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The objective of this paper is to present an analytical/numerical analysis of the
phenomenon of limit-cycle stability reversal (from unstable to stable, and vice versa).
A singular perturbation technique, the method of the normal form (in the asymptotic-
expansion version), is utilized. The number of equations is then reduced to a &&minimal set'',
for which the results are in good agreement with those from the original equations. This
minimal set is determined by the amplitude of the �K -points (a concept closely related to the
small divisors in the KAM theory). This set is larger than that corresponding to the zero
real-part eigenvalues (center-manifold theorem). The method is applied to a speci"c
problem: an aeroelastic section with cubic free-play non-linearities where the parameter � is
the #ight speed. Numerical studies have been performed to show the dependence of the Hopf
bifurcation characteristics upon the structural and geometric properties of the wing section.
Plots depicting amplitudes and frequency versus #ight speed are presented.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

A Hopf bifurcation denotes the phenomenon that occurs when a "xed-point solution
becomes linearly unstable beyond a critical value (�

�
) of a parameter �; in the non-linear

case, a (stable or unstable) limit cycle solution appears in the neighborhood of �
�
. Such

a bifurcation is denoted super-critical if there exists a stable limit cycle for �'�
�
, or

sub-critical if there exists an unstable limit cycle for �(�
�
. Limit-cycle stability reversal

here denotes the behavior of a system in which for a certain critical value of the parameter
a low-amplitude unstable limit cycle and a high-amplitude stable limit cycle merge (and vice
versa): such a critical point is known as the turning point.

This paper presents a general methodology for the analysis of a limit-cycle stability in the
neighborhood of a Hopf bifurcation. The motivation for the paper stems from the interest of
the authors in aeroelasticity. Thus the applications are limited to this "eld. However, the
formulation is general and applicable to other "elds as well.
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.



Figure 1. Super-critical Hopf bifurcation, pitchfork-like shape: �, equilibrium solution; �, initial condition.

Figure 2. Sub-critical Hopf bifurcation, pitchfork-like shape. �, equilibrium solution; �, initial condition.

348 D. DESSI E¹ A¸.
Aeroelasticity deals with #uid}structure interactions. Here, one examines, in particular,
the instability due to the interaction between an airplane wing and the #ow surrounding it.
If the instability involves oscillations, the phenomenon is called #utter, otherwise it is called
divergence. This paper concentrates on #utter.

According to the linear #utter analysis, beyond a certain speed (here denoted as the #utter
speed, ;

�
) the oscillations are not damped and their amplitude grows exponentially. The

post-#utter behavior may be classi"ed into two types: benign and explosive (or destructive)
#utter. Speci"cally, in the "rst case, above the #utter speed, the system tends to stable limit
cycle oscillations (LCOs) with an amplitude that grows in proportion to
�;!;

�
provided that the values of;!;

�
are small. In the second case (again for small

values of ;
�
!;), even below the linear #utter speed, the system may experience

instability, provided that the initial conditions are su$ciently high: the initial-condition
amplitude necessary to excite this instability varies in proportion to �;

�
!; . In

dynamical system terminology (see, e.g. reference [1]) these two phenomena are known,
respectively, as stable and unstable limit cycles (see Figures 1 and 2). The "rst case* stable



Figure 3. Sub-critical Hopf bifurcation with turning point. �, equilibrium solution; �, initial condition.
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limit cycle* is mathematically known as super-critical Hopf bifurcation; the second one as
sub-critical Hopf bifurcation.

From a practical point of view, the second case (i.e. &&explosive'' or &&destructive'' #utter),
implies that beyond the #utter speed ;

�
the system may experience a sudden onset of

a destructive instability. This is a major design problem per se. However, an even more
frightening implication is that the #utter speed is not at all a safe prediction, since this
destructive instability may occur even below the #utter speed ;

�
, provided that the wing

experiences initial conditions that are su$ciently high (such as those induced by a gust). It
should be emphasized that such a non-linear analysis is never used in aircraft design.

Of course, as mentioned above, these considerations describe only the results of the
small-amplitude non-linear analysis (speci"cally, third order, see below). However, there is
experimental (see references [2}6]) as well as numerical [7}11] evidence that a combination
of (1) a small-amplitude unstable limit cycle, and (2) a large-amplitudes stable limit cycle
may occur for a given value of the #ight speed,;. These merge at a critical speed. The point
of the amplitude versus speed plane where this occurs is known as the turning point. In other
words, there exists a possibility, under suitable initial conditions, of large-amplitude
limit-cycle oscillations even below the #utter speed. Thus, it is desirable to have a more
re"ned tool ("fth order analysis, see later) to investigate this behavior.

Such a high order analysis is the subject of this paper. The results indicate that the
phenomenon discussed above is described by the amplitude versus velocity bifurcation plot
depicted in Figure 3. This "gure shows a sub-critical Hopf bifurcation which exhibits
a turning point at a velocity lower than the #utter speed, determining a &&knee'' in the
bifurcation diagram where the unstable limit-cycle (sub-critical Hopf bifurcation) reverses
into a stable one (of course, a reversal from stable into unstable limit cycle is also possible,
Figure 4). From an aeroelastic view point, this implies the possibility of a stable limit-cycle
behavior below the #utter speed,;

�
, provided that the initial condition is su$ciently large.

For such a phenomenon an estimate of the turning-point speed may be achieved by
analyzing the bifurcation diagram of Figure 3 described above. It may be noted that the
third order analysis would predict the behavior prescribed by the dashed lines in
Figures 3 and 4, which consists of horizontal parabolas (see references [12, 13]). Another
question which needs to be answered is how to treat the variables corresponding to the
eigenvalues which have negative real part.



Figure 4. Super-critical Hopf bifurcation with turning point. �, equilibrium solution; �, initial condition.
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For small amplitudes, the state variables to be included in the analysis are determined by
the center-manifold theorem (see, e.g. reference [1]). However, this is valid only in a small
neighborhood of the Hopf bifurcation (e.g. a third order analysis�). Thus, the theorem is not
applicable in the case of interest here because the amplitudes are not necessarily small ("fth
order analysis). As a consequence of the above considerations, a criterion is introduced
which allows one to identify the minimal set of state-space variables to be included in the
analysis (minimal-set criterion; this is closely related to the concept of small divisors used in
Hamiltonianmechanics). This criterion* arguably, the most signi"cant contribution of the
paper* is combined with a singular perturbation technique (the normal form method) to
identify which terms in the equations of motion determine the system's non-linear behavior.
This yields a convenient procedure to obtain an asymptotic expansion for the solution.

As a "nal observation, note that the stability characteristics of aeroelastic systems in the
neighborhood of the #utter speed may be determined by both numerical-simulation or by
singular-perturbation techniques. Numerical simulations do not give direct information
(e.g. an analytic relationship) about the dependence of the stability properties upon, say, the
wing characteristics; on the contrary, this may be obtained (although approximately) by
singular perturbation techniques, which therefore may suggest how to modify some
parameters in order to improve the #utter characteristics of the wing. On the other hand,
numerical simulations have the advantage that they may yield results as accurate as desired
(on the contrary, for analytical methods, the desired approximation is not necessarily
achieved simply by increasing the number of terms retained in the asymptotic expansions,
which are the basis of perturbation techniques; for asymptotic expansions do not guarantee
convergence with the increase of the order, but only with the decrease of the expansion
parameter, see reference [14]). Here both are used so as to exploit the advantages of both.
Speci"cally, a methodology for analyzing "fth order non-linearities is presented. We then
validate the results obtained with the "fth order analysis by comparing them with those
obtained by numerical simulation, i.e. by direct numerical integration of the equations of
motion.

The paper is based on the doctoral dissertation of Dessi [15]. The test case used is only
that considered by Alighanbary and Price [10] (i.e. an airfoil elastically constrained
by a linear translational spring and a non-linear torsional spring immersed in an
�The general formulation of the normal form method is well explained in references [1, 24}26].
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incompressible inviscid #ow); however, as mentioned above, the methodology has general
validity.

2. BASIC NORMAL-FORM ANALYSIS

The objective of this section is to present the essentials of a general singular perturbation
technique (the normal form method), which is based on the idea that a non-linear system
can be simpli"ed by a transformation in the phase space. This goal is achieved by two
di!erent steps: by reducing the number of equations (through the minimal-set criterion
mentioned above) and by using the normal form method to eliminate in the reduced
equations the non-linear terms that do not contribute signi"cantly to the solution. For both
steps, the selection is performed by introducing the &near-resonance condition'. The
methodology is presented, for the limited case of algebraic non-linearities (see footnote�
of section 1).

Consider a one-parameter system of N!1 non-linear di!erential equations
z�
�
"H

�
(z

�
, �), withN!1 unknowns, and assuming thatH

�
(z

�
,2 , z

���
,�) be an analytic

function (in particular a polynomial) of the variables z
�
,2 , z

���
and the parameter �, such

that for �'0 (�(0) the system is linearly unstable (stable). It is convenient to treat � as
a dependent variable, �"z

�
, which is governed by the equation z�

�
"0. Thus, the system

may be written (assuming, with a minor loss of generality, that the linear terms may be
recast in diagonal form) as

z�
�
"�

�
z
�
#

�
�

�����

b
���

z
�
z
�
#

�
�

���� ���

c
����

z
�
z
�
z
�
#2 (1)

Then, setting z"�x yields�

x� "F (x, �)"�x#f(x, �)"�x#�f ���(x, x)#�� f ���(x,x,x)#2, (2)

where � is a diagonal matrix, with f���(x
�
, x

�
) is a symmetric bilinear form, f ���(x

�
,x

�
, x

�
)

a symmetric trilinear form, and so on.
Next, consider the normal form method. The solution is given in terms of an asymptotic

expansion of the type (near-identity transformation between x and y)

x"U(y, �)"y#u(y, �)"y#�u���(y)#��u���(y)#2#O(��	�), (3)

where the u�
� are unknown functions of y which identify the transformation. One wishes to
use equation (3) to transform equation (2) into an equation of the type

y� "G(y, �)"�y#g(y, �)"�y#�g���(y)#��g���(y)#2#O(��	�) (4)

and use the arbitrariness of the functions u�
� in equation (3) to make equation (4) easier to
solve than equation (2).

Substituting equation (3) into equation (2) yields

[I#Du(y, �)]yQ "F(y#u(y, �), �), (5)
�The parameter � is introduced here in order to facilitate the analysis of the order of magnitude in the context of
asymptotic expansions.
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where Du"�u/�y is the Jacobian matrix of u with respect to y. Then, combining equations
(4) and (5), one obtains

[I#Du(y, �)]G(y, �)"F(y#u(y, �), �).

Separating in F and G the linear from the non-linear parts and rearranging the previous
equation yields

[I#Du(y, �)](�y#g(y, �))"�y#�u(y, �)#f(y#u(y, �),�).

It is possible to rewrite the previous equation as

Du(y, �)�y!�u(y, �)"f (y#u, �)!Du(y, �)g (y, �)!g (y, �).

This equation is called the homological equation. Returning to the expansion in terms of �,
the above equation, must be solved in the unknowns terms of near-identity-transformation
terms u���, u���,2 for each order in �.

Note that u��� is a linear combination of monomial terms of the type
u���a "cy��

�
y��
� 2y��

�
"cya, where a	"(a

�
,2,a

�
) with a

�
#a

�
#2#a

�
"q. Hence,

Du���a (y)�y!�u���a (y)"!Eau���a (y)

with

E
�
"[(�

�
!a	�)�

�

],

where �	"(�
�
,2 ,�

�
). The resulting system is

Eau ���a (y)"f) ���a (y)!g���a (y) (6)

with

f< ���a (y)"�f ���(y#u)!
���
�
���

Du���(y)�����(y)�a

where, for any h, the symbol [h]a denotes the monomial term of the type cya within h.
Next, there exist two possibilities (for the sake of notational simplicity, the subscript in

a is dropped in the expressions that follow). If E
��
"�

�
!a	� is large, the non-linear term

fK ���
�

in equation (5) can be eliminated by choosing u���
�

"fK ���
�

/E
��
, which obviously implies that

the resonant term g���
�
(y) is set equal to zero. On the other hand, if E

��
is small (see later for

how small), then

g���
�
(y, �)"fK ���

�
(y, �),

u���
�

"0 is then chosen for sake of simplicity. In summary, the solution of equation (1) is
expressed as

z"�(y#u(y, �)), (7)

where the y
�
are given by integrating equation (4) and the u

�
are determined as stated above.

For all the results presented, the solution is simply given as z"�y, since the term u(y, �)
concerns higher harmonics (multiple of the fundamental). Indeed, in the present case these
are not important as validated by the comparison with the numerical results.



LIMIT-CYCLE STABILITY REVERSAL 353
3. AMPLITUDE AND FREQUENCY OF LCOs

In this section, the above formulation is supplied to study the stability of a 2-d.o.f. typical
section (described in terms of the pitch � and the plunge �) in the neighborhood of the #utter
speed ;

�
. The formulation of this problems is obtained by considering a 2-d.o.f. airfoil,

elastically constrained by a linear translational spring and non-linear torsional spring,
oscillating in pitch and plunge. Using standard notations, the plunging de#ection is denoted
by h, positive in the downward direction, and � is the pitch angle about the elastic axis,
positive with nose up. The elastic axis is located at a distance a

�
b from the mid-chord, where

b is half the chord, while the mass center is located at a distance x� b from the elastic axis.
Both distances are positive when measured towards the trailing edge of the airfoil. The
aeroelastic equations of motion for linear springs are found for instance in Fung [16].
Alighanbari and Price [10] extended these equations to the case in which the torsional
spring is non-linear:

�$ #x��K#2��
	

;

�Q #�
	

;�

�
�"!p(�),

x�
r��

�$ #�K#2��
1

;
�� #

1

;�
M(�)"r(�), (8)

where the ) denotes di!erentiation with respect to the non-dimensional time �, de"ned as
�"< t/b, �"h/b is the non-dimensional plunge displacement of the elastic axis,

r�"�J�/mb� is the radius of gyration about the elastic axis, �
 "�
b�/m is the mass ratio
and �� , �� are the viscous damping coe$cientsA ; note that M(�) is the overall expression of
the torsional spring moment, including the linear part. In equations (8), 	
 is given by
	
 "	�/	� where 	� and 	� are the uncoupled plunging and pitching modes natural
frequencies, and ; is de"ned as ;"</b	� where < is the dimensional speed. Moreover,
p(�) and r(�) are the lift and pitching moment respectively. For the incompressible
two-dimensional #ow, Fung [16] gives the following expressions for p(�) and r(�) in the case
of zero initial conditions:
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1

�
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with w
���

(�)"�Q (�)#a

�
�� (�)#�(�) and a


�
"1/2(1!a

�
), where �(t) is the Wagner function.

Utilizing the Jones [17] approximation of the Wagner function (equation (13)), the
problem may be recast (see Appendix A) as a system of a six "rst order di!erential
equations, as

w� "A(;)w#r(w,;), (9)

where x"��Q , �� , u� , �, �, u�	 is the state vector, A(;) is the linear part of the equations of
motion and r(w,;) is the vector of non-linear terms. Setting w"Rz, with R given by the
eigenvalue problem A(;

�
)R"R�, the linearly diagonal format is obtained z� "�z#f(z),

which is the starting point for the application of the normal form technique.
In the following, as in Alighanbari and Price [10], the pitching moment is assumed to be

given by a cubic function M(�)"�#�� ��.
AAs mentioned above, the study included a deeper analysis (not reported on Figure 16), i.e. removing each
individual �K -point of the minimal set to verify its relevance to the accuracy of the solution.



Figure 5. Root locus, eigenvalues of the linear part of equations of motion.

Figure 6. Plunge-mode amplitude of LCOs obtained via numerical simulation.
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The results are presented here to show:

the existence of a speed range, below the linear #utter speed, such that the onset of LCOs is
possible for su$ciently large initial conditions;
the dependence of the bifurcation diagram (speci"cally, of the existence of a turning point,
i.e. a &&knee'' behavior) upon the position of the elastic center.

The values of the coe$cients considered in this case are (see Appendix A for the de"nitions
of the symbols) �
 "100, x�"0)25, 	
 "1)2, r�"0)5, ��"0, ��"0, whereas a

�
assumes

di!erent values. The #utter speed and frequency are obtained by a root-locus stability
analysis; in the case of a

�
"!0)5, one obtains;

�
"4)937 and 	

�
"0)255, as shown in the

root locus depicted in Figure 5.
In Figure 6 the numerical LCO plunge-mode amplitudes, �, are given as functions of;, in

the neighborhood of ;
�
, for ��"!50, and for several values of a

�
(the di!erent values of

a
�
correspond to di!erent positions of the elastic center along the chord); in the dashed

portion of the curves, the limit cycle is unstable. These LCO amplitudes are computed with
the shooting method of reference [18] (the method is slightly modi"ed by Dessi [15] so as to



Figure 7. Time histories for plunge and pitch (a
�
"!0)5, ;"4)932) showing initial condition UNDER the

unstable LCO (**) and initial condition OVER unstable LCO (- - - - - -).

Figure 8. Time histories for pitch (a
�
"!0)5,;"4)932) showing initial condition UNDER the unstable LCO

(**) and initial condition OVER unstable LCO (- - - - - -).
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provide also the LCO period and the Floquet multipliers). It is apparent from Figure 6 how
the shape of the bifurcation diagram changes with a

�
; for a

�
K!0)48, the Hopf bifurcation

changes from sub-critical into super-critical, and the turning point disappears, as
a
�
increases. These two types of Hopf bifurcations are speci"c examples of the curves

depicted in Figures 1 and 3, describing the growth of the LCOs amplitudes. On the basis of
these results, it is possible to subdivide the state space into two di!erent six-dimensional
basins of attraction (in general, these are N-dimensional for N-dimensional dynamical
systems). This fact may be more evident on examining two typical time histories for
� obtained via numerical integration of equation (2) by the standard fourth-order
Runge}Kutta method, for the speed value ;"4)932(;

�
. These results are shown in

Figures 7 and 8. The results presented in Figure 7 (Figure 8) correspond to initial conditions
slightly above and below the unstable (stable) branch of the curve depicted in Figure 3 (the
transient state moves toward di!erent steady state solutions depending upon the initial
conditions).

Next, one de"nes ;
�
, the non-linear instability value of ; as the lowest value of ; for

which an instability may occur (given suitable initial conditions). Of course, in the case of
the two curves on the right-hand side of Figure 6 (where a dashed portion exists),
;

�
corresponds to the value of;where the knee occurs (for the other curves the non-linear

instability value of ; coincides with ;
�
, the linear one). The di!erence between linear and

non-linear stability regions in the plane of parameters ; and a
�
, with a

�
"(x

��
!x



)/b,



Figure 9. Linear (#utter limit, **) and non-linear (turning point abscissa, ) ) ) ) ) ) ) )) #utter boundary.

Figure 10. Floquet multipliers for stable and unstable LCO branches of the bifurcation diagram, a
�
"!0)49.
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where x
��

is the abscissa of the elastic axis, x



that of the midchord point and b is the
semichord (in particular, a

�
"!0)5 corresponds to the quarter-chord point, i.e. the

aerodynamic center). This is shown in Figure 9. The horizontal line, a
�
"!0)48,

corresponds to the middle curve of Figure 6 (i.e. transition from sub-critical to super-critical
Hopf bifurcation). This "gure shows that as the elastic center moves toward the leading edge
(decreasing values of a

�
), the di!erence between ;

�
and ;

�
increases, even though by

a small amount (note: this is simply a di!erent way, more easily understandable from
a physical point of view, to present the results of Figure 6).

The stability of these LCOs may be analyzed by means of the Floquet theory (see
reference [18]). The results are shown in Figure 10, which depicts (for a

�
"!0)49) the

moduli of the critical Floquet multipliers (i.e. those with values close or equal to one; recall
that if a Floquet multiplier is outside the unit circle, the corresponding LCO is unstable). In
Figure 10, the moduli of the critical multipliers are shown in the neighborhood of the #utter
speed: the upper branch refers to the unstable limit cycle which starts at the bifurcation
point (modulus larger than one), while the lower branch refers to the stable limit cycle (into
which the unstable one turns at the turning point). This "gure allows an estimation (for
a
�
"!0)49) of ;

�
"4)8259 and ;

�
"4)8292.

Next, consider the approximate limit-cycle solutions, as obtained with the normal form
method outlined before, and shown in Figure 11. The solid curve corresponds to the
numerical results (standard fourth order Runge}Kutta) for several values of a

�
(same curves

as in Figure 6). The dotted and dashed lines correspond, respectively, to third order and "fth
order approximations of the limit-cycle amplitudes. It should be emphasized that these
curves are obtained using only two equations, which correspond to the critical eigenvalues.



Figure 11. Fifth order (} } }) and third order () ) )) approximation of numerical bifurcation diagrams (**),
with normal-form method.

Figure 12. Bifurcation diagrams and their approximation with the normal-form and MTS methods. **,
numerical solution; ) ) ) ) ) ) ) ), "fth-order MTS approximation; - - - - - -, "fth-order NF approximation.
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[This initial choice to use only two equation was motivated by past experience with third
order analysis, based on the center-manifold theorem (see, e.g. references [12}19]). The
main contribution of this paper is a critique to this point (see later).] One sees that the third
order approximation does not capture (not even qualitatively) the &knee-type' bifurcations.
On the other hand, one sees that "fth order approximation leads to better results even for
super-critical bifurcations (which occur for values of a

�
greater than !0)48). However, the

agreement is only qualitative.
As mentioned above, the discrepancy in the curves is explained later in terms of the

inadequacy of the use of two modes in the "fth order analysis. Before addressing this issue,
some results obtained with an alternate singular perturbation technique are reported, the
multiple time scaling. (For this method the reader is referred to references [19}22]; the
results were originally presented inreference [15], to which the reader is referred for details.
The motivation for presenting these results lies in the authors' desire to identify the source
of the discrepancy, speci"cally to decide between the inadequacy of the novmel "rm method
and that connected with the use of the center-manifold theorem.) Figure 12 shows
a satisfactory comparison between the two-mode "fth order results obtained with these two
techniques (the fact that the agreement between the two perturbation sets of results is so
good is a consequence of deep theoretical analogies of these techniques; see reference [15]



Figure 13. Generalized co-ordinates modulus in the neighborhood of;
�
, results obtained by shooting method.

**, linear #utter boundary; - - - - - -, "rst mode (undamped, complex); - - - - - -, second mode (damped, complex)
**, third mode (damped, real) )))))))))), four mode (damped. real).
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for a detailed discussion of this subject). However, as before, these results are in poor
agreement with the numerical solution (continuous line). This indicates that both "fth order
approximations are not adequate in the neighborhood of ;

�
. As stated above (and shown

in the next paragraph), this is due to the fact that, in obtaining the approximate solution,
one has used a two-mode analysis, which appears inadequate for a "fth order analysis (while
it is for the third order one).

Speci"cally, in obtaining the above results, the normal form perturbation technique has
been applied under the mistaken assumption that the modes to be used are those identi"ed
by the center-manifold theorem (i.e. the linearly undamped modes). As shown in Figure 13,
in the case of a "fth order approximation (required for identifying the turning point), this
assumption is clearly violated even for small values of ;!;

�
, since the "rst pair of

damped modes (unknowns y
�
and y

�
), negligible in a third order analysis, becomes relevant

in a "fth order analysis (the other two modes, i.e. unknowns y


and y

�
, are negligible for the

"fth order as well). This is true even below the linear #utter speed*indeed the term
&&postcritical'' is not to be referred to the values of ;!;

�
*but rather to the values of

�, which is related to the limit cycle amplitude (note that it is possible to have "nite values of
even for ;!;

�
"0, see Figure 13).

This implies that in using the perturbation analysis the contribution of other complex
state variables should be included. This issue was investigated by de"ning, for the sake of
conciseness,

�K "�K (i, j
�
,2, j



)"�

�
!a	� (10)

where �K (i, j
�
,2, j



) is here designated as the �K -point. The �K -points are plotted in Figure 14

for every combination of i, j
�
,2, j



(each one corresponding to a di!erent non-linear term),

for ;";
�
. One established, by trial and error, that the �K -points inside the curve depicted

in Figure 15 (a blow-up of the region around the origin in Figure 14) could be considered as
&&near-resonant'' (i.e. &&small divisors'' in PoincareH 's terminology); in other words, this is the
minimal set of equations that yields a good agreement between the solution of the
normal-form equations and that of the original equations. Speci"cally, if one increased the
number of �K -points no di!erence was observed; on the other hand, if any of the �K -points in
the minimal set was removed, substantial deterioration was obtained*indeed, for some



Figure 14. Numerical LCO frequencies versus speed: comparison with imaginary part of the eigenvalues
(a

�
"!0)5). Key for �K -points: linear terms �; cubic terms�; quintic terms#.

Figure 15. Numerical LCO frequencies versus speed: comparison with normal form approximation
(a

�
"!0.5). circle Key for �K -points; linear terms �; cubic terms,�; quintic terms, #.

Figure 16. Time histories of the generalized co-ordinate modulus for di!erent normal-form approximations.
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choices, instabilities were observed. It is worth noting that the curve in Figure 15 is a circle:
this fact is used in Figure 16, where the time history �y

�
� (this implies the amplitude of the

critical mode, as obtained by the time marching integration of the normal form equation), is
plotted for di!erent values of 
 (i.e. adding more and more non-linear terms until
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�
"i	

�
,

�
�
"�#i	

�
and �	"	

�
!	

�

Index combinations �-points associated Formal value
Equation I

���
(all permutations) to each term of the minimal set

i"1 I
���

" �1, �
�
!�

�
0

3� �
�
!�

�
!�#i�	

I
���

" ��112�, �
�
!�

�
!(�

�
#�

�
) 0

�114�, �
�
!�

�
!(�

�
#�

�
) !�!i�	

�123�, �
�
!�

�
!(�

�
#�

�
) !�#i�	

�134�� �
�
!�

�
!(�

�
#�

�
) !2�

I
��


" ��11122�, �
�
!�

�
!2(�

�
#�

�
) 0

�11223�, �
�
!�

�
!(�

�
#�

�
)!(�

�
#�

�
) !�#i�	

�11124�, �
�
!�

�
!(�

�
#�

�
)!(�

�
#�

�
) !�!i�	

�11234�� �
�
!�

�
!(�

�
#�

�
)!(�

�
#�

�
) !2�

i"3 I
���

" �3, �
�
!�

�
0

1� �
�
!�

�
!�!i�	

I
���

" ��123�, �
�
!�

�
!(�

�
#�

�
) 0

�112�, �
�
!�

�
!(�

�
#�

�
) �!i�	

�233�, �
�
!�

�
!(�

�
#�

�
) !�#i�	

�134�, �
�
!�

�
!(�

�
#�

�
) !�!i�	

�334�, �
�
!�

�
!(�

�
#�

�
) !2�

�114�� �
�
!�

�
!(�

�
#�

�
) !2 i�	

I
��


" ��11223�, �
�
!�

�
!(�

�
#�

�
)!(�

�
#�

�
) 0

�11122�, �
�
!�

�
!2(�

�
#�

�
) �!i�	

�11234�, �
�
!�

�
!(�

�
#�

�
)!(�

�
#�

�
) !�!i�	

�12233�, �
�
!�

�
!(�

�
#�

�
)!(�

�
#�

�
) !�#i�	

�12334�, �
�
!�

�
!(�

�
#�

�
)!(�

�
#�

�
) 2�

�11124�� �
�
!�

�
!(�

�
#�

�
)!2�

�
!2 i�	

360 D. DESSI E¹ A¸.
a satisfactory solution is obtainedB). Good agreement with the full-system solution is
achieved for 
"0)064. This value of 
 is such that no contribution is given by the equations
for y



and y

�
. Thus the equations used are

y�
�
" �

������

a
��
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�
# �

��������

c
����

y
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y
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(11)
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where y
�
"y


�
, and y

�
"y


�
. The index combinations I

���
are de"ned in Table 1, which gives

a detailed list of the selected �K -points of the minimal set.
A summary of the results is given in Figure 17, where the absolute value of the LCO

(complex) amplitudes of y
�
and y

�
(critical and linearly damped modes), obtained by the

normal form method (four modes), are given for some values of ;; the lines refer to
numerical integration results (where the shooting method was employed).

Additional information about the non-linear behavior of the system regards the LCO
frequencies. Note that such frequencies depend strongly upon the velocity. For the linear
BThe damping coe$cients �� , �� are set to zero throughout the paper; they are considered here for sake of
completeness.



Figure 17. Fifth order approximation of numerical bifurcation diagrams with the modi"ed normal-form
method for critical and damped modes. Key for modes: **, critical/numerical; } } }} damped/numerical; #,
critical/NForm; �, damped/NForm.

Figure 18. Numerical LCO frequencies versus speed: comparison with imaginary part of the eigenvalues (linear
problem, a

�
"!0.5). Key: **, linear problem; } } } } }, shooting method; �, Fourier transform.
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analysis with velocities less than the #utter speed ;
�
"4)937, the signal is damped; in this

case, the frequency of oscillation is simply given by the imaginary part of the corresponding
eigenvalues. As shown in Figure 18 (solid line), the dependency is linear (this is true even for
;';

�
, where the signal grows exponentially). For the non-linear analysis, the LCO

frequency depends upon the velocity in a manner completely di!erent from that of the linear
case. Figure 18 depicts also the LCO frequencies (for both stable and unstable limit cycles)
as functions of the #ight speed, in the neighborhood of the linear #utter speed (dashed line
and crosses). Speci"cally, these results were obtained using two methods: (i) the Fourier
Transform of the numerical simulation obtained a la Runge}Kutta (crosses; for ;(;

�
,

where ;


is the turning-point abscissa, the numerical solution is that corresponding to the

linear analysis), and (ii) the shooting method (also from the numerical-simulation solution;
dashed line). As one can see, the LCO frequency, in this last case, is not correlated to the
imaginary part of the critical eigenvalues (continuous line); instead, it is distributed along
a parabolic-like curve (as a function of;!;

�
) . This fact is con"rmed by the multiple time



Figure 19. Numerical LCO frequencies versus speed: comparison with normal form approximation
(a

�
"!0)5).**, normal form (third order); ) ) ) ) , shooting method and "fth order (four nodes) ------, normal form

("fth order, two modes).
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scale method which indicates 	"	


#��	

�
#��	

�
#2, with �"�(;!;

�
), where

	


is the imaginary part of the critical eigenvalues, and 	

�
, 	

�
are coe$cients obtained

with third order and "fth order analysis respectively [23].
Finally, consider the results obtained using the normal form technique. These are shown

in Figure 19. The dashed line represents the correct frequencies of the LCO solution as
obtained by applying the shooting method (same as in Figure 18); the continuous, straight
line is the third order, normal form approximation of the LCO frequencies, whereas the
dashed line is the "fth order approximation based on the center-manifold equation. The
crosses give the LCO frequency corresponding to the four-mode normal-form analysis. As
before, the two mode "fth order normal-form analysis captures the behavior of the solution
but only qualitatively, whereas in order to obtain quantitatively accurate results (crosses)
the normal form based on the minimal set criterion (four-mode analysis) must be used.

4. CONCLUDING REMARKS

In this paper the phenomenon of limit-cycle stability reversal in the neighborhood of
a Hopf bifurcation has been addressed. This phenomenon corresponds to a turning point
(knee) in the curve of the LCO amplitude as a function of the stability parameter, �. The test
case used is that of a typical section with a non-linear spring, undergoing #utter. However,
the results are presented to believed to have a general validity and are summarized here.
Two methods are used in this analysis. The "rst is based upon the numerical integration
(standard fourth order Runge}Kutta method) of all the equations of motion. The second is
based on the numerical integration of a reduced number of the normal-form equations. In
both cases, the shooting method was employed (in an extended form that allows one to
obtain not only LCO amplitudes, but also LCO frequencies and LCO Floquet multipliers).

In order to identify the number of equations to be used for the normal form analysis, we
starts with those identi"ed from the center-manifold theorem. This gives results which
agreed with those of the original equations only qualitatively. This was con"rmed by the
multiple-scale results for the same equations. One then noticed, from the numerical results
based on the original equations, that the contributions from the modes disregarded in the
center-manifold analysis were not all negligible.
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The analysis was then repeated by looking at the small divisors for the complete set of the
equations. The (original) conclusion is that good agreement between the analysis based
upon the completed and the reduced set of equations is obtained including certain terms.
The terms to be included correspond to a certain combination of the eigenvalues of the
linear system, here designated as �-points: these are in close relationship with the concept of
small divisors in the KAM theory for Hamiltonian systems (in this case the �-points have
zero real part and the imaginary part coincides with the small divisors). Note that the same
criterion (small divisors or near resonance) is used in both: (i) determining the minimal set of
equations, and (ii) determining the minimal set of non-linear terms.

Additional work appears desirable in order to provide a deeper understanding of the
�-point issues (and its relationship with the KAM small-divisors theory). Also the study of
more general types of equations is warranted, along with applications of other types of
physical problems.
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APPENDIX A

Because of the existence of the integral term in the expression of aerodynamic forces,
classical methods for investigating stability properties of dynamical systems do not work:
for example, the system stability near equilibrium points cannot be analyzed readily since
most of the available methods for nonlinear dynamical systems are developed for ordinary
di!erential equations. In order to eliminate the integral term, a new variable is de"ned as

u(�)"�
�




�(�!�)w�
���

(�) d�. (A.1)

The aim of successive algebraic manipulations in the Laplace domain (all the equations are
Laplace-transformed) is to rewrite this relationship as a di!erential equation in the
unknown function u(�)�. In the following, Laplace-transformed terms will be denoted
by � , while the Laplace variable is denoted with the letter &s'.

The Laplace transform of equation (A.1) is u� (s)"�I (s) s w�
���

(s), whereas the Jones [17]
approximation of the Wagner function in the Laplace domain is

�I (s)"1/s!a( /(s#bK )!c( /(s#dK ), (A.2)

with a("0)165, bK "0)0455, c("0)335 and dK "0)3�� After some algebraic manipulation,
equation (A.1) in the Laplace domain (with zero for all the space-state variables) becomes

(s�#e
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At this point, the equations of motion (8) in the Laplace domain are given by
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MI "e

��
u�
�Note that the same procedure can be developed in the time domain, as well, but the procedure is cumbersome in
the frequency domain.

��More accurate approximations are provided by Venkatesan and Friedmann [27]. One employs the
approximation by Jones [17] used by Alighanbari et al. [10], make comparisons.
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Explicating the s�-terms, one obtains derivatives
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It is possible to note in equation (A.3) the existence of s�-terms. Thus, combining
equations (A.4) and (A.3), with the aim of eliminating the second and third derivatives of
� and �, it is possible to obtain the "nal equation for u containing s�-terms only:
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The inverse Laplace transform may be applied to equations (A.4) and (A.5), yielding
a system of three second order di!erential equations, which may be easily recast in the "rst
order form, equation (9).


	1. INTRODUCTION
	Figure 1
	Figure 2
	Figure 3
	Figure 4

	2. BASIC NORMAL-FORM ANALYSIS
	3. AMPLITUDE AND FREQUENCY OF LCOs
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	Figure 11
	Figure 12
	Figure 13
	Figure 14
	Figure 15
	Figure 16
	TABLE 1
	Figure 17
	Figure 18
	Figure 19

	4. CONCLUDING REMARKS
	REFERENCES
	APPENDIX A

