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The free vibration of spheres composed of inviscid compressible liquid cores surrounded
by spherical layers of linear elastic, homogeneous and isotropic materials are studied using
three-dimensional elasticity equations. The exact three-dimensional equations are first
derived for an N-layered sphere with a liquid core and an extensive parametric study is then
presented for the first few natural frequencies of the spheroidal modes of vibration.
Non-dimensional frequency parameters are compared with values obtained using lower
order membrane and shell theories. It is shown that for a remarkably wide range of
geometric and material parameters, which encompasses values typical for the human head,
the first ovalling mode of a fluid-filled shell behaves like a membrane filled with
incompressible fluid and a simple closed-form expression is derived which closely
approximates the natural frequencies obtained using the exact three-dimensional equations.

© 2002 Elsevier Science Ltd. All rights reserved.

1. INTRODUCTION

The free oscillations of spheres has been of interest for a long time with work on the subject,
in many cases, motivated by an interest in modelling oscillations of the Earth. Lamb [1]
first obtained the equations governing the free vibration of the solid sphere and Chree [2]
subsequently obtained these equations in the more convenient spherical co-ordinates
(rather than in Cartesian co-ordinates). More recently, Sato and Usami [3, 4] have studied
the vibrations of solid spheres and provided extensive numerical results. The vibration of
hollow spheres was studied by Shah et al. [5, 6], using two-dimensional and exact
three-dimensional theory, and natural frequency parameters for several shells with different
inner-to-outer radius ratios were presented in graphical form. Jiang et al. [7] studied the
free vibration behaviour of multi-layered hollow spheres and provided tabular results for
a number of cases. Solid and hollow spheres are also treated in the book by Lapwood and
Usami [8] on oscillations of the Earth.

The free vibration of fluid-filled spherical shells has been treated by a number of authors.
Engin [9] developed a model of the human head consisting of a spherical shell filled with
inviscid fluid using a thin-shell theory. Advani and Lee [10] investigated the vibration of
a fluid-filled shell using higher order shell theory including transverse shear and rotational
inertia. Results are presented both graphically, in the form of frequency spectra, and in
tabular form comparing the higher order theories with the elementary theory for two
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different shell shear wave propagation speeds. More recently, Guarino and Elger [11] have
looked at the frequency spectra of a fluid-filled sphere, both with and without a central solid
sphere, in order to explore the use of auscultatory percussion as a clinical diagnostic tool.
A higher order shell theory was again used to model the outer shell.

In the previous work on the free vibration of fluid-filled shells, frequency spectra or
tabulated results were only presented for at most a few select cases. In the present study,
numerical results are presented for a very wide range of material parameters (e.g., Young’s
modulus of shell, bulk modulus of fluid) and geometric parameters (thickness of shell, radius
of fluid). However, rather than present results for a large range of modes for each case the
emphasis has been placed on the behaviour of the first ovalling (n = 2) mode of spheroidal
oscillation as material and geometric parameters are varied. The motivation for focusing
our attention on this mode is a recent parametric study [12] on the response of a fluid-filled
shell to a radially applied force, which has shown that both the onset of dynamic pressure
effects in the brain and the magnitude of the observed pressures can be predicted very
accurately by the ratio of the impact duration to the period of oscillation of the first ovalling
mode. Numerical results obtained using the full three-dimensional elasticity equations are
compared with results obtained using simpler membrane and shell theories to explore the
range of applicability of these theories.

2. THEORY

2.1. THREE DIMENSIONAL FORMULATION OF FREQUENCY EQUATIONS FOR A
FLUID-FILLED MULTI-LAYERED SHELL

The solution to the equations of motion, in spherical co-ordinates, for an isotropic,
homogeneous, elastic medium are given by Sato and Usami [3] and may be written

u = — Aanl(ns q, 1, Z) Sphls vy = — AmnVl(na q, 1, Z) Spth
wy = mA,,,Win, g, r, z) Sph, (1
U = 0, Uy = manVZ(ns ka r, Z) Sph4a Wy = — anWZ(na ka r, Z) Spth (2)
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where u;, v;, w;(i =1, 2, 3) are the radial, colatitudinal and azimuthal components of
displacement, respectively, and Z, . 1, are linear combinations of spherical Bessel functions

of the first and second kind respectively. Py'(cos 0) are associated Legendre functions,

nis

the harmonic number, g = w/c,, k = w/c,, in which w is the radian natural frequency,
¢, = [(A + 2p)/p]"? is the speed of a longitudinal wave, ¢, = (1/p)'/* is the speed of a shear
wave and p is the material density. The Lamé parameters 4 and p are given by A = vE/
[(1 —2v)(1 +v)] and u = E/[2(1 + v)], where v is the Poisson ratio and E is Young’s

modulus of elasticity, and the quantities A4,,,, B,., and C,, are constant coefficients.
The stress components of interest in this work may be written as

rry = A Rri(n, q, v, z, 0)Sphy, r0, = — A,,R0,(n, q, v, z, W)Sph,,
r¢y = mA,,Rpi(n, q, r, z, 1) Sphs,
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For the free vibration of a fluid-filled shell, the stress components will vanish on the outer
surface of the shell at r, giving

r9r5) = 0, r09(ry) = 0, r¢®(ry) = 0.

At the interface between two solid layers, [, | + 1, continuity of displacement and of the three
stress components given in equations (1)-(6) must exist, giving

) =), ) = ), 0% = 0 ),
o) =00, ) = ¢ V), w0 = W,

where 7, is the outside radius of the Ith layer.

At the interface between the innermost solid layer and the liquid core there is continuity
of the radial displacement and stress components, and the azimuthal and colatitudinal
components of stress on the shell vanish, giving

rrf(rf) = rri(rf), uf(rf) = ui(rf), r@i(rf) =0, r¢i(rf) =0,

where r, is the outside radius of the fluid (inside radius of the shell), and the superscript
i refers to the innermost solid layer of shell and the superscript f to the fluid.

Upon substitution of equations (1)-(6) into the above boundary and continuity
conditions, two uncoupled sets of equations are obtained, one governing the toroidal or
first-class vibrations, which results from the use of equations (2) and (5), and the other
governing spheroidal or second-class vibrations, which results from the use of equations (1),
(3), (4) and (6). The toroidal modes of a shell filled with an inviscid fluid will be the same as
those for the equivalent shell in vacuo and therefore only the spheroidal modes will be
considered in the present study.

2.2. FREQUENCY EQUATIONS FOR A FLUID-FILLED MEMBRANE

The frequency equation for the n > 0 modes of vibration of a membrane filled with
a compressible fluid can be obtained from the work by Engin [9] and is given by

ﬁ4 - ﬁz(l + 3v + )”n - Vn) - (1 - 02)(2 - }n) + (1 —U— ;“n) Yn = Oa (7)

where ¢, = /B/p, is the pressure wave speed in the fluid, B is the bulk modulus of the fluid

and p  is the density of the fluid, ¢} = \/E,/p,(1 — v?)is the plate velocity in the shell where
E is Young’s modulus of the shell, v the Poisson ratio and p, the density, and

R R 2 jn, R
=R ), _Ropy g jna) .= OR

b b
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where R is the radius of the mid-surface of the shell.

From equation (7), limiting cases of a membrane in vacuo and a membrane filled with
incompressible fluid can be obtained:

(1) Membrane in vacuo. Letting y, = 0 the frequency equation for a membrane in vacuo is

B — B2+ 30 + ) — (1 — 032 — 1) = 0. ®)
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(2) Membrane filled with incompressible fluid. For a membrane filled with incompressible
fluid o j(n,2)/j'(n,2) = «?/n and equation (7) can be re-written as

BH1 4+ 1) — B+ 30+ 4y — (1 — v — 2)7) — (1 — 032 — 4) =0, )

where T = (p/ps) (R/h) 1/n. By inspection it is clear that for t = 0 equation (9) is identical to
the frequency equation for a membrane in vacuo given by equation (8).
It is convenient at this stage to introduce the following non-dimensional parameter:

R 3(h/R
Q = wR \/(411/3) R psr+3(0/R) ps
h E,
which for thin shells is approximately equal to Q = w /mass/hE; where mass is the mass of

the fluid-filled shell (shell and fluid combined).
Re-writing equation (9) in terms of ' gives

(1= 0%)? S el
13 (1 + 1)3/4n)* — Q 3 (I+3v+ 74, —(1—v—4,)7)3/4n)
—(1=0v¥)2—-24)=0. (10)

As t=(ps/py (R/h) 1/n >0

301430+ 4) +/ =31+ 30+ 4,)* + 42— 2,)1 —1?)

Q? =4 11
( 7'[/3) 2(1 _ U2) ( )

which, as previously discussed, is identical to the solution for a shell in vacuo.

R 1 -1+ 4,
Ast=Pr22, o0, Q’2(3/4n)w—(2—/ln)=0
ps hn n
from which

Q' = [(4n/3) ——. 12
/(n/);ﬁv_1 (12

Interestingly, varying 7 between 0 and infinity for the n = 2 mode results in only a relatively
small change in the non-dimensional natural frequency Q'as shown in Figure 1. For the
n =2 mode equation (12) becomes

Q' = /(320036 + v) (13)

which is a good approximation for the whole range of fluid-to-shell density ratios p/p; as
well as for a membrane in vacuo. The rationale for the unusual form used for the
non-dimensional parameter (£2') is now apparent as it highlights the surprising insensitivity
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Figure 1. Frequency parameter Q' against T = (p,/p,) (R/h) 1/n using equation (10) for a membrane filled
with compressible fluid. As 7 tends to zero the results are identical to those for a membrane in vacuo (given by
equation (11)). -———= v =00; — v =0-25; ----- v = 0-49.

of the natural frequencies for the first ovalling mode to the distribution of density between
the shell and the fluid. In addition, in practice, it is far simpler to establish the mass of the
whole system rather than the relative densities of the skull and brain.

3. NUMERICAL RESULTS AND DISCUSSION

3.1. SINGLE-LAYER SPHERICAL SHELL FILLED WITH FLUID

Numerical results were computed for fluid-filled spheres consisting of a single
homogeneous isotropic outer shell with an inviscid perfect liquid core. Results are presented
in terms of the non-dimensional frequency parameter Q = w./(mass/hE) and are, a priori,
a function of the following four non-dimensional parameters: the ratio of Young’s modulus
of the shell to the bulk modulus of the fluid (E/B); the ratio of the density of the fluid to the
density of the shell (p,/p,), the Poisson ratio of the shell material v; and the ratio of the
thickness of the shell to outer radius of the fluid (h/r,). Because of the primary interest in
head injury modelling, the non-dimensional geometric and material ratios are also given in
the tables in terms of the baseline values used by Engin [9], that is (p,/p,), = 1000/2140,
(E/B), = 13-79/2:18, and (h/r;), = (0:00381/0-0762) = 1/20. Non-dimensional frequency
parameters Q for the first n = 2 spheroidal mode of vibration are given in Tables 1-3 for the
Poisson ratio equal to 0-25 as obtained using the full three-dimensional elasticity solution.
Results were computed for a very wide range of compressibility ratios E/B and thickness
ratios h/r,. The percentage error in the non-dimensional frequency parameter obtained



TaBLE 1

Frequency parameter Q for the first n = 2 spheroidal mode for density ratio (p;/p) = 1000/2140 = (p,/p;), x 1 (approximately equal to the
typical density ratio of brain to skull bone) and for v = 0-25

(E/B) = (E/B)o % 1/100 1/4 1/2 1 2 4 8 16 32 64
E/B= 0-063 1-58 316 633 12-7 253 506 101 202 405
(hfry) = (hfry)ox  hjry=
1/100 0-0005 3-D 2:527 2:527 2-527 2-526 2:526 2:525 2:523 2:520 2-513 2-499
Membrane 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Bending 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Membrane incomp. 0% 0% 0% 0% 0% 0% 0% 0% 1% 1%
12 0-025 3-D 2-541 2:537 2-532 2-524 2-508 2:476 2414 2:297 2:094 1-791
Membrane 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Bending 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Membrane incomp. 0% 0% 0% 1% 1% 3% 5% 11% 22% 42%
1 0-05 3-D 2:556 2:550 2-544 2-531 2-505 2:453 2:355 2:177 1-890 1-524
Membrane 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Bending 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Membrane incomp. 0% 0% 1% 1% 2% 4% 9% 18% 35% 68%
Acoustic — — — — — — — 60% —31% —15%
2 0-1 3-D 2-588 2:579 2:570 2:554 2:520 2451 2:314 2:066 1-699 1-303
Membrane 0% 0% 0% — 1% — 1% — 1% — 1% — 1% — 1% — 1%
Bending 0% 0% 0% 0% 0% 0% 0% 0% — 1% — 1%
Membrane incomp. 0% 0% 0% 1% 2% 5% 11% 25% 52% 98%
Acoustic — — — — — — —11% —35% —16% — 7%
4 02 3-D 2:662 2:654 2:645 2:628 2-590 2-513 2:345 2:020 1-582 1-169
Membrane —3% —3% —3% —-3% —-3% - 3% —4% — 4% — 4% — 4%
Bending 1% 1% 1% 0% 0% — 1% —2% —3% —3% —-3%
Membrane incomp. —3% — 2% — 2% — 1% 0% 3% 11% 28% 64% 122%
Acoustic — — — — — —92% — 46% —19% — 8% —-3%
8 0-4 3-D 2-836 2:830 2-823 2-810 2781 2711 2:526 2:107 1-528 1-147
Membrane —8% — 8% —8% —8% —9% — 10% —11% —12% — 8% —11%
Bending 2% 2% 1% 1% 0% —2% — 6% — 9% — 7% —10%
Membrane incomp. — 8% — 8% — 7% — 7% — 6% —3% 4% 24% 1% 128%
Acoustic — — — — — — 1% —30% —10% — 7% —1%
16 08" 3-D 3150 3147 3143 3137 3122 3-080 2:930 2415 1772 1-267
Membrane —16% —16% —16% —17% —17% —19% —23% —25% —24% —24%
Bending 6% 6% 6% 5% 3% —2% — 14% —22% —23% —23%
Membrane incomp. —16% — 16% — 16% — 16% — 15% — 14% — 10% 10% 49% 109%
Acoustic — — — — — —65% —23% — 5% —1% 0%
32 1-6 3-D 3506 3505 3503 3-500 3498 3489 3451 3095 2:266 1-614
FE 3508 3508 3506 3504 3-500 3490 3447 2:982 2:161 1-537
Acoustic — — — — — —85% —32% — 4% —1% 0%

T Approximate ratio of the radius of the Earth’s core to the thickness of the mantle.
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TABLE 2

Frequency parameter Q for the first n = 2 spheroidal mode for density ratio (ps/ps) = 1000/2140 x 10000 = (p/ps), x 10000 (tending towards

a massless shell—i.e., density shell — 0) and for v = 0-25

(E/B) = (E/B)o X 1/100 1/4 12 1 2 4 8 16 32 64
E/B = 0-063 1-58 3-16 6-33 127 253 50-6 101 202 405
(hfrp)=(hjrp)ox  hjrp=
1/100 0-0005 3-D 2:526 2526 2526 2526 2525 2525 2-523 2519 2512 2499
Membrane 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Membrane incomp. 0% 0% 0% 0% 0% 0% 0% 0% 1% 1%
1/2 0-025 3-D 2:521 2517 2511 2-:500 2480 2439 2360 2221 1995 1684
Membrane incomp. 0% 0% 1% 1% 2% 4% 7% 14% 27% 50%
Acoustic — — — — — — — —92% —51% —27%
1 0-05 3-D 2:520  2:509 2499 2478 2:437 2360 2219 1994 1-682 1-332
Membrane 0% 0% 0% 0% 0% 0% 1% 1% 1% 1%
Membrane incomp. 0% 1% 1% 2% 4% 7% 14% 27% 50% 90%
Acoustic — — — — — — —92% —51% —27% —13%
2 0-1 3-D 2:523 2:502 2-481 2440 2363 2:223 1-995 1-684 1-332 1-004
Membrane 0% 0% 0% 0% 0% 1% 1% 2% 2% 2%
Membrane incomp. 0% 1% 2% 4% 7% 14% 27% 50% 90% 152%
Acoustic — — — — — —-92% —51% —27% —13% —6%
4 02 3-D 2-549  2:507 2465 2:385 2241 2-:010 1-692 1-335 1:004 0734
Membrane —1% —-1% —1% 0% 0% 1% 2% 3% 4% 5%
Membrane incomp. — 1% 1% 2% 6% 13% 26% 49% 89% 152%  244%
Acoustic — — — — —90% —50% —26% —13% —6% —3%
8 0-4 3-D 2:623 2-533 2446 2292  2:045 1712 1-345 1-009 0736  0-528
Membrane —4% —=3% —=2% —1% 1% 4% 6% 8% 9% 9%
Membrane incomp. — 4% 0% 3% 10% 24% 48% 88% 150%  243%  379%
Acoustic — — — —86% —48% —25% —12% —6% —3% —1%
16 0-8 3-D 2:666 2485 2323 2:067 1724 1-351 1-011 0737 0529 0376
Membrane —4% —=3% —1% 3% 7% 1% 15% 16% 17% 18%
Membrane incomp. — 4% 2% 9% 22% 47% 87% 150%  243%  377%  572%
Acoustic — — —84% —46% —24% —12% —6% —2% —1% 0%
32 16 3-D 2:425 2165 1956 1-661 1-322 1-001 0733 0528 0376 0267
Acoustic — —98% —55% —29% —14% —7% —-3% —1% 0% 0%

L9

ONNOA D 'd



VIBRATION OF FLUID-FILLED SHELLS 673
TABLE 3

Frequency parameter £ for the first n = 2 spheroidal mode for density ratio (p/ps) = 1000/
2140 x 10000 = (p,/ps), /10000 (tending towards massless fluid—i.e., density fluid — 0) and

for v =025
(E/B) = (E/B)o X 1/100 32768
E/B = 0-063 207277

(hfry)=(hfry)ox hjry =

1/100 0-0005 3-D 2:634 2:607
3-D in vacuo 2:634 2634
Membrane 2:634 ... 2:607
Membrane incomp. 2:634 2:634
B. incomp 2:634 2:634
1/2 0025 3-D 2638 2:637
3-D in vacuo 2:636 2:636
Membrane 2:636 2:636
1 0-05 3-D 2:642 2:642
3-D in vacuo 2:642 2:642
Membrane 2:637 ... 2:636
Membrane incomp. 2:637 2:637
2 01 3-D 2:659 2658
3-D in vacuo 2:659 2:659
Membrane 2:638 2:637
Membrane incomp. 2-638 2-638
4 02 3-D 2714 2714
3-D in vacuo 2714 2714
Membrane 2:640 ... 2:640
Membrane incomp. 2:640 2-:640
8 04 3-D 2-869 2:869
3-D in vacuo 2:869 2:869
Membrane 2:649 .. 2:649
Membrane incomp. 2:649 2649
16 0-8 3-D 3-167 3-167
3-D in vacuo 3167 3-167
Membrane 2:672 ... 2:672
Membrane incomp. 2:672 2:672
32 16 3-D 3-507 3:507
3-D in vacuo 3-508 3-508

using membrane theory for a membrane filled with a compressible fluid and with an
incompressible fluid, and for a compressible fluid in a rigid spherical cavity (acoustic modes,
as obtained using the frequency equation derived from the work of Guarino and Elger [11])
are also presented (where the percentage discrepancy is very large, the errors for these
approximate theories have been omitted in the tables and are shown as a dash). The
non-dimensional frequency parameters Q' obtained using equation (10) have been
converted to by correcting the approximation for mass (as h/r, becomes larger, the error
in the approximation for the mass increases). In Table 1, the results are given for a density
ratio p/ps = 1000/2140 ((ps/ps), x 1) which is approximately that of brain and skull bone,
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in Table 2 p;/p, = 1000/2140 x 10000 ((ps/ps), x 10000) which approximates a massless
shell filled with fluid and in Table 3 p,/p, = (1000/2140)/10000 ((p,/ps),/10000) which
approximates a shell filled with massless fluid.

It can be seen from the tables that for h/r, < 0-2, the results obtained for a membrane
filled with compressible fluid are within 5% of the three-dimensional results for the whole
range of E/B and p,/p, values studied here. Results obtained using combined membrane
and bending theory (using the Love-Kirchhoff approximation therefore neglecting rotatory
inertia and shear deformation effects) are also included in Table 1 (p,/p, = 1000/2140) for
comparison and are accurate over a larger range of thickness ratios than results obtained
using the membrane only theory, as might be expected, but the range is not dramatically
increased. Results obtained using the finite element method with eight-noded brick elements
(as well as degenerate tetrahedral and wedge elements) and using full Gaussian integration
are also given for the largest thickness ratio h/r, = 1-6 and can be seen to agree very well
with results obtained using the exact solution. The non-dimensional natural frequency
parameters as obtained using the frequency equation for a membrane filled with
incompressible fluid (equation (10)) are remarkably good over a wide range of values of E/B.
As was previously shown, this mode can be approximated very accurately by the
closed-form expression (13) (which is exact for a membrane filled with incompressible fluid
and with p,/p, tending to infinity).

In Table 3, in addition to three-dimensional results and comparison results obtained
using membrane theories (compressible and incompressible theory), results for a shell
in vacuo using three-dimensional elasticity theory are also given. As was shown for
a membrane filled with incompressible fluid, as p,/p, tends to zero (massless fluid) the
frequencies for a shell filled with incompressible fluid using three-dimensional elasticity
equations are identical to those of a shell in vacuo.

In Table 4, the non-dimensional frequency parameters Q for the first n =3, 4, 5 and 6
spheroidal modes of vibration are given for a density ratio of p,/p, = 1000/2140
(approximately brain and skull) and for the Poisson ratio equal to 0-25 as obtained using
the full three-dimensional elasticity solution. Again results are presented for a very wide
range of compressibility ratios E/B and thickness ratios h/r,. The percentage error obtained
using simpler membrane theory for a membrane filled with a compressible fluid
and incompressible fluid (expressions (7) and (10), respectively), and for a compressible
fluid in a rigid spherical cavity (acoustic modes) are also presented for selected cases. It can
be seen that for increasing mode number the range of applicability of the membrane
theory becomes more restricted, as expected. None-the-less membrane results for the
first n = 3 mode are within 3% of results obtained using the three-dimensional theory
for h/r; ratios up to 0-1. In Figure 2, the mode shapes for the first n = 2-6 modes are
shown.

3.2. THREE-LAYER SPHERICAL SHELL FILLED WITH FLUID

The sandwich structure of the skull was approximated using a three-layer shell of total
thickness h with the inner and outer layers A, (table) of half the thickness of the middle layer
hy (diploe), that is h, = h/4 and h; = h/2. The ratio of Young’s modulus of the middle layer
E,; to Young’s modulus of the inner and outer layers E, was varied in such a way as to keep
the effective membrane Young’s modulus E,....prane t0 bulk modulus ratio of the sandwich
shell constant E,,..prane/ B = (E; + E4)/(2B) = 13-79/2-18. Three total thickness to radius of
fluid ratios were studied h/r, = 0-1, 0-2 and 0-4. Up to four ratios of Young’s modulus of the
middle layer E; to Young’s modulus of the inner and outer sandwich layers E, were



Frequency parameter Q for the first n = 3,4, 5 and 6 spheroidal modes shown in Figure 2 for density ratio (p/ps) = 1000/2140 = (p/ps) x 1 and

TaBLE 4

for v =025
(E/B) = (E/B)y x 1/100 1/4 12 1 2 4 8 16 32 64
E/B = 0-063 1-58 316 633 127 253 50-6 101 202 405
Mode shell
(h/rg) = (h/rg)o x hiry = number theory
1/100 0-0005 3 3-D 3341 3-341 3341 3341 3-340 3-339 3-337 3333 3-325 3-308
Membrane 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
4 3-D 3955 3955 3955 3:955 3-954 3953 3951 3947 3938 3-922
Membrane 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
5 3-D 4-472 4-472 4472 4472 4471 4470 4-468 4-464 4-456 4-439
Membrane 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
6 3-D 4928 4928 4928 4928 4927 4926 4924 4920 4912 4-896
Membrane 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
12 0-025 3 3-D 3310 3-306 3301 3-292 3-274 3-238 3-167 3032 2-789 2-408
Membrane 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
4 3-D 3-866 3-862 3-858 3-849 3-832 3-798 3730 3-598 3-352 2:941
Membrane —1% —1% — 1% —1% — 1% —1% — 1% — 1% 0% 0%
5 3-D 4-340 4-336 4332 4-324 4-308 4276 4213 4-089 3-850 3-430
Membrane —2% —2% —2% —2% —2% —2% —2% —2% — 1% — 1%
6 3-D 4790 4786 4783 4775 4760 4731 4672 4-554 4-322 3-897
Membrane — 4% — 4% — 4% — 4% — 4% — 4% — 4% — 3% — 3% — 2%
1 0-05 3 3-D 3-307 3-300 3293 3-280 3-253 3198 3-091 2-885 2:535 2:057
Membrane — 1% — 1% — 1% — 1% — 1% — 1% — 1% — 1% 0% 0%
Acoustic — — — — — — — 64% 32% 15%
4 3-D 3-872 3-866 3-860 3-848 3-822 3771 3-669 3468 3-098 2-551
Membrane — 3% — 3% — 3% — 3% —3% — 3% —3% —2% —2% — 1%
5 3-D 4423 4417 4412 4-400 4:376 4-327 4-229 4-030 3-647 3-036
Membrane — 7% — 7% — 7% — 7% — 7% — 7% — 6% — 6% — 4% — 3%
6 3-D 5052 5-046 5-040 5-028 5-004 4955 4-855 4-647 4232 3-540
Membrane —13% —13% —13% —13% —13% —12% —12% —11% —9% — 5%
2 01 3 3-D 3364 3-355 3347 3-329 3-294 3221 3-070 2775 2:304 1-768
Membrane — 3% — 3% —3% — 3% — 3% — 3% — 3% —3% —2% — 1%
Acoustic — — — — — — 74% 36% 16% 7%
4 3-D 4070 4-062 4053 4-036 4001 3928 3774 3452 2-891 2-220
Membrane —-10% —10% —10% —10% —10% —10% 127% 86% — 5% — 3%
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TABLE 4
Continued
(E/B) = (E/B)y x 1/100 1/4 1/2 1 2 4 8 16 32 64
E/B = 0-063 1-58 316 6-33 127 253 50-6 101 202 405
Mode shell
(h/rg) = (h/rs)o x hiry = number theory
5 3-D 4937 4928 4919 4-900 4-862 4-781 4-605 4220 3-519 2:683
Membrane —20% —20% —20% —20% —20% —19% —18% —15% —10% —5%
6 3-D 6-061 6-051 6-040 6-017 5970 5-869 5-643 5129 4-201 3-157
Membrane —31% —31% —-31% —31% —31% —30% —29% —25% —16% —8%
4 02 3 3-D 3618 3-609 3-599 3-579 3-538 3-446 3234 2-788 2-168 1593
Membrane —11% —-11% —-11% —-11% —-11% —-11% —-10% —8% — 6% — 5%
Acoustic — — — — — 90% 43% 17% 7% 3%
4 3-D 4751 4740 4729 4705 4654 4-538 4-251 3614 2-760 2:009
5 3-D 6-242 6228 6212 6-180 6-110 5941 5-488 4-507 3-359 2:421
6 3-D 8066 8:047 8:026 7-981 7-879 7-616 6-858 5-400 3-949 2-827
8 04 3 3-D 4231 4223 4214 4194 4150 4037 3697 2:961 2:177 1-561
Acoustic — — — — — 56% 20% 6% 2% 1%
4 3-D 5996 5970 5957 5928 5-859 5660 4-989 3-806 2-752 1962
5 3-D 8052 8:035 8:017 7-974 7-866 7-501 6-260 4620 3-310 2-353
6 3-D 10320 10298 10-273 10214 10-052 9-397 7-448 5407 3-857 2-738
16 0-8 3 3-D 5-087 5-082 5076 5-064 5033 4935 4-450 3366 2:418 1720
Acoustic — — — — 93% 39% 9% 2% 1% 0%
4 3-D 7-259 7-253 7-245 7-226 7177 6973 5-836 4255 3-036 2-155
5 3-D 9-531 9-522 9-513 9-490 9-423 9-032 7-099 5113 3-639 2-581
6 3-D 11793 11-785 11775 11751 11-673 10996 8:306 5953 4-232 3-000
32 16 3 3-D 5734 5733 5731 5716 5723 5705 5-563 4299 3-078 2-185
Acoustic — — — — — 53% 11% 1% 0% 0%
4 3-D 7-814 7-813 7-812 7-811 7-806 7791 7-421 5416 3-856 2735
5 3-D 9-673 9-672 9-672 9-671 9:670 9-662 9-032 6-493 4617 3-273
6 3-D 11-368 11-367 11-367 11-367 11366 11-364 10-551 7-554 5-368 3-804
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n=5 n=6

Figure 2. Mode shapes for the n = 2 to 6 spheroidal modes of vibration for a fluid-filled sphere. Deformed
outline mode shape shown overlaid on un-deformed axi-symmetric finite element mesh.

considered Ed/Et =1 (uniform homogeneous outer shell), 3, + and . These Young’s

modulus ratios correspond, respectively, to the four flexural ratios 1, 1-25, 1-45 and 1-58;
where the flexural ratio is defined as the ratio of the flexural rigidity of the three layer shell
over the flexural rigidity of a uniform shell with equivalent membrane stiffness (it can
easily be shown that the flexural ratio is approximately equal to (7 + E4/E,)/(4(1 + E,/E,))
neglecting the shift in the neutral axis due to curvature). In Table 5, the non-dimensional
frequency parameters Q = . /(mass/hE) for the first n = 2 spheroidal mode of vibration as
obtained using the three-dimensional elasticity equations are given for a density ratio
ps/ps = 1000/2140 (same assumed density across the three shell layers). It can be seen that
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TABLE 5

Frequency parameter Q for the first n = 2 spheroidal mode for density ratio (p/ps) = 1000/
2140 = (py/ps)o % 1 for a three layer shell and for v = 0-25

(Emembrane/B) = 1
(Emembrane/B)O X 6:33
Emembrane/B = Flexural
(h/ry) = (hfry)o x hjry = E,/E, ratio
2 01 One-layer 1 1 2:554
Three-layer 1/2 1-25 2:559
Three-layer 1/4 1-45 2:562
4 0-2 One-layer 1 1 2-628
Three-layer 1/2 1-25 2:642
Three-layer 1/4 1-45 2-648
Three-layer 1/8 1-58 2:666
8 0-4 One-layer 1 1 2-810
Three-layer 1/2 1-25 2-837
Three-layer 1/4 1-45 3-103

Qs relatively insensitive to increases in the flexural rigidity which is to be expected since, as
was shown in Tables 1-3, membrane action predominates.

4. CONCLUSIONS

Results of a parametric study on the spheroidal modes of a fluid-filled shell have been
presented and some interesting conclusions can be drawn from this study. In particular,
the sensitivity of the natural frequency of the first n = 2 spheroidal mode of oscillation
to changes in material and geometric parameters was explored using full three-dimensional
elasticity theory and lower order membrane and shell theories and it was shown
that:

o For a membrane filled with an incompressible fluid, the non-dimensional frequency
parameter Q for the n = 2 mode was shown to be remarkably insensitive to the ratio of
membrane density to fluid density; in other words, regardless of whether the mass of
a fluid-filled membrane is concentrated in the shell or distributed throughout the fluid
it will have a very similar natural frequency for this mode. Furthermore, the frequency
equation for the axi-symmetric modes of a membrane filled with an incompressible
massless fluid was shown to be identical to that for a shell in vacuo (equi-voluminal
mode). The fact that this mode is equi-voluminal is highly relevant when considering
the influence of a hole in the shell (to model for example the foramen magnum). It
explains why the onset of dynamic effects is not observed to be influenced ostensibly by
the presence of a hole in numerical simulations carried out by the author. It also
explains why, for a remarkably wide range of values of the compressibility ratio E/B,
results obtained assuming an incompressible fluid core are very accurate (until the first
n =2 acoustic mode frequency becomes of the same order as the predominantly
structural mode of interest in this study).

« Fluid-filled spherical shells can be modelled as membranes filled with compressible
fluid for shell thickness ratios up to at least 0-2 with at most a 5% error in the predicted
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natural frequencies. For an average head radius of approximately 8 cm, this is
equivalent to a skull thickness of up to 1:6 cm. An interesting implication of the
predominantly membrane behaviour observed is that the three-layer sandwich
structure of the skull will not have a stiffening effect on this mode compared with
a single homogeneous layer with equivalent membrane stiffness.

e For a wide range of compressibility ratios E/B and thickness ratios h/ry, which
encompass values typical for the human head, fluid-filled shells can be accurately
modelled as membranes filled with incompressible fluid. Indeed, over the whole range
of possible density ratios, for h/r; < 0-4 and for E/B x h/r; < 1, the maximum error in
using membrane filled with incompressible fluid expressions (equation (10)) less than
10% for the first spheroidal mode. Furthermore, the non-dimensional n = 2 frequency
parameter of a membrane filled with incompressible fluid can be very closely
approximated by a very simple closed-form expression (equation (13)). From this
equation, the period of oscillation T, of the n = 2 mode is given by

To= \/((317(5 + v)mass)/(8hE)), (14)

where E is the effective membrane Young’s modulus for a multi-layered shell. The
period of oscillation as given by equation (14) is predominantly a function of the total
mass of the fluid-filled shell and the membrane stiffness (hE). It is not a function of the
relative density ratio of the shell and fluid (p,/p;), nor is it a function of the bulk
modulus of the fluid and only a weak function of the Poisson ratio of the shell.
Obtaining a closed-form expression for predicting the period of oscillation of the n = 2
mode of a fluid-filled shell over a very wide range of parameter values is very useful as it
has previously been shown that both the onset of dynamic pressure effects in the fluid
and the magnitude of the observed pressures in the fluid for a shell subjected to an
applied force-time history can be predicted very accurately by the ratio of the impact
duration to the period of oscillation of this mode [12].
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