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A new approach using the non-dimensional dynamic in#uence functions has been
developed for free vibration analysis of arbitrarily shaped plates with a mixed boundary
condition involving both simply supported edges and clamped ones. Since the proposed
method is based on the collocation method using one-dimensional and wave-type functions,
no integration procedure is needed on boundary edges of the plate of interest and numerical
calculation schemes are relatively concise. In order to settle the incompleteness of the system
matrix, which is due to the discarding of a complex natural boundary condition at simply
supported edges, an additional simple equation is devised by means of using a geometric
approximation on curved edges. Finally, veri"cation examples show that a complete system
matrix formed in this way successfully gives accurate eigenvalues compared with FEM
(ANSYS) and other methods.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

The so-called boundary point method using the non-dimensional dynamic in#uence
functions was developed by the author for arbitrarily shaped membranes [1, 2],
two-dimensional acoustic cavities [3], concave membranes [4] and plates with the clamped
boundary condition [5]. Research related to the above topics shows that the method is
simpler and more accurate than other numerical methods such as the "nite element method
and the boundary element method. In this paper, the boundary point method that has so far
been developed by the author is extended to free vibration analysis of arbitrarily shaped
plates with a mixed boundary condition, involving simply supported edges and clamped
edges.

A great deal of research for "xed membranes or simply supported plates has been
performed in that the associated theoretical formulations are relatively simple compared to
plates with other boundary conditions [6}14]. For plates with clamped edges, Durvasula
[15] studied a new method for the natural frequencies and mode shapes of clamped skew
plates and Hasegwa [16] calculated the fundamental natural frequency of a clamped skew
plate using polynomials and the Rayleigh}Ritz method. Also, Hamada [17] obtained
a lower bound for the fundamental frequency of a rhombic plate. In the case of the mixed
boundary condition involving simply supported edges and clamped edges, Nair [18] dealt
with the vibration problems of skew plates with di!erent edge conditions involving simple
support and clamping by using the variational method of Ritz. Leissa [19] summarized the
numerical results for natural frequencies of rectangular plates for all 21 possible
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combinations of the three elementary boundary conditions (simply supported, clamped,
and free boundary conditions). Also, Dickinson [20] extracted an approximate closed-form
solution for rectangular plates with various elementary boundary conditions. Furthermore,
research on the use of conformal mapping and variational methods for vibrations and
bucking of membrane and plates has been carried out [21}24].

Althoughmany applicationmethods have been developed for plates with various types of
mixed boundary conditions, they dealt with plates with special shapes such as a rectangle,
a parallelogram, and a regular polygon. In this paper, a general method is proposed to
obtain the eigenvalues of arbitrarily shaped plates with various combinations of mixed
boundary conditions involving simply supported edges and clamped edges. In the
procedure of theoretical development, only three boundary conditions of four boundary
conditions needed for the mixed boundary condition are used to obtain a system matrix for
eigenvalues. A natural boundary condition for simply supported edges is discarded to avoid
the di$culties of measuring the curvatures of edges and calculating higher di!erential terms.
On the other hand, an additional simple condition is intuitively devised for completing an
incomplete system matrix, which is formed using the three boundary conditions.

Eigenvalues of arbitrarily shaped plates with the mixed boundary condition are obtained
from a complete system matrix made by merging the devised additional condition into the
incomplete system matrix. Although the complete system matrix gives spurious eigenvalues
as well as correct eigenvalues, the spurious ones are discriminated in a special way, which
was proposed by the author [5]. Furthermore, veri"cation examples show that the
eigenvalues calculated by the proposed method are in good agreement with those given by
FEM (ANSYS), Nair's method [18], and Leissa's method [19].

2. GOVERNING EQUATION AND BOUNDARY CONDITIONS

The governing di!erential equation for free #exural vibrations of an isotropic
homogeneous thin plate can be written as

D� �w#�
�

��w

�t�
"0, (1)

where w"w(r, t) is the transverse de#ection at position vector r, �
�
is the plate density per

unit area, and D"Eh�/12(1!��) is the #exural rigidity.
Assuming harmonic motion w(r, t)"=(r)e��� where � denotes the circular frequency,

equation (1) yields
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In Figure 1, the domain � of a plate is bounded by the boundary �, which is subject to
a mixed boundary condition for simply supported edges �

�
(dotted contour) and clamped

edges �
�
(solid contour). Then, boundary conditions on � can be written as [25]
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where equation (5) is a natural boundary condition and equations (4, 6, 7) are geometric
boundary conditions.
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Figure 1. An arbitrarily shaped plate whose boundary consists of the simply supported boundary �
�
(dotted

contour) and the clamped boundary �
�
(solid contour): each boundary is discretized with boundary points (source

points are located at the same positions as the boundary points).
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3. THEORETICAL FORMULATION

In a previous research on free vibration analysis of clamped plates [5], a general solution
of a clamped plate of the same shape as both contours depicted in Figure 1 was assumed as
a linear superposition of the non-dimensional dynamic in#uence functions (NDIFs) de"ned
in an in"nite plate, i.e.,

= (r)"
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�)�, (8)

whereN denotes the number of source points distributed along the boundary of a clamped
plate on an in"nite domain. In this paper, equation (8) is also employed as a general solution
of a plates with the mixed boundary condition and is divided into two parts according to
locations of source points, i.e.,
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where position vectors r��	
�

and r��	
�
, respectively, indicate one of Ns source points on �

�
and

one of Nc source points on �
�
(N"Ns#Nc).

In general, the assumed solution equation (9) should satisfy the boundary conditions
(equations (4}7)) as well as the governing di!erential equation in order to become an
eigensolution. Note that the assumed solution naturally satis"es the governing equation
because it is made by a linear superposition of NDIFs satisfying the governing equation.
However, only three boundary conditions (equations (4, 6, 7)) are considered and equation
(5) is discarded in the paper. This approach will reduce numerical calculation e!ort because
equation (5) is complex, compared with the other three boundary conditions.
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Figure 2. A curved edge approximated by many small straight edges, whose normal directions are equivalent to
those of boundary points.
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On the other hand, two boundary conditions (equations (4, 5)) should be considered to
describe boundary conditions for simply supported curved edges. However, only one
boundary condition (equation (4)) is employed for simply supported straight edges because
equation (5) is automatically satis"ed once equation (4) is satis"ed. If delivering the fact that
a curved edge can be approximated as many small straight edges as shown in Figure 2, it
may be said that the discarding of equation (5) has a reasonable meaning even in the case of
the paper dealing with curved edges as well as straight edges.

The selected boundary conditions (equations (4, 6, 7)) are applied to the assumed solution
at boundary points (or source points) distributed along the boundaries �

�
and �

�
, using

a kind of collocation technique (see Figure 1). Substituting Ns boundary points on �
�
into

equation (4) yields
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and substituting Nc boundary points on �
�
into equations (6, 7) yields
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For simplicity, equations (4*, 6*, 7*) are, respectively, rewritten as three matrix equations:

SMJ���	 A��	#SMI���	 B��	#SMJ���	 A��	#SMI���	 B��	"0, (10)

SMJ���	 A��	#SMI���	 B��	#SMJ���	 A��	#SMI���	 B��	"0, (11)

VMJ���	 A��	#VMI���	 B��	#VMJ���	 A��	#VMI���	 B��	"0, (12)

where SMJ���	, SMI���	, VMJ���	 and VMI���	 (a, b"s or c) are, respectively, given by
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4. ADDITIONAL CONDITION FOR THE COMPLETE SYSTEM MATRIX

It should be pointed out that matrix equations (10}12) are incomplete because the
number of unknown vectors A��	, A��	, B��	 and B��	 is 4 but the number of given equations is 3.
This incompleteness results from the fact that one of the four boundary conditions is not
considered and an additional equation is required. Thus, careful consideration is taken into
equation (10), which has been made from the geometric boundary condition de"ned on
simply supported edges. Referring to a previous research by the author [1], SMI���	 B��	 and
SMI���	 B��	 in equation (10) may be removed because a general solution of "xed membranes
or simply supported plates does not need them associated with the Bessel functions of order
zero of second kind. On the basis of this fact, SMI���	 B��	 and SMI���	 B��	 are removed in the
paper by using the following matrix equation:

SMI���	 B��	#SMI���	 B��	"0, (17)

which is chosen as an additional condition for completing the current incomplete boundary
condition. In order to merge equation (17) into equations (10}12), equation (17) is changed
in the form

B��	"SMI���	
�SMI���	 B��	, (18)

which is substituted into equations (10}12). Then,

SMJ���	 A��	#SMJ���	 A��	"0, (10*)

SMJ���	 A��	#SMJ���	 A��	#(SMI���	!SMI���	SMI���	
�SMI���	)B��	"0, (11*)

VMJ���	 A��	#VMJ���	 A��	#(VMI���	!VMI���	SMI���	
�SMI���	)B��	"0. (12*)

Three matrix equations (10*}12*) can be assembled into one matrix equation:

SM(�)C"0, (19)

where the square matrix SM(�) of order Ns#2Nc is the system matrix of a plate with the
mixed boundary condition, and is a function of the frequency parameter �. Here, the system
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matrix SM(�) and the unknown vector C are given by

SM(�)"�
SMJ���	 SMJ���	 0

SMJ���	 SMJ���	 EMI���	

VMJ���	 VMJ���	 FMI���	�, C"�
A��	

A��	

B��	�, (20, 21)

where

EMI���	"SMI���	!SMI���	SMI���	
�SMI���	, (22)

FMI���	"VMI���	!VMI���	SMI���	
�SMI���	. (23)

In order to obtain the singular values of the system matrix SM(�), the determinant
det(SM) of the system matrix is swept in the frequency range of interest. Singular values
corresponding to eigenvalues �

�
, �

�
,2, �

	
,2 can be found from determinant curves.

Furthermore, the kth eigenvector can be computed with the kth eigenvalue �
	
obtained

from a determinant curve. On substituting �
	

into the system equation (19),
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�� corresponding to a part of the kth eigenvector can be extracted. In
addition, unknown vector B��	
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can also be calculated by substituting B��	
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given by C
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equation (18), i.e., B��	
	��
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. Finally, the shape of the kth mode can be
plotted by substituting A��	

	��
, A��	
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	��
and B��	

	��
into equation (9).

5. TREATMENT OF SPURIOUS SINGULAR VALUES

In this section, a discussion on spurious singular values is given using a rectangular plate
with the mixed boundary condition as shown in Figure 3. Logarithm values of det[SM(�)]
for the rectangular plate are swept in the range of �"4)5}12 as shown in Figure 4 where
troughs S<

	
s represent singular values of the system matrix SM and the singular values

obtained here are summarized in Table 1. It may be con"rmed in Table 1 that when the
singular values are compared to the FEM results or Leissa's results, only a part (S<

�
, S<

�
,

S<
�
, S<



, S<

��
and S<

��
) of the singular values corresponds to the eigenvalues of the plate

with the mixed boundary condition. Thus, other singular values may be considered as
spurious singular values, which correspond to the eigenvalues of the similarly shaped simply
supported plate (see Table 1).

The reason for the appearance of these spurious singular values can be demonstrated by
investigating the systemmatrix given in equation (20). The determinant of the systemmatrix
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Figure 3. Rectangular plate with the SSCC boundary condition: its boundary is discretized with 20 boundary
points.
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TABLE 1

Comparison between singular values and eigenvalues of the rectangular plate with the SSCC
boundary condition

Simply supported B.C. Mixed B.C.

Singular values det (SM) det(SMJ) Exact det(SM)/det(SMJ) FEM Leissa

S<
�

4)72 4)72 4)72
S<

�
6)25 6)25 (E<

�
) 6)25 6)26

S<
�

6)54 6)54 6)55
S<

�
7)40 7)40 (E<

�
) 7)40 7)41

S<
�

8)28 8)28 8)28
S<

�
8)78 8)78 8)78

S<
�

9)23 9)23 (E<
�
) 9)24 9)25

S<
�

9)44 9)44 9)44
S<



10)08 10)1 (E<

�
) 10)1 10)1

S<
��

10)86 10)9 (E<
�
) 10)9 10)9

S<
��

11)11 11)11 11)11
S<

��
11)18 11)18 11)18

S<
��

11)50 11)5 (E<
�
) 11)5 11)5
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may be interpreted in an alternative way:

det(SM)� det(FMI���	)det(SMJ)#det(EMI���	)det(GMJ), (24)

where

SMJ"�
SMJ���	 SMJ���	

SMJ���	 SMJ���	�, GMJ"�
SMJ���	 SMJ���	

VMJ���	 VMJ���	�. (25, 26)
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It should be noted that SMJ represents the system matrix of the similarly shaped simply
supported plate or "xed membrane [1], and that GMJ(1, 1)and GMJ(1, 2) of four
sub-matrices involved in GMJ are equivalent to SMJ(1, 1) and SMJ(1, 2). Furthermore,
GMJ(2, 1)and GMJ(2, 2) are equivalent to VMJ(2, 1) and VMJ(2, 2) involved in
VMJ"�(SMJ)/�n:

VMJ"�
VMJ���	 VMJ���	

VMJ���	 VMJ���	�. (27)

On referring to previous research [3], some of the singular values of VMJ are identical to
the singular values of SMJ. As a result, GMJ whose elements correspond to elements of
both SMJ and VMJ also has the same singular values as SMJ. From this fact, the
determinant of GMJ may be written as

det(GMJ)"det(SMJ) f (�), (28)

where f (�) denotes a residual function. Note that singular values of GMJ are obtained
from two equations: det(SMJ)"0 and f (�)"0. Finally, substituting equation (28) into
equation (24) yields

det(SM)"det(SMJ)[det(FMI���	)#det(EMI���	) f (�)]. (29)

From equation (29), it may be concluded that the system matrix SM automatically
becomes singular when SMJ is singular, i.e., if det(SMJ)"0, det(SM)"0. Thus, the
singular values of SMJ appear in the determinant curve of the system matrix SM as shown
in Figure 4. On the other hand, the samemethod as in the previous research [5] is applied to
discriminate between correct singular values and spurious ones. The logarithm curve for
det[SM]/det[SMJ] is plotted in Figure 5 where troughs and crests represent the
eigenvalues of the plate with the mixed boundary condition and those of the similar shaped
simply supported plate respectively.
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6. VERIFICATION EXAMPLES

6.1. RECTANGULAR PLATE WITH THE MIXED BOUNDARY CONDITION (C-S-S-C)

Figure 6 shows a rectangular plate with the CSSC boundary condition that the left and
right edges are subject to the clamped boundary condition and the simply supported one,
respectively, and the upper and lower edges are subject to the simply supported boundary
condition and the clamped one. Note that the normal direction n

�
�
at the corner between

the two clamped edges is approximated by the vector sum of the normal directions of the
two edges (see Figure 6).

Logarithm curves for both det[SM]/det[SMJ] and det[SM] are shown in Figure 7,
where it may be seen that spurious singular values are successfully removed. Furthermore, it
may be said from Table 2 that, although only 18 boundary points are used, the eigenvalues
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Figure 6. Rectangular plate with the CSSC boundary condition: its boundary is discretized with 18 boundary
points.



TABLE 2

Eigenvalues of the rectangular plate with the CSSC boundary condition, obtained by the
proposed method, ¸eissa1s method, and FEM (ANS>S)

Simply supported B.C. Mixed B.C.

Singular values det (SM) det(SMJ) Exact det(SM)/det(SMJ) FEM Leissa

S<
�

5)58 5)58 (E<
�
) 5)58 5)58

S<
�

6)54 6)54 6)55
S<

�
7)29 7)29 (E<

�
) 7)29 7)29

S<
�

8)28 8)28 8)28
S<

�
8)78 8)78 8)78

S<
�

9)22 9)22 (E<
�
) 9)21 9)22

S<
�

9)44 9)44 9)44
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�
9)49 9)49 (E<

�
) 9)47 9)48
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Figure 8. Rhombic plates with various combinations of boundary conditions: (a) CSSS, (b) CCSS, (c) CSSC,
(d) CSCC.

TABLE 3

Eigenvalues and errors (%) of rhombic plates with various boundary conditions, obtained by
the proposed method, Nair1s method, and FEM (ANS>S)

Eigenvalues Proposed FEM Nair Proposed FEM Nair

CSSS B.C. CCSS B.C.

E<
�

6)81 (!0)44) 6)84 6)94 (1)46) 7)55 (!0)53) 7)59 7)65 (0)79)
E<

�
9)56 (!0)10) 9)57 9)66 (0)94) 9)96 (!0)40) 10)0 10)1 (1)00)

E<
�

11)1 (!0)89) 11)2 11)3 (0)89) 11)9 (!0)83) 12)0 12)1 (0)83)
E<

�
11)9 (!0)83) 12)0 12)1 (0)83) 12)5 (0)00) 12)5 12)6 (0)80)

CSSC B.C. CSCC B.C.
E<

�
7)24 (!0)69) 7)29 7)37 (1)10) 7)93 (!0)25) 7)95 8)00 (0)63)

E<
�

10)2 (0)00) 10)2 10)2 (0)00) 10)7 (0)00) 10)7 10)7 (0)00)
E<

�
11)5 (!0)86) 11)6 11)8 (1)72) 12)2 (!0)81) 12)3 12)4 (0)81)

E<
�

12)5 (0)00) 12)5 12)6 (0)80) 13)0 (!0)76) 13)1 13)2 (0)76)
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obtained by the proposed method agree well with those calculated by the FEM results and
Leissa's results [19].

6.2. RHOMBIC PLATES WITH MIXED BOUNDARY CONDITIONS

Figure 8 shows rhombic plates with various combinations of boundary conditions.
Logarithm curves for the rhombic plates are shown in Figures 9}12 and eigenvalues for
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each plate are summarized in Table 3. As can be seen from the "gures, troughs
corresponding to spurious singular values are successfully eliminated by means of the
proposed approach, for all possible combinations of boundary conditions. Furthermore, it
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may be said that the eigenvalues obtained by the proposed method have an extremely small
amount of error and are more accurate than Nair's results, compared with the FEM results
using 441 nodes, which will give solutions nearly close to exact values.
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Figure 16. Logarithm curves for det[SM] and det[SM]/det[SMJ] of the rhombic plate with the CSSC
boundary condition.
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6.3. ARBITRARILY SHAPED PLATE

Figure 13 shows various combinations of mixed boundary conditions applied to an
arbitrarily shaped plate de"ned in the paper. Associated determinant curves are given in
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Figure 17. Logarithm curves for det[SM] and det[SM]/det[SMJ] of the rhombic plate with the CCSS
boundary condition.

TABLE 4

Eigenvalues and errors (%) of the arbitrarily shaped plate with various boundary conditions,
obtained by the proposed method and FEM (ANS>S)

CSCS B.C. SCSC B.C. CSSC B.C. CCSS B.C.

Eigenvalues Proposed FEM Proposed FEM Proposed FEM Proposed FEM

E<
�

3)15 (!0)32) 3)16 3)16 (1)61) 3)11 3)13 (0)00) 3)13 3)22 (!0)92) 3)25
E<

�
4)69 (!0)85) 4)73 4)58 (0)44) 4)56 4)67 (0)65) 4)64 4)45 (!0)22) 4)46

E<
�

4)77 (0)00) 4)77 4)87 (0)83) 4)83 4)74 (!1)04) 4)79 5)02 (!0)99) 5)07
E<

�
5)98 (!0)99) 6)04 5)87 (!0)51) 5)90 5)92 (!0)84) 5)97 5)91 (!1)34) 5)99

E<
�

6)37 (0)00) 6)37 6)41 (0)47) 6)38 6)39 (0)31) 6)37 6)13 (0)00) 6)13
E<

�
6)56 (!0)30) 6)58 6)58 (0)46) 6)55 6)53 (!0)31) 6)55 6)83 (!0)29) 6)85
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Figures 14}17 where singular values labelled by E<
�
}E<

�
correspond to eigenvalues. The

"gures show that the proposed way of "ltering out incorrect singular values is valid and
e!ective. In addition, it may be said in Table 4 that the eigenvalues obtained agree well with
the FEM result using 663 nodes and most of the errors are within 1%, compared with the
corresponding FEM results.

7. CONCLUSIONS

The new method for free vibration analysis of arbitrarily shaped plates with mixed
boundary conditions described in this paper is e$cient and accurate. The method needs no
numerical integral procedure on boundaries and it requires a small amount of numerical
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calculation due to the discarding of the natural boundary condition given on simply
supported edges. Although employing incomplete boundary conditions, the method gives
valid and accurate results due to the additional boundary condition devised in the study.
On the other hand, the proposed method may be extended to the free vibration analysis of
membranes and plates with non-homogeneity in thickness and material properties, and
related work is being carried out for another paper.
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