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When using exact methods for undamped free vibration problems the generalized linear
eigenvalue problem (K!��M)D"0 of approximate methods, e.g., "nite elements, is
replaced by the transcendental eigenvalue problem K (�)D"0. Here � is the circular
frequency;D is the displacement amplitude vector; M and K are the mass and static sti!ness
matrices; and K (�) is the dynamic sti!ness matrix, with coe$cients which include
trigonometric and hyperbolic functions involving � and mass because elements (for
example, bars or beams) are analyzed exactly by solving their governing di!erential
equations. The natural frequencies of this transcendental eigenvalue problem are generally
found by the Wittrick}Williams algorithm which gives the number of natural frequencies
below �

�
, a trial value of �, as � J

�
#s�K (�

�
)� where s� � denotes the readily computed

sign count property of K (�) and the summation is over the clamped}clamped natural
frequencies of all elements of the structure. Understanding the alternative solution forms of
the transcendental eigenvalue problem is important both to accelerate convergence to
natural frequencies, e.g., by plotting �K (�)�, and to improve the mode calculations, which
lack the complete reliability of natural frequencies obtained by using the Wittrick}Williams
algorithm. The three solution forms are: �K (�)�"0; D"0 with �K(�)�PR; and �K (�)�O0
with DO0. The literature covers the "rst two forms thoroughly but the third form has been
almost totally ignored. Therefore, it is now examined thoroughly, principally by analytical
studies of simple bar structures and also by con"rmatory numerical results for a rigidly
jointed plane frame. Although structures are unlikely to have exactly the properties giving
this form, it needs to be understood, particularly because ill-conditioning can occur for
structures approximating those for which it occurs.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

The undamped free vibration problems that often arise in structural analysis are generally
solved by the "nite element method (FEM) which leads to the usual linear eigenvalue
problem
(K!��M)D"0, (1)

0022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.
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where K is the static sti!ness matrix and D is the modal displacement amplitude vector,
such that the displacements are D sin �t, where � is the circular frequency and t is the time.
Because the FEM involves discretization errors, the solutions obtained are only
approximations to those of the problem being modelled. The accuracy can be increased by
using more elements, which increases the order N of equation (1), but this is at the expense
of additional computational e!ort and even then further work may be required if a measure
of the accuracy to which the original physical problem has been solved is required.
Therefore, it may be desirable to use &&exact''methods which avoid the discretization errors
of FEM whenever possible.
Such exact methods can be obtained whenever a structure can be divided into elements,

which are then usually physical members of the structure, for which appropriate di!erential
equations can be derived and solved*if necessary numerically rather than analytically.
These di!erential equations include the distributed mass and sti!ness of the member and
give member equations relating the amplitudes of the forces and displacements at the ends
of the members. The member dynamic sti!nesses are then assembled in exactly the same
way as in FEM to obtain an overall dynamic sti!ness matrix which will itself inevitably be
a transcendental function of frequency. This results in the transcendental matrix equation

K(�)D"0. (2)

The only reliable solution of equation (2) is known to be found by application of the
Wittrick}Williams (W}W) algorithm [1}3]. The algorithm states that J, the number of
natural frequencies below �

�
, a trial value of �, is given by

J"� J
�
#s�K (�

�
)�, (3)

where the summation is over all members; J
�
is the number of natural frequencies of

a member which would be exceeded by �
�
if its ends were to be clamped; and s�K(�

�
)�, the

&&sign count'' of K(�
�
), can be calculated as the number of negative elements on the leading

diagonal of K(�
�
)�, where the superscript � denotes the upper triangular matrix obtained

numerically from K(�
�
) by the usual form of Gauss elimination, in which appropriate

multiples of the pivotal row are subtracted from all (unscaled) succeeding rows and rows
become pivotal in sequence. Equation (3) enables the development of many logical
procedures (of which bisection is relatively simple but slow), for converging on any required
natural frequencies by choosing appropriate successive values of �

�
, because J is known for

every �
�
used. Hence the W}W algorithm of equation (3) requires K(�

�
) to be assembled by

solving the di!erential equations which govern the components of the structure. The
algorithm also requires J

�
to be found for each component member from the same

diwerential equations.
The literature on solving generalized linear eigenproblems, i.e., equation (1), is extensive

and thorough. It is instructive to use analogies between the linear and transcendental
eigenvalue problems to enable the extensive work on the former to be used to elucidate and
extend the far less extensive existing work on solving the transcendental eigenvalue
problem. This requires the production of test problems of su$cient number and scope to
test transcendental eigensolvers in all conceivable adverse circumstances.
The very simplest problems, which are more likely to occur in classroom examples than

in real life, can produce some of the most demanding situations met by transcendental
eigensolvers. Therefore, this paper mainly uses the very simplest of problems, involving only
axial vibrations of an individual rod or of two collinear rods connected end to end. These
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illustrate both the commonest and most obvious situation, for which �K(�)�"0, and the
previously well-researched [2, 4, 5] alternative situation that D"0 and �K (�)�PR. More
importantly, they include three cases of a previously unexamined possible situation, namely
that natural frequencies occur for which �K (�)�O0 and DO0. Particular emphasis will be
placed upon the consequences of this situation when "nding both natural frequencies and
modes of vibration. Nearly all the material presented will be new to most readers, who use
FEMonly, because the linear eigenproblem of equation (1) has no solutions except those for
which �K(�)�"0.
The conclusions drawn from the thorough examination of simple rod problems are then

stated more generally, so as to apply them to all structures. Emphasis is also placed on the
possible ill-conditioning which can occur when the problem is close to being one of the
special cases because real life problems are much more likely to fall into this category than
to form a special case exactly.

2. SIMPLE ILLUSTRATIVE BAR EXAMPLES

The member equations for free axial vibration of a uniform bar are well known [6] to be

�
p
�
p
�
�"h� �

cot � !cosec �

!cosec � cot � � �
u
�
u
�
� , (4)

where h"EA/l, �"�l��/EA, � is the circular frequency and the bar has length l, mass
per unit length �, extensional rigidity EA, axial displacements u

�
sin �t and u

�
sin �t at its

left-hand (L) and right-hand (R) ends (where t is the time) and corresponding end forces
p
�
sin �t and p

�
sin �t.

With F and C, respectively, denoting free and clamped ends, the natural frequencies for
the F}F, C}C and F}C combinations of end conditions are also well known to be, for
i"1, 2, 3,2,

(F}F) �"0 or i�, (5)

(C}C) �"i�, (6)

(F}C) �"(i!�
�
) �. (7)

Equations (4)}(7) can be derived very easily, for �'0, from the governing di!erential
equation of motion

EA;�!�;$ "0 (8)

in which an over-dot represents di!erentiation with respect to time and a prime denotes
di!erentiation with respect to the longitudinal co-ordinate x. Hence equations (4)}(7)
follow by substituting ;"u (x) sin �t and imposing the appropriate boundary conditions
at x"0 and l. Thus, equation (4) is given by u (0)"u

�
, u (l)"u

�
, EA u	(0)"!p

�
,

EA u	(l)"p
�
; equations (5)}(7) are given by u	(0)"u	(l)"0; u (0)"u (l)"0; and u	(0)"0,

u(l)"0 respectively. Note that all of these derivations involve u varying sinusoidally with
x, with half-wavelength �l/�.
For simplicity, a single member may be considered as the full structure. Therefore,

a single bar is examined below, "rst with F}C end conditions and then with F}F ones.



1 2a b

u1 u2

Figure 1. Simple two-bar structure, consisting of the collinear bars a and b, with b clamped at its right-hand end
and a free at its left-hand end.
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For the F}C case, the overall sti!ness matrix for the simple structure is obtained from
equation (4) by setting u

�
"0. Hence, it is a (1�1) matrix, i.e., the scalar h� cot �. Therefore,

�K(�)�"0 when cot �"0, i.e., at �"(i!�
�
)�. This agrees with equation (7) and is therefore

the correct result. Thus, this case represents the usual situation in which �K(�)�"0 gives the
natural frequencies, i.e., the eigenvalues.
For the F}F case, equation (4) is the sti!ness formulation for the whole structure. Hence,

�K(�)�"h���(cot� �!cosec� �)"!h���. Hence, not only is this a case where �K(�)�O0
but it is also a highly unusual situation in which �K(�)� varies linearly with ��, and hence
with ��. Thus, this simplest of all possible structures has thrown up what is probably the
most unusual special case of all! However, it is very important to note that even such
a special case causes no problems when using the (W}W) algorithm, as follows.
From equation (4),

K(�)�"h� �
cot � !cosec �

0 !tan � � (9)

in which element (2,2) is a simpli"cation of (cot �!cosec� �/cot �). Hence, the two leading
diagonal elements of K(�)� are always of opposite sign and so s�K(�)�"1 for all values of
�. (Strictly, they are not of the opposite sign when cot �"0 but then tan �PR and so
computation is impossible. Similarly when tan �"0, cot �PR.) Hence, the W}W
algorithm of equation (3) gives J"� J

�
#1 for all values of �, so that J"1 if � is

in"nitesimally greater than zero. Therefore the natural frequencies are given by 0 and the
natural frequencies of the C}C case. Using equation (6), this means that the natural
frequencies have been correctly predicted as those given by equation (5).
The simple two-bar structure of Figure 1 is now considered. It has D"[u

�
u
�
]� and,

using equation (4),

K(�)"�
(h� cot �)

�
(!h� cosec �)

�
(!h� cosec �)

�
(h� cot �)

�
#(h� cot �)

�
� , (10)

where the subscripts denote properties of bars a and b, so that

K(�)�"�
(h� cot �)

�
(!h� cosec �)

�
0 (h� cot �)

�
!(h� tan �)

�
� (11)

in which !(h� tan �)
�
is a simpli"cation of (h� cot �!h� cosec� �/cot �)

�
. Denoting the

leading diagonal elements of K(�)� by

k�

��
"(h� cot �)

�
, (12)

k�

��
"(h� cot �)

�
!(h� tan �)

�
, (13)

equation (11) gives

�K (�)�"k�

��
k�

��
"(h� cot �)

�
(h� cot �)

�
!(h�)�

�
. (14)
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When D"0, the structure degenerates into two bars with their ends clamped and hence
equation (6) gives

� J
�

"int��
�
/��#int��

�
/��, (15)

where int� � denotes the highest integer that does not exceed the value of the expression
within the brackets. Additionally, from equation (11),

s�K(�)�"s�k�

��
�#s�k�

��
�, (16)

where s� �"1 if the expression within the brackets is negative, otherwise s� �"0.
By substituting equations (15) and (16) into the W}W algorithm of equation (3),

J"int��
�
/��#int��

�
/��#s�k�

��
�#s�k�

��
�. (17)

Thus J is the sum of four non-negative components. The following discussion (in which
i and j are any positive integers) explains how these components vary as �, and hence also
�
�
and �

�
, are increased from zero, for the various cases illustrated in Figure 2. In each of

Figures 2(a) and 2(b), which represent structures with di!erent member properties, the
upper plot shows the variation of k�

��
and k�

��
with �

�
and �

�
, while the lower plot shows the

corresponding variation of J and its components.

(i) When (h� cot �)
�
"(h� tan �)

�
, k�

��
decreases through zero so that s�k�

��
� increases by

one. Equation (17) shows that J increases by one, and so the W}W algorithm indicates
that there is a single natural frequency there for which equation (14) gives �K (�)�"0.
Hence, this is an example of the commonest situation, in which �K(�)�"0 gives
the natural frequencies; see for example the points denoted �

�
and �

�
in Figures 2(a)

and 2(b).
(ii) When �

�
"(i!�

�
)�, cot �

�
decreases through zero and tan �

�
simultaneously goes

through GR. Thus equations (12) and (13) show that s�k�

��
� increases by one and

s�k�

��
� decreases by one. Such points are labelled as case A in Figures 2(a) and 2(b).

Equation (14) shows that �K(�)�"!(h�)�
�
O0. More importantly, equation (17) shows

that J is unchanged and so the W}W algorithm shows that there is not a natural
frequency of the structure at �

�
"(i!�

�
)�, except in the special case considered in (iv)

below.
(iii) When �

�
"i�, cot �

�
goes through GR. Thus equation (12) shows that s�k�

��
�

decreases by one. But int��
�
/�� simultaneously increases by one so that J is unchanged.

Similarly when �
�
"j�, s�k�

��
� decreases by one and int��

�
/�� increases by one so that

J is unchanged. These two situations are labelled as case B in Figures 2(a) and 2(b)
respectively. Equation (14) shows that such points give poles in the plot of �K(�)�, which
are distinct from the natural frequencies given by (i) above except in the special cases
considered in (iv) and (v) below.

(iv) Now consider the exceptional circumstance in which �
�
"(i!�

�
)� and �

�
"j� at the

same frequency�, as illustrated by case C in Figure 2(a). The de"nitions associated with
equation (4) show that this will happen if the properties of bars a and b are such that

(EA/�l�)
�
"�(i!�

�
)/j��(EA/�l�)

�
. (18)

At frequency �, s�k�

��
� increases by one, while both terms of k�

��
pass through GR so

that s�k�

��
� decreases by one. Also, int��

�
/�� increases by one, resulting in a net increase

of one in J, which indicates the presence of a single natural frequency �*. Now DO0,
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Figure 2. Variation of J and its components with � (and hence with �
�
and �

�
), for the structure of Figure 1 with

member properties resulting in h
�
"h

�
"1 and (a) �

�
"1)5�

�
; (b) �

�
"1)5�

�
. The shading in the lower plots

indicates regions where ( ) int��
�
/��"1; ( ) int��

�
/��"1; ( ) s�k�

��
�"1; ( ) s�k�

��
�"1. �

�
, �

�
and

�* are natural frequencies. A}D denote the cases described in section 2.
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because the absence of an axial force at the free node 1 in Figure 1 requires u	
�
"0,

which would be incompatible with u
�
"0 due to the sinusoidal variation of the

longitudinal displacement. Applying a limiting process to equation (14) gives

�K (�*)�"!(i!�
�
)���h

�
(h

�
#h

�
)O0. (19)

Hence, case C is an example of the situation for which �K(�)�O0 and DO0 at the
natural frequency. Note that case C only occurs if equation (18) is satis"ed. Hence, if it
occurs for (i"1, j"2) it will also occur for (i"2, j"6) but not for (i"2, j"3), etc.

(v) Finally, suppose that the properties of bars a and b are chosen such that �
�
"i� and

�
�
"( j!�

�
)� at the same frequency �, as illustrated by case D in Figure 2(b). This will
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Figure 3. Selected mode shapes for case C, satisfying equation (18) with (a) (i"1, j"1); (b) (i"1, j"2);
(c) (i"2, j"1); (d) (i"3, j"2); and for case D, satisfying equation (20) with (e) (i"1, j"1); (f ) (i"1, j"3);
(g) (i"2, j"4). Crosses indicate nodes 1 and 2 shown in Figure 1.
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happen if

(EA/�l�)
�
"�i/( j!�

�
)��(EA/�l�)

�
. (20)

Here, cot �
�
passes through GRso that s�k�

��
� decreases by one, while both terms of

k�

��
decrease through zero so that s�k�

��
� increases by one. Also, int��

�
/�� increases by

one, giving a net increase of one in J and so indicating the presence of a single natural
frequency �*. Now DO0, for the same reason as that given in (iv) above for case C,
and a limiting process gives

�K(�*)�"!h
�
���i�h

�
#( j!�

�
)�h

�
�O0. (21)

Thus, case D also represents the unexpected situation of natural frequencies occurring
for structures for which neither �K (�)�"0 nor D"0.

Figure 3 illustrates, for �
�
"�

�
and EA

�
"�

�
EA

�
, typical mode shapes for cases C and

D considered above, i.e., the two cases for which �K(�)�O0 and DO0 at the natural
frequency. The sine waves shown are not de#ected shapes nor are the straight lines the bar
structure of Figure 1. Instead, the sine waves represent the variation of the axial
displacement ; along the length of the bar with half-wavelength �l/� (see the note below
equation (8)), and the straight line is the axis of the sine wave. It can be seen that case
C represents bar a vibrating as an F}C bar while bar b provides the equilibrium force
required at node 2 by vibrating as a C}C bar. Case D consists of bar a vibrating as an F}F
bar while bar b vibrates as an F}C bar but with its displacement at node 2 compatible with
bar a. Note that the half-wavelengths of the sine waves will not be the same for bars a and
b in either of the cases C and D except for the special case of bars a and b having identical
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values of l/�, and hence also of EA/�. Note also that for case C the slopes of the sine waves
to the left and right of node 2 will usually be di!erent as a consequence of the clamping
forces at node 2 needing to be equal when the bars on either side of node 2 are not.

3. EFFECT ON MODE FINDING

A simple but e!ective method [7] for obtaining modes of vibration to better than
engineering accuracy, quite widely reported in the literature [4, 5, 8], has been shown to be
solving equation (2) with its null right-hand side replaced by a random vector P

�
and with

� close to the corresponding natural frequency. The reasoning that yielded this method is
that if a real structure is excited by any load system with a frequency close to one of its
natural frequencies, the response is dominated by the corresponding mode. This random
force method has been validated in the literature by solving problems, including identi"ed
special cases, numerically although the special cases of the present paper have not all been
included. However, the simplicity of the examples given in the previous section enables
instead the method to be evaluated analytically, as follows.
For the very special case of the single F}F bar of equation (9), P

�
can be represented by

P
�
"[P

�
P
�
]�, (22)

which is modi"ed by the forward Gauss elimination step which gave equation (9) to become
[P

�
P
�
#P

�
sec �]�, where sec � is a simpli"cation of cosec �/cot �. Because � is close to

one of the natural frequencies given by equation (5), �"i�!i�
 (
P0) and so by using
tan ��!i�
, !sin ��Gi�
, sec ��G1, this modi"ed vector couples with equation (9)
to give

h �
!1/i�
 G1/i�


0 i�
 � �
D

�
D

�
�"�

P
�

P
�
GP

�
� , (23)

where the G signs are negative (positive) when i is odd (even). Hence back-substituting
and retaining only "rst order terms gives the mode as [D

�
D

�
]�"

[G(P
�
GP

�
)/i�
h (P

�
GP

�
)/i�
h]� which after normalization is the correct mode

D
�
"!D

�
"1 for i odd or D

�
"D

�
"1 for i even. Hence, back-substitution into the

di!erential equation for the bar, see equation (8), shows that the former are symmetric
modes with ; varying with an odd number of sinusoidal half-wavelengths along the bar
and a nodal point at its centre, while the latter are antisymmetric modes with an even
number of half-wavelengths with maxima at the ends and centre of the bar, as well as
elsewhere for i*4.
Equation (22) also represents a random force vector for the two-bar problem

corresponding to equation (10). Hence the right-hand side corresponding to the K(�)� of
equation (11) is [P

�
P
�
#P

�
sec �

�
]�. Therefore, substituting �

�
"(i!�

�
)�!(i!�

�
)�
 and

�
�
"j�!j�
 into equation (11) gives

�
h
�
(i!�

�
)� (i!�

�
)�
 Gh

�
(i!�

�
)�

0 �h
�
(i!�

�
)�/(i!�

�
)�
�!h

�
j�/ j�
� �

D
�
D

�
�"�

P
�

P
�
$P

�
/(i!�

�
)�
�

(24)

for case C. Similarly, substituting �
�
"i�!i�
 and �

�
"( j!�

�
) �!( j!�

�
)�
 gives

�
!h

�
i�/i�
 Gh

�
i�/i�


0 h
�
i�i�
#h

�
( j!�

�
)� ( j!�

�
)�
� �

D
�

D
�
�"�

P
�

P
�
GP

�
� (25)
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for case D. Again the G signs are negative (positive) when i is odd (even) and the $ sign is
positive (negative) for i odd (even).
It is readily deduced from equations (24) and (25) that the normalized modes for cases

C and D are [1 0]� and [1 G1]� respectively. These two modes are correct, and
back-substitution into the di!erential equations of bars a and b (see equation (8) and the
note below it that the longitudinal half-wavelength is �l/�) gives modes such as those shown
in Figure 3. However, it should be noted that except for special cases (such as when a and
b form a continuous uniform cantilever into which node 2 has been unnecessarily inserted
such that, for i"j"1, l

�
"�

�
l
�
in case C or l

�
"2l

�
in case D), the half-wavelength of the

sine wave for bar a di!ers from that of bar b because their values of l/� di!er, as Figure 3
illustrates.
From equation (25) the choice of P

�
"$P

�
is clearly inappropriate for case D. Because

the choice of the right-hand side should be random, this possibility is very unlikely to occur,
although it might unwisely be used in a classroom example! Taking the appropriate extra
second order terms in the expansions which gave equation (25) and considering the case
i"j"1 and h

�
"2h

�
gives the incorrect mode [D

�
D

�
]�"[1 �

�
]�. In detail, consider the

limit as 
P0 when P
�
�P

�
, by using P

�
"P

�
(1!�) with � small. Now the multiplier used

when obtaining equation (25) is given by equation (10) as sec �
�
, which approximates to

!(1#�
�
��
�) so that the P

�
!P

�
of equation (25) becomes P

�
(!�!�

�
��
�). Hence

equation (25) gives

D
�
"P

�
(!�!�

�
��
�)/�
��(h

�
#�

�
�2h

�
)�, (26)

D
�
"!�P

�
#(h

�
/
)D

�
�/(h

�
/
)"!�D

�
#
P

�
/h

�
�

"!D
��1!

3

2 �

���

�#�
�
��
��� . (27)

For �"0, this gives the incorrect mode D
�
"2D

�
reported above. However for ��
�, it

gives D
�
�!D

�
(1!3
���/2�)�!D

�
, so that the correct mode is approached as 
P0

and the percentage error �100�3
���/2�. Hence, for the eigenvalue accuracy of 
�10��

usually recommended for use with the random force vector mode "nding method, the error
in the mode is approximately (100�3�10���/2�)%. Hence, a mode accuracy of 0)1%,
which usually su$ces in engineering, is obtained for �*1)5�10��. Thus there is a well
below one in ten million chance of the random force vector method failing to achieve
engineering accuracy for this example.

4. ILL-CONDITIONING IN THE VICINITY OF SPECIAL CASES

It has been shown in equations (19) and (21) that �K(�*)�O0 at the natural frequency �*
of either case C or case D. However, cases C and D are, respectively, special cases of A and
B, which have �K(�)�"0 at all natural frequencies. Hence, if ¸

�
and ¸

�
are the values of

l
�
and l

�
giving cases C or D, altering these lengths to ¸

�
#�¸

�
and ¸

�
!�¸

�
, where �¸

�
is

a tiny (&&almost in"nitesimal'') amount, will result in �K(�*)� being zero instead of non-zero
at the natural frequency. This suggests that if plots of �K (�)� versus � are plotted on a single
graph for various values of �¸

�
the graph must have one of the two forms shown

exaggeratedly in Figure 4, in which the shape of the curve for �¸
�
"0 has been assigned

arbitrarily.
To check this intuitive conclusion, computer runs were performed with �¸

�
"0,

�¸
�
"0)001l

�
, �¸

�
"0)002l

�
and �¸

�
"0)003l

�
for both of cases C and D, with
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Figure 4. �K(�)� versus � plots for examples approximating cases C and D. The dashed curve is for �¸
�
"0 and

the continuous curves are for two values of �¸
�
, with the arrows indicating progression from the lower to the

higher of the two values. Note that the continuous curves can cross, as shown, due to the natural frequency and the
pole ("vertical asymptote) moving as �¸

�
increases.
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Figure 5. Plots of �K
 � versus �N for: (a) case C (i"2, j"3); (b) case D (i"5, j"3). Key: �N "�/�*,
�K
 �"�K (�)��10�� where (a) m"7; (b) m"8. The arrows indicate progression from the lowest to the highest
values of �¸

�
, the three values used being �¸

�
/¸

�
"0)001, 0)002 and 0)003. The curve for �¸

�
/¸

�
"0 is shown

dashed.
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EA
�
"2)88EA

�
, �

�
"2�

�
, i"2 and j"3 for case C so that equation (18) gives ¸

�
"2)4¸

�
;

and with EA
�
"0)845EA

�
, �

�
"0)5�

�
, i"5 and j"3 for case D so that equation (20) gives

¸
�
"0)65¸

�
. The results of Figure 5 were obtained by using EA

�
"1200, �

�
"0)263 and

¸
�
"1)47.
From these results it is obvious that when �¸

�
is small, any attempt to converge on the

natural frequency by following the �K (�)� versus � curve will at best be very slow and at
worst will su!er ill-conditioning, although so long as the W}W algorithm is used at every
�

�
and adequate recovery procedures are included, such as reverting to bisection, the

natural frequency should still eventually be converged on.

5. OTHER CASES FOR WHICH �K (�)�O0 AND DO0 AT A NATURAL FREQUENCY

There is a complete analogy between the torsional vibration of a shaft of length l and the
axial vibration of a bar of length l. Hence, if GJ is the torsional rigidity of the shaft and I

�
is

its polar moment of inertia, the results of sections 2}4 apply to shafts so long as EA and

� are replaced by GJ and I
�
, so that h"GJ/l and �"�l�I

�
/GJ [6]. There is also

a complete mathematical analogy between vibrating bars and vibration of taut strings [6],



1 2

3 4

Figure 6. Rigidly jointed plane frame built-in at its right-hand boundary. ¸"3 m for the horizontal and
vertical members. The diagonal member 2}3 has EA"10� MN, EI"1 MNm� and �"100 kg/m. All the other
members have EA"10�� MN, EI"� MNm� and �"100 kg/m.
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but this is of little or no relevance because at least one end is free in sections 2}4 and it is
unclear how tension could be applied at the free end of a string.
The above examples are still very simple, so the question arises as to whether the situation

for which �K (�)�O0 and DO0 at a natural frequency can ever arise for more complicated
structures. Because, as expected, the W}W algorithm fully explained the special cases given
above, it can also be used to answer this question positively and in a completely general
way, as follows.
Consider a structure of any complexity whatsoever that hasN

�
(*1) natural frequencies

at �"�* when clamps are used to enforce D"0 so that � J
�
increases by N

�
as � is

increased through �*. Suppose that the actual (unclamped) structure also has N
�
natural

frequencies at �*, so that J also increases by N
�
as � is increased through �*. It follows

from the W}W algorithm of equation (3) that s�K(�)� does not change value as � is
increased through �*. Now it is known [7] that as � is increased the leading diagonal
elements of K(�)� can only change sign either from ! to # via in"nity or from # to
! through zero. Therefore, the number of diagonal elements of K(�)� that approach zero
as �P�*must be equal to the number that approach in"nity, so that �K (�)�, the product of
the leading diagonal terms of K(�)�, must be "nite at �"�*. This means, for example, that
if a plane frame has a natural frequency �* at exactly a C}C natural frequency of one of its
members, and if none of its other members shares that C}C natural frequency, thenN

�
"1

and the mode for the frame at �"�* has neither �K (�)�"0 nor D"0. Note that cases
C and D above and also the F}F bar case are all simple cases satisfying the rules given here.
To verify this conclusion numerically the rigidly jointed plane frame shown in Figure 6

was analyzed using a computer program [9] that uses the W}W algorithm. First, this
program was modi"ed to include an automated trial-and-error process to "nd a value of
� for which the frame had a natural frequency �* at exactly the fundamental natural
frequency of member 2}3 with C}C ends. This gave �*"0)1242961362 rad/s and
�"1)33402131574624. This value of � was then altered by a succession of small amounts,
to give �K (�)� versus � plots very similar to Figure 5(b), but for which �K (�)�"
!0)53208955�10�� at �"�*.

6. CONCLUSIONS

It has been shown in the literature that for transcendental eigenvalue problems, the
natural frequencies usually occur with �K(�)�"0 and otherwise can occur for D"0 and
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�K(�)�PR. One situation in which the latter case was shown to occur is for structures which
have a number,N

�
, of identical members and which also haveN

�
(*1) natural frequencies

that coincide with a C}C natural frequency of such members. The literature [2, 4, 5] covers
the case N

�
(N

�
for plane frames and it is shown that the W}W algorithm correctly

predicts the presence of theN
�
natural frequencies of the structure. It is also shown that this

is the limiting case of N
�
very close natural frequencies at which �K(�)�"0 occurring when

theN
�
members are very slightly di!erent from one another, because then the �K(�)� versus

� curve hasN
�
very close poles (i.e., vertical asymptotes) between which theN

�
zeros of the

natural frequencies are sandwiched. Finally, it was noted from the computed results in the
literature that, as the poles and zeros coalesced due to theN

�
members becoming identical,

the end result was that the curve had a pole at the natural frequency. Hence the conclusion
was drawn that D"0 modes corresponded to �K(�)�PR.
In the terms of the present paper, this situation can be stated as &there is a pole of

multiplicityN
�
!N

�
due toN

�
of the poles having been cancelled by theN

�
zeros'. Hence

the previously neglected situation explored in the present paper, namely natural frequencies
occurring for which �K (�)�O0, DO0 and �K (�)�P/ R, can be regarded as the limiting case
in which N

�
"N

�
"N and hence the poles and roots exactly cancel each other out. The

analytical and numerical studies of the present paper have shown that �K (�)� has neither
a zero nor a pole at such natural frequencies, so that it is not possible to locate them by
following a plot of �K (�)�. However, it is well known that the W}W algorithm enables
computer programs to "nd these and all other natural frequencies with certainty even in the
most adverse circumstances.
This paper has illustrated that the algorithm is also very e!ective for explaining unusual

or unexpected analytical results, for example those for the simple bar examples presented,
and can also be used to predict such special cases and the circumstances under which they
will occur. In particular, it has been predicted that if any structure has N

�
(*1) natural

frequencies which coincide with each other and with N
�

C}C natural frequencies of
component members of the structure, then these natural frequencies will not exhibit any of
�K(�)�"0, D"0 or �K(�)�PR. A numerical example involving a rigidly jointed plane
frame with eight members, as well as the bar examples, con"rmed this prediction forN

�
"1.

A numerical method for "nding the modes corresponding to the natural frequencies of
structures has been applied analytically to the simple bar examples presented. Hence it has
been demonstrated that this method, which uses a "ctitious random force vector, is very
e!ective for obtaining modes to engineering accuracy and better even for the situation in
which �K(�)�O0, DO0 and �K (�)�P/ R at the natural frequency.
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