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1. INTRODUCTION

Solution of the Duffing equation in non-linear vibration problem is studied in the paper.
The governing equation for the problem was formulated in references [ 1, 2]. In the case of
¢ being a small parameter, the equation is solved by using the Lindstedt-Poincare
technique, the method of multiple scales, and the method of averaging [1, 2]. Almost all
perturbation methods are based on small parameter ¢ so that the approximate solutions can
be expressed in a series of small parameters.

There are some shortcomings in the perturbation method. Clearly, in the case of ¢ being
a larger value, the perturbation method is no longer valid. Generally, in the perturbation
method one can only get, for example, a two-term solution for the small parameter.
Obviously, the rigidly increasing labor of derivation makes it practically impossible to
obtain more terms by hand. Also, in this method it is not easy to judge how the
approximation is achieved. The limitation of the perturbation method was also pointed out
in references [3, 4].

Recently, the target function method for evaluating the buckling loading and the
vibration frequency was suggested [ 5]. It was found that the idea of target function method
is a general one, which can also be used for the present analysis.

The idea of target function method can be described as follows. Assume that the Duffing
equation with an initial condition (u = A, du/dt = 0 at the time ¢t = 0) is integrated on the
interval (0, t,). It is found that the function v(t,) is the mentioned target function, where the
dependent variable v(= du/dt) is the velocity of motion. The second zero of the target
function, denoted by t, = T,,, will be the period of motion. In fact, from (a) the mentioned
initial condition, and (b) the conservation of energy in the vibration defined by the Duffing
function, we have u = 4 and v = du/dt = 0 at the time ¢t = T},,. Thus, after comparing the
conditions at the time t = 0 and at the time ¢t = T,, we see that T, is the period of the
motion. Clearly, the suggested technique depends on the computer computation intensively.
Particular advantages of the suggested method will be described in the section “remarks”.

2. ANALYSIS

In the following analysis, the Duffing equation is defined by [1, 2]

d?u

et olu(l + eu?) =0, (1)

0022-460X/02/$35.00 © 2002 Published by Elsevier Science Ltd.



574 LETTERS TO THE EDITOR

where w, is the circular frequency, ¢ is a constant which may not be a small value. The
imposed boundary condition takes the form

du
—o=A — =0 2
u|t70 s dl’ =0 s ( )
where A is a positive value. After letting
du

= 3
0= )]

u 2 4
F(u) = ? J u(l + eu?)du = w? <u_ + ﬂ) 4)

o 2 4

and carrying out integration of equation (1), the following equation on the phase plane is
obtainable [1, 2]:

02
5 + F(u) = h, (5)

where h is obtained from equations (2), (4) and (5), and takes the value

A? A*
h=FW)-a= o] <7+ST>- (6)

Clearly, from equations (4) and (5) we see that the motion is stable at any vicinity of the
position u = 0 and v = 0, and the motion is periodical.

The target function method is introduced as follows. For a given value t,, we perform the
integration for equation (1) with the initial boundary value condition (2) on the interval
(0, t,), and obtain the functions u(t) and v(t) (0 <t < t,) and v(¢t,), where v(t) = du/dt. The
obtained v(t,) is called the target function in this paper. Obviously, the v(t,) value is
a function of the given time ¢,, and it is not equal to zero in general. In this case, we can
define the target function by H(t,) = v(t,). The governing equation of target function
method takes the form

H(t,) = v(t,) = 0. ()

Assume that t, = T,,; and t, = T,, are two successful zeros of the target function v(t,). It is
easy to prove that the second zero T,, will be the period of motion for the Duffing equation
(1) with the initial condition (2). In fact, from the definition of T, and T,,, and (4-6), we have

o(T,) =0,  u(T,;)=— 4, (3a)
o(Ty) =0,  u(T,,) = A. (8b)

After considering two points: (a) only the arguments d?u/dt?, u, u® are involved in
equation (1), (b) the condition at the time t = 0 shown by equation (2) is the same as the
condition at the time t = T,, shown by equation (8b), it follows the periodical property of
the motion

u(t) = u(t + T,). )
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In conclusion, the period of the motion is investigated by the following steps. First, for
a given t,, we carry out an integration for equation (1) with condition (2) and obtain the
functions u(t) and v(t) (0 <t <t,), and v(t,). The numerical solution of the ordinary
differential equation can be performed by using Runge-Kutta integration rule [6].

In this case, the target function v(t,) may not be equal to zero in general. Our goal is to
obtain the zeros of the target function v(t,), particularly, the second zero T,, which is the
period of the motion. To this end, the half-division technique is suggested to evaluate the
zeros of function.

Finally, the suggested method mainly depends on the numerical solution of the ordinary
differential equation and numerical evaluation of the zeros of a given function. The
mentioned computations are successful using a FORTRAN program on computer.

For the harmonic motion case (¢ = 0 in equation (1)), we have the period of motion and
the circular frequency of motion

_Zn _271

T, , .
a)o) o 7—;

o

(10)

Similarly, in the present case, the period of motion T, and the circular frequency of motion
w, can be expressed by the relation

_2n _ 2n

T , . 11
p2 U)p a)p sz ( )

Furthermore, the calculated circular frequency can be expressed as
w, = 2w, (12)

where « is a magnified (or reduced) factor for the circular frequency.

A particular advantage of the suggested method is that one can obtain the motion of the
Duffing equation in addition to the circular frequency. The obtained displacement may be
expressed in the form

M
ut) =2+ Y cpcos(ke,t), (0<t< Thy). (13)

2 k=1

Clearly, the involved Fourier coefficients can easily be evaluated from the obtained
displacement u(t) (0 <t < T,,). It is found that since the function F(u) is even one with
respect to the argument u, thus, the Fourier coefficients ¢, ¢,, ¢4, ... always equals zero, the
magnified factor o and the calculated coefficients ¢4, 3, ¢5 ... depend on the 4 and ¢, and
they are listed in Table 1. For the computation, we used the M = 360 divisions in the
Runge-Kutta method for the numerical solution of ODE [6]. The circular frequency can
also be evaluated by [1]

Ty =1/2 J (h— F(u) ™2 du. (14)

We found that the calculated results using the target function method coincide with the ones
from equation (14) very well within the range of four digital values.

In the meantime, if ¢ is a small parameter, using the perturbation method, the
approximate solution is [1, 2]

3eA? eA? eA’
oc=1+ 8 N 61:A<1—§>, C3:§. (15)
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TaBLE 1

o value and the calculated Fourier coefficients for the solution of the Duffing equation
d?u/dt? + w?u(l + eu?) = 0 with the condition u(0) = A and u'(0) = 0 (see equations (12, 13))

A =1 case

£= 01 02 03 04 0-5 06 07 0-8 09 1-0

o 1-:0367 10720 11060 1-1389 1-1708 12017 1-2318 12612 1-2898 1-3178
cq 09971 09945 09923 09903 09885 09869 09854 09841 09828 09817
C3 0-0029 00054 0-0077 00096 00114 0-0130 0-0144 00157 00169 00180
Cs 0-0000 0-0000 0-0001 0-0001 00001 0-0002 0-0002 0-0002 0-0003 0-0003
o* 1-:0375 10750 1-1125 1-1500 1-1875 1-2225 1-2625 1-3000 1-3375 1-:3750

cr* 09969 0-9937 09906 09875 09844 09812 09781 09750 09719 0:9687
cy* 0-0031 0-0063 0-0094 00125 0-0156 0-0188 0-0219 00250 0-0281 0-0313

A =1 case

£= 1 2 3 4 5 6 7 8 9 10

o 1-3178  1-5691 17844 19760 2-1504 2-:3116 2:4622 2-6040 2-7385 2-8666
Cy 09817 09741 09698 09671 09653 09639 09629 09620 09614 0-9608
C3 00180 0-0253 0:0293 00318 0-0336 0-0348 00358 0-0366 0-0372 0-0377
Cs 0-0003  0-0006 0-0009 00010 0-0011 0-0012 00013 0-0013 0-0014 0-0014
A =2 case

&= 01 02 03 04 05 06 07 0-8 09 1-0

o 1-1389 12612 1-3719 14739 1-5691 1-6587 17435 1-8244 19017 19760
¢y 19806 19681 19594 19530 19481 1-9442 19410 19384 19362 1-9343
C3 00193 0-0314 0-0398 00459 0-0506 0-0543 00573 00598 0-0619 0-0636
Cs 0-0002 0-0005 0-0008 00011 0-0013 0-:0015 00016 0-0018 0-0019 0-0020
o* 1-1500 1-3000 1-4500 1-6000 1-7500 1-9000 2:0500 2-:2000 2-:3500 2-5000
c* 19750 19500 1-9250 19000 1-8750 1-8500 1-8250 1-8000 1-7750 1-7500
c3* 0-0250 0-0500 0-0750 0-1000 0-1250 0-1500 0-1750 0-2000 0-2250 0-2500
A =2 case

&= 1 2 3 4 5 6 7 8 9 10

o 19760 26040 3-1071 3-5392 39240 42743 45979 49002 5-1849 5:4548
cq 19343 19241 19199 19177 19162 19153 19146 19140 19136 19132
C3 00636 0-0731 0-0770 00791 0-0804 0-0813 0-0819 00824 0-0828 0-0831
Cs 0-0020 0-0027 0-0030 00031 0-0032 0-0033 00034 0-0034 0-0034 0-0035

*Results from the perturbation method [2].

For comparison, the relevant results are also listed in Table 1. From Table 1 we see that if
2% is a permissible error, the perturbation technique is acceptable when ¢ < 0-6 (¢ < 0-1) for
A =1 (A = 2) respectively.

3. ANALYSIS IN GENERAL CASE

If the initial velocity in the vibration is not equal to zero, the initial conditions are as
follows:

du
Uly=g = Ay, a = B;. (16)
t=0

Without loss of generality, it is assumed that two values A; and B, are positive. In fact, the
problem can be solved in two ways.

First is the equivalent method. Clearly, the motion that is determined by condition (16)
could be equivalent to the one determined by condition (2). This method is reached simply
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TABLE 2

The calculated o values under different initial conditions

A/A 02 0-4 06 0-8 10
o 2:15041512  2:15041512  2:15041613  2-15041613 2:15041610  2-15041620%*

*From equation (14).
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Figure 1. Motions of vibration under various initial conditions.

by substituting two sets of the initial condition: (a) u = 4 and v = 0 (from equation (2)), (b)
u = A, and v = B, (from equation (16)), in equation (5). Thus, we have
A4
Bi + w? (A% + %) = w2 (AZ + 7) (17)

This is to say, instead of solving the problem of the initial condition (17), we can solve the
problem of condition (2) where the value A4 is determined by using equation (17).

The second method is directly using the concept of target function. In this case, the target
function may be defined by H(¢,) = v(t,) — By, and the governing equation of target
function method takes the form

H(t,) = v(t,) — B, = 0. (18)

As before, the second zero of the function, T,,, will be the period of motion.

In order to examine the second method, the following computation was performed under
the conditions: (a) taking w, =1 without loss of generality, (b) e=35, (c) A =1, (¢
A;/A =02,04, 06,08, 10, (d) B; determined by equation (17) from the given values of 4,
A, and &, (e) Three-hundred and sixty divisions is used in the solution of the differential
equation. In this case, the calculated values of the factor o are listed in Table 2. The listed
result proves that high accuracy has been achieved in the second method.
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In addition, the motion of vibration for three cases 4,;/4 = 0-2, 0-6 and 1-0 are plotted in
Figure 1. As expected, from Figure 1 we see that the motions plotted are merely shifting in
a horizontal direction to each other.

4. REMARKS

Previously, when the computer was not available as nowadays, investigators paid
attention to the solution which can be performed by hand or very elementary computation.
In contrast, the present study mainly depends on the successful numerical solutions and
computer computation. Particular advantages for the method are as follows. Since there is
no difference in the numerical solution between the linear and non-linear differential
equations, the difficulty caused by the non-linearity disappears if target function method is
used. Also, a highly accurate computation scheme is used, for example, 360 divisions are
assumed in the numerical solution of ODE, the obtained result must be very near to the
exact solution. Finally, all necessary information, including the motion of vibration and the
period of motion, can be obtained from the solution.
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