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1. INTRODUCTION

The Green's function based "nite di!erence scheme proposed by Caruthers et al. [1] shows
considerable potential as an e$cient modelling tool at high frequencies. As it is formulated
using fundamental solutions of the wave equation, it can maintain its accuracy at nodal
spacings as low as two per wavelength. Implementation details of the technique are
reported in reference [2] and the #exibility of the modelling technique is illustrated by an
application to an axisymmetric radiation problem incorporating a high-speed #ow [3].

In this letter, a formulation using plane wave based solutions is applied to a 3-D acoustic
problem (plane wave functions were suggested in reference [1] as a viable alternative to the
Green's functions and used later in references [3, 4]). The use of plane waves may, for many
problems, simplify the implementation of the solution procedure and an example of an
application in plate vibration by the authors is given in reference [5]. The implementation
details of a number of representative boundary conditions are reported and the model is
shown to give excellent results for driving frequencies from DC to those with wavelengths
approaching the bi-nodal limit, although the implementation of natural radiation
conditions needs more research at lower frequencies.

2. ANALYSIS

As the fundamental formulation proposed in reference [1] is quite straightforward, it is
included here for completeness. Consider the computational cell shown in Figure 1. It is "rst
assumed that the solution for the acoustic pressure p (x) at the central position x

�
of the

harmonically driven Helmholtz equation

� �p#k�p"0 (1)

may be approximated locally as a combination of m plane waves 2

p (x0)"
�
�
���

�
�
e�i�d� �x0 , (2)

where k is the wavenumber, i is �!1 and d
�
is the unit propagation direction vector of the

jth plane wave with complex amplitude �
�
.
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Figure 1. Fundamental computational cell.
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Equation (2) may be re-expressed in matrix form as

p
�
"h�, (3)

where h is an (1�m) row vector of the plane wave functions evaluated at x
�
and � is

a column vector of the wave strengths. If the same approximation is applied to the other
nodal positions in the cell one can write

p"H�, (4)

where p is an (n�1) vector of the pressures at each node i and

H
��

"e�i�d� �xi , (5)

Equation (4) is e!ectively the constraint equation. A computational template may then be
formed by combining equations (3) and (4) to give

p
�
"hH�p, (6)

where superscript # denotes a pseudo-inverse.
A central concept in the template proposed in equation (6) is that the number of

interpolating wave functions m is greater than the number of nodes in the template less
1,2, n. Thus, the pseudo-inverse in equation (6) is not unique. If a Morse}Penrose
pseudo-inverse is performed then the following properties ensue:

� All the constraints are satis"ed exactly.
� The least &&energetic'' solution otherwise results.

Thus, boundary conditions may be implemented by augmenting the row count of the
matrix H in equation (4) including the possibility of multiple restraints as will occur at mesh
corners. Once the templates are formed, an overall sparse equation system

Kp"f (7)

may be assembled with each template independently contributing a row.

3. NUMERICAL EXAMPLE

In order to demonstrate the method, a rectangular duct with an oblique ending was
modelled as shown in Figure 2. The mesh was set using 27 nodes in each cell with
a maximum nodal spacing of 0)05 m along the computational cell edges and 0)087 m along
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Figure 2. Test model.

Figure 3. Wave direction system.
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the diagonals. This placed the highest modelling frequency in the range 1963}3400 Hz
assuming a value of 340 m/s for the sonic speed c. The cell matrices H and h in equation (6)
were formulated using 60 &&evenly'' spaced directional waves following a buckminster fuller
geodesic dome pattern (soccer ball). These are shown in Figure 3 (these directional vectors
can be conveniently generated, for example, by using the � Matlab function &&bucky'').
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Two excitation scenarios were considered, namely,

(1) Plane wave: In this case the duct was subject to Dirichlet condition at one end,
Neumann (�p/�n"0) conditions were applied on the duct side and free radiation
condition applied to the oblique face.

(2) Point Source: A Dirichlet point load was applied at one corner, Neumann conditions
were applied on the adjacent faces and free radiation conditions imposed on the
remaining three faces.

All of these tests were conducted over a range of driving frequencies.

3.1. BOUNDARY CONDITION IMPLEMENTATION

Owing to the #exibilty of the basic formulation, there will always be a choice of methods
of imposing the boundary conditions. The solutions proposed here were chosen because
they provided stable solutions for all frequencies and they were the most easily implemented
from a meshing viewpoint.

3.1.1. Dirichlet

These were implemented by simply directly constraining the appropriate row in the
assembled matrix equation (7).

3.1.2. Neumann

At each face/edge/corner it was found to be more convenient to use half/quarter/eight
portions of the original computational cell. Thus, at an edge for example as shown in
Figure 4, an H matrix of dimension (17�m) is formed. At each node on the surface (x�

�
) the

boundary condition

�p

�n
�

(x�
�
)"q

�
(8)
0

i
b

i

Boundary Plane 

Figure 4. Edge computational cell.
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is applied to augment the constraint equation (4) to

�
p

q
�
.

. �"�
H

�
�n

�

h(x�
�
)

.

.
� �, (9)

where n
�
is the direction of the outward normal at the boundary point x�

�
. The augmented

H
��	

matrix should now have dimension (17#9)�m. A pseudo-inverse may now be
performed and the resulting matrix left}right partitioned to yield the template equation
which now includes a forcing term 2

p
�
"h(H�

��	
)


p#h (H�

��	
)
�
q. (10)

Here q is a (9�1) column vector of the forcing nodal loads q
�
. For a perfectly re#ecting

surface, q is set to zero. Note that this must always be explicitly speci"ed using a modi"ed
template 13 as perfect re#ection is not a &&natural'' boundary condition as would be in the
case of say in a common "nite element analysis.

3.1.3. Radiation

Two approaches to modelling this condition are possible Item

� Use of &&�c'' type normal impedance approximation.
� Exclusive use of outward propagating waves in the fundamental computational
template formulation.

The "rst technique, though an approximation which is strictly valid only for plane waves
propagating normal to the surface, has several features to recommend it.

(1) Meshing can usually be formulated to ensure that the far"eld solution approximately
propagates normal to the radiation boundary. Thus, the degree of error incurred will
be slight.

(2) It returns a robust equation system which appears to generate stable solutions over
the entire frequency range.

(3) Its implementation is straightforward and is as follows. To implement the boundary
condition

�p

�n
(x�

�
)"!i

��
Z

p (x�
�
) (11)

at a face where � is the frequency, � is the #uid density and the surface normal impedance is
Z"�c, entails augmenting relationship (9) for the half template to

�
p

0

.

.�"�
H

�
�n

�

h(x�
�
)#i

��
Z

h (x�
�
)

.

. � �. (12)
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Figure 5. Optimized radiation vector set.
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After inversion and partitioning, template (13) then reduces to

p
�
"h (H�

��	
)


p . (13)

The second method which follows the concept of establishing a &&natural'' radiation
condition for the method as primarily advanced in reference [1] is that appropriate partial
templates should be used in conjunction with a special H

��

wave-function matrix. This is

a reduction of the original matrix which includes only outward propagating directions at
a particular boundary. The template is then given simply by

p
�
"hH�

��

p. (14)

In principle, this approach is error free, however, the authors have found system
conditioning problems emerging when attempting to use this approach over a wide range of
frequencies. In this letter, an alternative compromise approach is described which restored
solution robustness without loss of accuracy. An H

��

function matrix was generated using

49 directions which fell within an optimized 753 cone normal to the boundary as shown in
Figure 5. The precise formulation of this optimization is still under investigation. Thus, if
a mesh is established which ensures that outward waves are propagating at angles within
37)53 of the normal, then no error results. This condition is easily met if the mesh is convex
and reasonably clear of near"eld activity.

3.1.4. Combination/Corners

The precedent Neumann and Radiation boundary condition methods can be readily
combined should more than one restraint need to be imposed at the boundary points.

If a �c approach is used for the radiation boundary condition, then equations (9) and (12)
are used in conjuntion to augment H according to the normal directions. For the natural
radiation boundary approach, "rst an H

��

is constructed from the correspondent outward

directions only and then augmented using relationship (9).



Figure 6. Plane wave solution, �c approach. Freq."1600 Hz. Imaginary pressure value.
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3.2. RESULTS

3.2.1. Plane wave

The results obtained with a &&�c'' approach in the oblique radiating face, show the
distortion resulting in the pressure distribution when the propagating wave is not normal to
the boundary. The violation of the normal propagation requirement clearly results in waves
being re#ected back from the oblique face: Figure 6.

The compromise &&natural'' boundary radiating approach, gives e!ectively an error-free
solution with an accuracy of up to 4.25 and 2.45 points per wavelength for the minimun and
maximun cell distance, respectively, Figure 7. It should be noted that no distortion is
observed at the corners of the free radiating face, where a Neumann-radiation combination
was used.

3.2.2. Point source

The natural radiation method shows the same accuracy for modelling a free spherical
radiating wave, Figure 8. A loss of stability was observed, however, for frequencies below
400 Hz. The increment in the condition number of K (equation (7)) was found to be related
to the outward directions in the axis parallel faces.

At low frequencies, on the other hand, the &&�c'' approach will give an accurate solution.
However, it was found that by slightly perturbing the wave some of the wave speeds used in
the selection of allowed outward propagation direction &&cone'' restored solution stability to
the natural radiation formulation.

4. CONCLUSIONS

(1) The general approach is shown to be robust, practical to implement for general 3-D
problems.



Figure 7. Plane wave solution, natural approach. Freq."1600 Hz. Imaginary pressure value.

Figure 8. Point source solution, natural approach. Frequency"1600 Hz. Imaginary pressure value.
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(2) Meshing restraints and di$culties associated with the modelling of corners are
absent.

(3) A natural radiation boundary condition is viable.
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(4) An objective assessment of its computational advantage has yet to be performed. As is
clear, a low nodal density is viable with a similar system matrix bandwidth to
a quadratic "nite element formulation. The formulation is however, not symmetric, but
as each nodal degree of freedom generates rows of the system matrix independently,
there may be computional advantages evident in the evolution of iterative-type
solutions for large problems. Assembly time is moderate even if the computational cells
are not identical and will for large problems be dominated by the solution of the system
equation (7).
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