new method to derive systematically in parameter space the limit
between convective and absolute instability for inviscid hydroelastic systems. Through its
application to a large set of con"gurations, gaps have been "lled between most solutions
derived by previous authors for particular cases of plates, membranes or pipes. In
particular, by varying the tension superimposed on a #exible plate we have continuously
related the solution given by Crighton and Oswell [16] for a plate to the solution for
a membrane given by Kelbert and Sazonov [21]. By varying the width of the #uid domain
we have related the plate solution of [16] to the pipe solution by Kulikovskii and Shikina
[22], and similarly, the membrane solution in reference [21] to the tensioned pipe solution
by de Langre and Ouvrard [24]. The case of varicose modes in a channel or, equivalently, of
a #exible boundary near a rigid wall has been fully solved, with closed-form solutions for
vanishing channel width.
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A relation has also been established between the membrane case [21] and the analysis of
Triantafyllou [31] for the Kelvin}Helmholtz instability with surface tension, by
continuously varying the mass ratio between the moving and non-moving #uids. The
temporal evolution following a Gaussian initial condition has been given to illustrate the
results.

Considering all the results derived in the present paper we may now state some general
conclusions on the e!ects of physical parameters on the existence of absolutely unstable
waves in inviscid hydroelastic systems. The #ow velocity has been shown always to favour
absolute instability. Conversely, con"nement of #ow promotes convective instability
through its e!ect on the ratio between added #uid mass and mass of the solid. Structural
sti!ness, and more speci"cally its dependence on wavenumber, plays a crucial role on the
instability threshold, but apparently not directly on the transition to absolute instability.
Preliminary results using the samemethod on other systems such as panels of "nite width or
shells reveal similar trends [35].

The methodology proposed in this paper to derive the limit between convective and
absolute instability is much simpler than the systematic branch analysis in the complex
k-plane used by other authors. In fact, such a branch analysis is still needed at some point to
determine which side of the transition curve is the domain of absolute instability. Though
our parametric de"nition of the transition velocity requires that no dissipative e!ects are
taken into account in the hydroelastic model, its simplicity allows one to explore a large
variety of systems. It may therefore help understand, in a wider range of applications, the
physics of unstable wave propagation in #ow-induced vibrations of structures.

The relation between the local behaviour of such waves and the global instabilities that
arise in systems of "nite extent is explored in reference [28] for the particular case of
#uid-conveying pipes.
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