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1. INTRODUCTION

Solution of the Du$ng equation in non-linear vibration problem is studied in the paper.
The governing equation for the problem was formulated in references [1, 2]. In the case of
� being a small parameter, the equation is solved by using the Lindstedt}Poincare
technique, the method of multiple scales, and the method of averaging [1, 2]. Almost all
perturbationmethods are based on small parameter � so that the approximate solutions can
be expressed in a series of small parameters.
There are some shortcomings in the perturbation method. Clearly, in the case of � being

a larger value, the perturbation method is no longer valid. Generally, in the perturbation
method one can only get, for example, a two-term solution for the small parameter.
Obviously, the rigidly increasing labor of derivation makes it practically impossible to
obtain more terms by hand. Also, in this method it is not easy to judge how the
approximation is achieved. The limitation of the perturbation method was also pointed out
in references [3, 4].
Recently, the target function method for evaluating the buckling loading and the

vibration frequency was suggested [5]. It was found that the idea of target function method
is a general one, which can also be used for the present analysis.
The idea of target function method can be described as follows. Assume that the Du$ng

equation with an initial condition (u"A, du/dt"0 at the time t"0) is integrated on the
interval (0, t

�
). It is found that the function v (t

�
) is the mentioned target function, where the

dependent variable v("du/dt) is the velocity of motion. The second zero of the target
function, denoted by t

�
"¹

��
, will be the period of motion. In fact, from (a) the mentioned

initial condition, and (b) the conservation of energy in the vibration de"ned by the Du$ng
function, we have u"A and v"du/dt"0 at the time t"¹

��
. Thus, after comparing the

conditions at the time t"0 and at the time t"¹
��

we see that ¹
��

is the period of the
motion. Clearly, the suggested technique depends on the computer computation intensively.
Particular advantages of the suggested method will be described in the section &&remarks''.

2. ANALYSIS

In the following analysis, the Du$ng equation is de"ned by [1, 2]

d�u

dt�
#��

�
u (1#�u�)"0, (1)
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where �
�
is the circular frequency, � is a constant which may not be a small value. The

imposed boundary condition takes the form

u �
���

"A,
du

dt �
���

"0, (2)

where A is a positive value. After letting

v"
du

dt
, (3)

F(u)"��
� �

�

�

u(1#�u�) du"��
� �
u�

2
#

�u�
4 � (4)

and carrying out integration of equation (1), the following equation on the phase plane is
obtainable [1, 2]:

v�

2
#F (u)"h, (5)

where h is obtained from equations (2), (4) and (5), and takes the value

h"F (u) �
���

"��
� �
A�

2
#

�A�

4 �. (6)

Clearly, from equations (4) and (5) we see that the motion is stable at any vicinity of the
position u"0 and v"0, and the motion is periodical.
The target function method is introduced as follows. For a given value t

�
, we perform the

integration for equation (1) with the initial boundary value condition (2) on the interval
(0, t

�
), and obtain the functions u (t) and v (t) (0)t)t

�
) and v(t

�
), where v(t)"du/dt. The

obtained v (t
�
) is called the target function in this paper. Obviously, the v(t

�
) value is

a function of the given time t
�
, and it is not equal to zero in general. In this case, we can

de"ne the target function by H(t
�
)"v (t

�
). The governing equation of target function

method takes the form

H(t
�
)"v (t

�
)"0. (7)

Assume that t
�
"¹

��
and t

�
"¹

��
are two successful zeros of the target function v (t

�
). It is

easy to prove that the second zero ¹
��

will be the period of motion for the Du$ng equation
(1) with the initial condition (2). In fact, from the de"nition of ¹

��
and ¹

��
and (4}6), we have

v(¹
��
)"0, u (¹

��
)"!A, (8a)

v(¹
��
)"0, u (¹

��
)"A. (8b)

After considering two points: (a) only the arguments d�u/dt�, u, u� are involved in
equation (1), (b) the condition at the time t"0 shown by equation (2) is the same as the
condition at the time t"¹

��
shown by equation (8b), it follows the periodical property of

the motion

u(t)"u (t#¹
��
). (9)
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In conclusion, the period of the motion is investigated by the following steps. First, for
a given t

�
, we carry out an integration for equation (1) with condition (2) and obtain the

functions u (t) and v (t) (0)t)t
�
), and v (t

�
). The numerical solution of the ordinary

di!erential equation can be performed by using Runge}Kutta integration rule [6].
In this case, the target function v(t

�
) may not be equal to zero in general. Our goal is to

obtain the zeros of the target function v(t
�
), particularly, the second zero ¹

��
which is the

period of the motion. To this end, the half-division technique is suggested to evaluate the
zeros of function.
Finally, the suggested method mainly depends on the numerical solution of the ordinary

di!erential equation and numerical evaluation of the zeros of a given function. The
mentioned computations are successful using a FORTRAN program on computer.
For the harmonic motion case (�"0 in equation (1)), we have the period of motion and

the circular frequency of motion

¹
�
"

2�
�

�

, �
�
"

2�
¹
�

. (10)

Similarly, in the present case, the period of motion ¹
��

and the circular frequency of motion
�

�
can be expressed by the relation

¹
��

"

2�
�

�

, �
�
"

2�
¹
��

. (11)

Furthermore, the calculated circular frequency can be expressed as

�
�
"��

�
, (12)

where � is a magni"ed (or reduced) factor for the circular frequency.
A particular advantage of the suggested method is that one can obtain the motion of the

Du$ng equation in addition to the circular frequency. The obtained displacement may be
expressed in the form

u (t)"
c
�
2

#

�
�
���

c
�
cos(k�

�
t), (0)t)¹

��
). (13)

Clearly, the involved Fourier coe$cients can easily be evaluated from the obtained
displacement u (t) (0)t)¹

��
). It is found that since the function F (u) is even one with

respect to the argument u, thus, the Fourier coe$cients c
�
, c

�
, c

�
,2 always equals zero, the

magni"ed factor � and the calculated coe$cients c
�
, c

�
, c

�2 depend on the A and �, and
they are listed in Table 1. For the computation, we used the M"360 divisions in the
Runge}Kutta method for the numerical solution of ODE [6]. The circular frequency can
also be evaluated by [1]

¹
��

"�2 �
�

��

(h!F (u))��	�du. (14)

We found that the calculated results using the target functionmethod coincide with the ones
from equation (14) very well within the range of four digital values.
In the meantime, if � is a small parameter, using the perturbation method, the

approximate solution is [1, 2]

�"1#

3�A�

8
, c

�
"A�1!

�A�

32 � , c
�
"

�A�

32
. (15)



TABLE 1

� value and the calculated Fourier coe.cients for the solution of the Du.ng equation
d�u/dt�#��

�
u (1#�u�)"0 with the condition u(0)"A and u� (0)"0 (see equations (12, 13))

A"1 case
�" 0)1 0)2 0)3 0)4 0)5 0)6 0)7 0)8 0)9 1)0
� 1)0367 1)0720 1)1060 1)1389 1)1708 1)2017 1)2318 1)2612 1)2898 1)3178
c
�

0)9971 0)9945 0)9923 0)9903 0)9885 0)9869 0)9854 0)9841 0)9828 0)9817
c
�

0)0029 0)0054 0)0077 0)0096 0)0114 0)0130 0)0144 0)0157 0)0169 0)0180
c
�

0)0000 0)0000 0)0001 0)0001 0)0001 0)0002 0)0002 0)0002 0)0003 0)0003
�* 1)0375 1)0750 1)1125 1)1500 1)1875 1)2225 1)2625 1)3000 1)3375 1)3750
c
�
* 0)9969 0)9937 0)9906 0)9875 0)9844 0)9812 0)9781 0)9750 0)9719 0)9687

c
�
* 0)0031 0)0063 0)0094 0)0125 0)0156 0)0188 0)0219 0)0250 0)0281 0)0313

A"1 case
�" 1 2 3 4 5 6 7 8 9 10
� 1)3178 1)5691 1)7844 1)9760 2)1504 2)3116 2)4622 2)6040 2)7385 2)8666
c
�

0)9817 0)9741 0)9698 0)9671 0)9653 0)9639 0)9629 0)9620 0)9614 0)9608
c
�

0)0180 0)0253 0)0293 0)0318 0)0336 0)0348 0)0358 0)0366 0)0372 0)0377
c
�

0)0003 0)0006 0)0009 0)0010 0)0011 0)0012 0)0013 0)0013 0)0014 0)0014

A"2 case
�" 0)1 0)2 0)3 0)4 0)5 0)6 0)7 0)8 0)9 1)0
� 1)1389 1)2612 1)3719 1)4739 1)5691 1)6587 1)7435 1)8244 1)9017 1)9760
c
�

1)9806 1)9681 1)9594 1)9530 1)9481 1)9442 1)9410 1)9384 1)9362 1)9343
c
�

0)0193 0)0314 0)0398 0)0459 0)0506 0)0543 0)0573 0)0598 0)0619 0)0636
c
�

0)0002 0)0005 0)0008 0)0011 0)0013 0)0015 0)0016 0)0018 0)0019 0)0020
�* 1)1500 1)3000 1)4500 1)6000 1)7500 1)9000 2)0500 2)2000 2)3500 2)5000
c
�
* 1)9750 1)9500 1)9250 1)9000 1)8750 1)8500 1)8250 1)8000 1)7750 1)7500

c
�
* 0)0250 0)0500 0)0750 0)1000 0)1250 0)1500 0)1750 0)2000 0)2250 0)2500

A"2 case
�" 1 2 3 4 5 6 7 8 9 10
� 1)9760 2)6040 3)1071 3)5392 3)9240 4)2743 4)5979 4)9002 5)1849 5)4548
c
�

1)9343 1)9241 1)9199 1)9177 1)9162 1)9153 1)9146 1)9140 1)9136 1)9132
c
�

0)0636 0)0731 0)0770 0)0791 0)0804 0)0813 0)0819 0)0824 0)0828 0)0831
c
�

0)0020 0)0027 0)0030 0)0031 0)0032 0)0033 0)0034 0)0034 0)0034 0)0035

*Results from the perturbation method [2].
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For comparison, the relevant results are also listed in Table 1. From Table 1 we see that if
2% is a permissible error, the perturbation technique is acceptable when �(0)6 (�(0)1) for
A"1 (A"2) respectively.

3. ANALYSIS IN GENERAL CASE

If the initial velocity in the vibration is not equal to zero, the initial conditions are as
follows:

u �
���

"A
�
,

du

dt �
���

"B
�
. (16)

Without loss of generality, it is assumed that two values A
�
and B

�
are positive. In fact, the

problem can be solved in two ways.
First is the equivalent method. Clearly, the motion that is determined by condition (16)

could be equivalent to the one determined by condition (2). This method is reached simply



TABLE 2

¹he calculated � values under di+erent initial conditions

A
�
/A 0)2 0)4 0)6 0)8 1)0

� 2)15041512 2)15041512 2)15041613 2)15041613 2)15041610 2)15041620*

*From equation (14).

Figure 1. Motions of vibration under various initial conditions.
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by substituting two sets of the initial condition: (a) u"A and v"0 (from equation (2)), (b)
u"A

�
and v"B

�
(from equation (16)), in equation (5). Thus, we have

B�
�
#��

� �A�
�
#

�A�
�

2 �"��
� �A�#

�A�

2 �. (17)

This is to say, instead of solving the problem of the initial condition (17), we can solve the
problem of condition (2) where the value A is determined by using equation (17).
The second method is directly using the concept of target function. In this case, the target

function may be de"ned by H (t
�
)"v(t

�
)!B

�
, and the governing equation of target

function method takes the form

H(t
�
)"v(t

�
)!B

�
"0. (18)

As before, the second zero of the function, ¹
��
, will be the period of motion.

In order to examine the second method, the following computation was performed under
the conditions: (a) taking �

�
"1 without loss of generality, (b) �"5, (c) A"1, (c)

A
�
/A"0)2, 0)4, 0)6, 0)8, 1)0, (d) B

�
determined by equation (17) from the given values of A,

A
�
and �, (e) Three-hundred and sixty divisions is used in the solution of the di!erential

equation. In this case, the calculated values of the factor � are listed in Table 2. The listed
result proves that high accuracy has been achieved in the second method.
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In addition, the motion of vibration for three cases A
�
/A"0)2, 0)6 and 1)0 are plotted in

Figure 1. As expected, from Figure 1 we see that the motions plotted are merely shifting in
a horizontal direction to each other.

4. REMARKS

Previously, when the computer was not available as nowadays, investigators paid
attention to the solution which can be performed by hand or very elementary computation.
In contrast, the present study mainly depends on the successful numerical solutions and
computer computation. Particular advantages for the method are as follows. Since there is
no di!erence in the numerical solution between the linear and non-linear di!erential
equations, the di$culty caused by the non-linearity disappears if target function method is
used. Also, a highly accurate computation scheme is used, for example, 360 divisions are
assumed in the numerical solution of ODE, the obtained result must be very near to the
exact solution. Finally, all necessary information, including the motion of vibration and the
period of motion, can be obtained from the solution.
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