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The problem to measure the phenomena of eigenvalue curve veering and mode
localization is addressed in this paper. The second derivative of an eigenvalue and the "rst
derivative of an eigenvector are taken as the measures, numerically showing curve veering
and mode localization. Based on the measurement, close eigenvalues, as a key factor for the
occurrence of the phenomena, are de"ned. Two eigenvalues are considered to be close, if
their di!erence is small enough to cause the occurrence of the phenomena. The curve veering
and mode localization can be noted by comparison of the derivatives with a critical value
and hence the associated eigenvalues are close. Weakly coupled springs are given as an
example.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

Mode localization and eigenvalue curve veering are the phenomena of rapid and even
violent changes in dynamic modes. Earlier studies showed that mode localization can be
observed in linear periodic systems [1}7]. Non-linear localized modes were further found in
periodic oscillators [8, 9] and continuous systems [10, 11]. Rapid change of eigenvalues,
known as curve veering or loci veering, has been noted in various structural systems, such as
a curved beam [12], rectangular membrane [13], orthotropic rectangular plates [14],
cables and chains [15], rotating circular string [16], coupled oscillators [17], multi-span
beams [18], coupled pendulums [4, 19], blade assemblies [5], and space structures [3, 7] as
well.
The occurrence of curve veering and mode localization suggests that the dynamic system

is very sensitive to a parameter. Attention must be paid to the signi"cance of the sensitivity,
for it a!ects the dynamic modes greatly. A dynamic model can be far from the assumed
prototype, caused by a small variation, such as a manufacturing error, a geometrical
irregularity, or a mistuned parameter. For these reasons, the subject is worthy of both
a theoretical study and a guide for engineering practice.
It is proved that the existence of close eigenvalues, or near frequencies, in a dynamic

system is likely to cause the occurrence of curve veering and mode localization [13}19].
When some disorder is introduced in nearly periodic structures with weak internal
coupling, both strong mode localization and veering of the eigenvalue occur, indicating that
these are two manifestations of the same drastic phenomenon [19]. Therefore, close
eigenvalues are a precondition of the occurrence in these structures.Moreover, the closeness
22-460X/02/$30.00 � 2002 Elsevier Science Ltd. All rights reserved.
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of the eigenvalues also determines the degree of the phenomena. The study of veering and
localization, when they occur and how they are measured, is an interesting topic. In other
words, a numerical measure of the phenomena must be studied. Based upon the
measurement, how two close eigenvalues can lead to the occurrence of the phenomena is of
interest.
Leissa [13] suggested using the second di!erence of eigenvalues to measure curve veering

and its application was illustrated using a rectangular membrane. It is known that the
derivatives of a function behave more violently than the function itself. Therefore, the
derivatives of eigenvalues and eigenvectors, as the rate of their change, can be measures for
the phenomena of veering and localization.
As an example of curve veering and mode localization with close eigenvalues, weakly

coupled springs [17] are considered in the paper. The occurrence of the phenomena and the
behavior of the derivatives of eigenvalues and eigenvectors will be examined. The relation of
the derivatives to two close eigenvalues will be set up later.

2. EXAMPLE OF CURVE VEERING AND MODE LOCALIZATION

Consider two springs with sti!ness k
�
and k

�
and masses m

�
and m

�
connected by a weak

spring k, as shown in Figure 1. The vibration of the springs is along the axis X. The
eigenvalue equation of the springs is such that
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The normalized eigenvectors can be solved from equations (1) and (2) as
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Figure 1. Weakly coupled springs.
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where
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To show close eigenvalues and the phenomena of veering and localization, two cases are
considered, with k

�
taken as a variable and di!erent k.

Case I (k"0)05)
Given k

�
"1, m

�
"m

�
"1, and k"0)05, the eigenvalues and eigenvectors of two modes

following various values of k
�
are shown in Figures 2 and 3.

Case II (k"0)01)
Case II is considered with the same sti!ness and mass as Case I except k"0)01. The change
of eigenvalues and eigenvectors versus k

�
is shown in Figures 4 and 5.

The occurrence of curve veering and mode localization is observed in both cases. By
comparison of the "gures, the following conclusions can be drawn.

(1) In the two cases with di!erent values for k, two eigenvalues are close to each other at
k
�
+k

�
"1. The eigenvalues are much closer in the latter case for k"0)01, which is

smaller than 0)05 of the "rst case. Therefore, a smaller k produces a closer pair of
eigenvalues.
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(2) A rapid change of eigenvalues, showing the occurrence of the eigenvalue curve veering,
is observed in both cases. The more rapid one comes from closer eigenvalues. The
change happens in a range, which is small when two eigenvalues are getting close. As
two eigenvalues become close, their curves repel each other, suggesting a violent veering.

(3) The mode localization occurs with close eigenvalues. The change of modal shapes is in
a narrow range of the sti!ness. The range is smaller as the eigenvalues become closer.
Therefore, a close pair of eigenvalues brings the occurrence of a more rapid localization
in a smaller range of k

�
.

In summary, the value of sti!ness k determines the degree of closeness of the eigenvalues.
A proper ratio of the sti!ness of the two springs, which is near one, is another factor for the
occurrence of the phenomena, besides the eigenvalues being close. Much closer eigenvalues
from a smaller k lead to a more rapid veering and localization in a smaller range of variation
of k

�
.

Although the occurrence of veering and localization is given with the variation of the
sti!ness k

�
, the phenomena can also be observed from a variation of the other sti!ness or

masses, i.e., any of k
�
, m

�
, and m

�
in the spring}mass system. Curve veering may not exist
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between the modes of repeated eigenvalue. This can be demonstrated by letting k
�
"k

�
,

m
�
"m

�
, and k varied in the weakly coupled springs, yielding two lines crossing at a point

with a repeated eigenvalue. Petyt and Fleischer [12] showed that the frequencies for the
&&odd''modes, which are symmetric about the curved beam, can smoothly cross those of the
&&even'' antisymmetric modes.
The curve veering and mode localization in Case II are proved to be more violent than

Case I by comparison of the "gures. In order to have a precise measure for the occurrence
and the degree of the phenomena, a numerical description is required.

3. DERIVATIVES OF EIGENVALUE AND EIGENVECTOR

The partial derivatives of the eigenvalues and eigenvectors for the weakly coupled springs
will be examined in this section.

3.1. DERIVATIVES WITH RESPECT TO STIFFNESS k
�

From equations (3) and (4), the "rst partial derivatives of the eigenvalues with respect to
k
�
can be obtained as
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The derivatives versus the sti!ness k
�
, with three cases of 0)05, 0)01, and 0)005 for k, and

k
�
"1, are shown in Figure 6.
The second derivatives of the eigenvalues are given as
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The second derivatives are shown in Figure 7.
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The "rst derivatives of the eigenvectors with respect to k
�
are
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Equation (15) implies that the derivative of eigenvector depends on the derivative of
eigenvalue. The derivative of the eigenvector �

�
versus the sti!ness k

�
is illustrated in

Figure 8.
From Figures 7 and 8, it is found that the second derivatives of the eigenvalues and the
"rst derivatives of the eigenvectors with respect to the sti!ness k

�
are in a similar form.
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When k"0.05, the derivatives show a smooth variation. At k"0)05, k
�
"k

�
"1, and

m
�
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"1, the derivatives of the two modes are
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With the decrease of the sti!ness k, the values of the derivatives increase greatly for
k
�
approaching to 1. A narrow and violent curve comes from a very small k. When k is

smaller than 0)01, a tiny decrease of k brings a large increase on the peak values, suggesting
that the derivatives are strongly non-linear to k.
The slight di!erence between the derivatives of the eigenvalues and that of the

eigenvectors is the location of the peak values. The second derivatives of the eigenvalues in
equations (12) and (13) reach peak values only when
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"1, the peak values must be at k
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"1, so that it is at k
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"1 as in Figure 7.

The peak values for the derivatives of the eigenvectors appear at k
�
+1, but never at

k
�
"1.
When k

�
is far from 1, the values of the second derivatives of the eigenvalues and the "rst

derivatives of the eigenvectors are getting small as the sti!ness k decreases. This means that
the eigenvalues are veering less and the modes are not violently localized in the range of
k
�
far from 1, even though k is small and the eigenvalues are close.

3.2. DERIVATIES WITH RESPECT TO MASS m
�

The derivatives of the eigenvalues with respect to the mass m
�
are computed as
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The second derivatives of the eigenvalues calculated from equations (19) and (20) are given
in Figure 9.
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The "rst derivatives of the eigenvectors with respect to m
�
are
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The derivatives of �
�
are shown in Figure 10.

The derivatives with respect to the mass resemble that to the sti!ness. For k"0)05,
k
�
"k

�
"1, and m

�
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"1, the derivatives are
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There are some di!erences between these values and those with respect to k
�
. The values are

not same for two modes. The peak values of the second derivatives of the eigenvalues are no
longer at k

�
"1.

By comparison of the "gures with the "gures in section 2, it is noted that the second
derivatives of the eigenvalues and the "rst derivatives of the eigenvectors match the trend of
the veering and localization. The values of the derivatives clearly show whether or not the
phenomena are violent. Consequently, the derivatives are suggested to be the numerical
measures to distinguish the occurrence and the degree of the phenomena.
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4. RELATION OF DERIVATIVES TO CLOSE EIGENVALUES

To de"ne if two eigenvalues are close must be based on their e!ect. Therefore, whether or
not two eigenvalues are close is measured by taking the numerical measure of the curve
veering or mode localization into consideration.

4.1. DERIVATIVES AND EIGENVALUE DIFFERENCE

The di!erence of two eigenvalues can be obtained from equations (3) and (4) as
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�
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�b�!4ac

a
. (23)

The di!erence versus k
�
is shown in Figure 11. The smallest di!erence of two eigenvalue

appears at k
�
"1, for a given k.



-20

-10

0

10

20

0.00 0.05 0.10

Difference

Se
co

nd
D

er
iv

at
iv

e

Figure 12. Second derivatives of eigenvalues versus eigenvalue di!erence (k
�
"0)99, k

�
"1, k varies,

m
�
"m

�
"1). ** Mode 1, ) ) ) ) ) Mode 2.

0

100

200

0.00 0.05 0.10

Difference

M
ax

im
um

A
bs

ol
ut

e
D

er
iv

at
iv

e

Figure 13. Absolute second derivatives of eigenvalues versus eigenvalue di!erence (k
�
"k

�
"1, k varies,

m
�
"m

�
"1).**

���
�k�

�

, ) ) ) ) )
���
�m�

�

.

560 X. L. LIU
Equations (12) and (13) can be expressed as
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If k
�
is given to be 0)99, the relation between the derivatives and the di!erence is

shown in Figure 12. The variation of the di!erence only comes from the sti!ness k. It is
noted that a small di!erence is not always a guarantee for an increase on the value of the
derivatives.
Considering the special case with k

�
"k

�
and m

�
"m

�
, the second terms in equations

(26) and (27) become zero. The eigenvalue di!erence and the second derivatives can be
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reduced to
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The equations suggests that �� is linear to k and the second derivatives of the eigenvalues
are reciprocal to k or to ��. However, they are all independent from the spring sti!ness
k
�
and k

�
. Given m

�
"1, the eigenvalue di!erence only depends on the sti!ness k. So do the

derivatives. The second derivatives of the eigenvalues computed from equations (29) and
(30) are plotted in Figure 13. When �� is 0)5, for which k"0)25, the value of the derivatives
is 1. Therefore, the value of derivatives increases greatly for �� smaller than 0)5 or k smaller
than 0)25.
It is seen that only in the case, in which k

�
"k

�
and m

�
"m

�
, the derivatives increase

from a small eigenvalue di!erence, which means that the eigenvalues are much close.
Similar relation between the "rst derivatives of the eigenvectors with respect to k

�
and the

eigenvalue di!erence holds, as shown in Figure 14. It is known that the maximum values are
not at k

�
"k

�
"1 and m

�
"m

�
"1.

The largest absolute derivatives with respect to m
�
at k

�
"k

�
"1 and m

�
"m

�
"1 are

also given in Figures 13 and 14. There is a little di!erence between the values and those with
respect to k

�
.

4.2. CRITICAL VALUES

A value of the derivative of eigenvalue or eigenvector can be given as a mark to
distinguish the occurrence of the veering or localization. Those greater than the value
suggest a violent veering and localization. Once this critical value is given, to check the
occurrence and the degree of the phenomena becomes easy. It is also easy to "nd if two close
eigenvalues can lead to the veering and localization.
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In Figure 15, a curve, on which the second derivatives of the eigenvalues with respect to
k
�
are equal to 5, is drawn. The derivatives within the heart-shaped area, surrounded by the

curve, should be greater than 5. Out of this area, the derivatives are smaller than 5, though
an eigenvalue di!erence can be small. On this area, a composition of k

�
and k contributes

the second derivative to be equal to or greater than 5. The area locates at
0)96151(k

�
(1)03849 and k(0)05. In other words, a derivative is guaranteed to be

smaller than 5 if k
�
(0)96151, or k

�
'1)03849, or k'0)05.

If the critical value is given as 5, a derivative equal to or great than 5 is considered the
existence of the veering and the eigenvalue di!erence small enough for the eigenvalues to be
close. Therefore, any k

�
and k located within the area can cause the eigenvalues to be close

and the veering to occur. If the critical value is taken to be smaller than 5, the heart-shaped
area is larger than that in Figure 15. Otherwise, the area is smaller.
The area of the "rst derivatives of the eigenvectors with respect to k

�
equal to or greater

than 5 is given in Figure 16. The area is in 0)95357(k
�
(1)04643.

Certainly, similar heart-shaped areas can be obtained for the derivatives with respect
to m

�
.

5. CONCLUSION

The derivatives of the eigenvalues and eigenvectors have been examined for the
phenomena of the curve veering and mode localization. It is demonstrated that the second
derivative of the eigenvalue and the "rst derivative of the eigenvector can be taken as the
numerical measures for the occurrence and the degree of the phenomena. The occurrence
can be checked through a comparison of the derivatives with a critical value. This value
should depend on a speci"c dynamic problem and must be given by taking the engineering
orientation into consideration.
The de"nition of close eigenvalues is based on their e!ect on the veering or localization.

Two eigenvalues are considered to be close if their existence brings the occurrence of the
phenomena. From this point of view, two approaching eigenvalues are not always close,
though their di!erence can be very small.
The analysis is shown in weakly coupled springs. The weak coupling is the dominance for

the eigenvalues to be close. A tiny change of the coupling spring likely causes a violent
veering and localization, which are numerically presented by the second derivatives of the
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eigenvalues and the "rst derivatives of the eigenvectors. A heart-shaped area de"nes the two
eigenvalues to be close, on which the phenomenon of veering or localization exists.
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