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Non-smooth modelling techniques have been successfully applied to lumped mass-type
structures for modelling phenomena such as vibro-impact and friction oscillators. In this
paper, the application of these techniques to continuous elements using the example of
a cantilever beam is considered. Employing a Galerkin reduction to form an N-degree-of-
freedom modal model, a technique for modelling impact phenomena using a non-smooth
dynamics approach is demonstrated. Numerical simulations computed using the
non-smooth model are compared with experimentally recorded data for a flexible beam
constrained to impact on one side. A method for dealing with sticking motions when
numerically simulating the beam motion is presented. In addition, choosing the dimension
of the model based on power spectra of experimentally recorded time series is discussed.

© 2002 Elsevier Science Ltd. All rights reserved.

1. INTRODUCTION

In this paper, the dynamics of a flexible vibro-impacting cantilever beam system is
considered. Such continuous beam systems, even without impacts, have well-known
multi-modal behaviour which has been documented in a number of classic texts [1-3]. The
problem of a cantilever beam impacting against an impact stop has also been considered by
several authors, see for example references [4, 5] and the references therein. However, in
general, this latter body of literature has been concerned mainly with modelling the impact
event itself, rather than the global dynamics of the beam.

Following the work of Moon and Holmes [6] and Moon and Shaw [ 7], a new approach
to modelling the vibro-impact dynamics of beams has been developed [8-10]. In this
approach, the beam is modelled as a single-degree-of-freedom system, and a piecewise linear
stiffness or coeflicient of restitution rule is used to model the impact process. For example,
Moon and Holmes [6] considered the non-linear dynamics of a beam subject to harmonic
and magnetic forcing, using a Galerkin method to reduce the system to a single-degree-of-
freedom (see also reference [11]). Moon and Shaw [7] and Shaw [8] considered
a single-degree-of-freedom approach to modelling a vibro-impact cantilever beam
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experiment, also by reducing the model to a single mode. In this case, the system was
considered as piecewise linear, and the single-degree-of-freedom model was obtained using
a Galerkin method applied to each linear part. Also, using a single-degree-of-freedom
approach to model beam dynamics Bishop et al. [9] compared experimental and numerical
results for a stiff vibro-impact cantilever beam by using an instantaneous coefficient of
restitution model for the impacts.

A similar coefficient of restitution rule is used in combination with a single-degree-of-
freedom linear oscillator to form the now well-known impact oscillator [12]. These systems
have non-smooth dynamical characteristics which have been studied in depth in recent
years; see for example references [13-18] and references therein. Other approaches to
modelling multi-dimensional impact oscillators have included the use of non-smooth
mappings [19], finite elements [20] and studies of lumped mass-type systems [21-25]. In
addition, work on estimating the dimension of multi-dimensional impact oscillators has
been carried out by Cusamano et al. [26] using correlation dimension, and by Azeez and
Vakakis [27], who consider proper orthogonal decomposition as a means of both
estimating dimension and creating a low-dimensional model of a flexible vibro-impact
system. Other authors have studied vibro-impact systems which include continuous rods
[28, 29] and beam elements [30-32].

In this paper, the problem of modelling flexible beams subject to impacts, which because
of their flexibility require multiple modes to capture adequately their dynamical behaviour,
is addressed. In common with previous studies, a Galerkin approach is used to reduce the
system to a finite set of ordinary differential equations—previously usually one. However, in
this work a technique is presented which allows more than a single mode to be used in the
model. In order to model the impact process, a non-smooth model based on the
instantaneous coefficient of restitution rule is used. Qualitative comparisons with
experimental results using models with one to four degrees of freedom will be presented, and
the issues of chatter, sticking and choosing the dimension of the model are discussed in
detail. Finally, comparisons between experimentally recorded and numerically computed
bifurcation diagrams will be drawn.

2. EQUATIONS OF MOTION

Consider a vertically clamped cantilever beam with a motion limiting constraint on one
side. This scenario is shown in Figure 1, where the beam is constrained by an impact stop at
a single point. The stop is positioned at a distance B from the base along the beam, and with
an initial transverse distance a from the beam. It is assumed that the beam is harmonically
forced at a distance C from the base because this relates to the situation in the experimental
system which will be discussed in section 4.

The transverse vibration of the centreline of the beam is denoted by u(x, t), where x is the
length along the beam from the base and ¢ is the time. It is assumed that the beam vibrates
with small enough displacements such that it remains within the linear elastic range.
Therefore, a classical approach can be used for deriving the equation of motion (for example
reference [3]), such that the equation of motion for the beam away from the impact
constraint can be written as

EI 0*u ou o*u

—watn—+pAd—==f(s1) u<a, 1

L4 0s* n ot P o2 f(s,t) u<a (1)
where E is the Young’s modulus, p the density, 4 the cross-sectional area and I the second
moment of area for the beam of length L. As a measure of length along the beam centreline
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Figure 1. Schematic representation of a continuous vibro-impact cantilever beam system.

the non-dimensional co-ordinate s = x/L is defined, such that the distance along the beam
s€[0, 1], and the function f(s,t) represents the forcing of the beam per unit length.
Similarly, b = B/L and ¢ = C/L. In addition, the beam has viscous damping, 5, per unit
length. Equation (1) is the Euler-Bernoulli beam equation for a beam with viscous
damping and forcing. In the following analysis, p, A and I are considered to be constant,
corresponding to the case of a beam with uniform cross-section throughout its length.

2.1. NON-SMOOTH IMPACT CONDITION

When an impact occurs u(b, t) = a and a coefficient of restitution rule of the form
(b, ty) = —ri(b,t-), u(b,t-)=a 2

is applied, where ¢_ is the time just before impact, ¢t is the time just after impact and
re[0, 1] is a coefficient of restitution. It is assumed that the velocities, ¢ are normal to the
beam centreline, and that the tangential velocity component at impact is negligible.

For systems with steel impacting components, it has been demonstrated the cumulative
impact time can be as little as 1% of the overall time [33]. Thus, for this class of systems it
can be assumed that the time of contact for individual impacts is so small as to be close to
zero. This assumption means that equation (2) can be applied instantaneously such that
t- =t,, and a non-smooth discontinuity in velocity occurs at impact. The advantage of
using this assumption is that the analysis of the system is simplified as there is no need to
compute the time of impact.

However, previous systems studied using this non-smooth assumption have been the
lumped mass type. For such systems, the velocity vector relates to a set of discrete lumped
masses. Thus, a particular lumped mass can have a non-smooth discontinuity in its velocity
field independently from the other masses. For a continuous structural element, such as
a beam, the velocity is a continuous function of beam length. Thus, in order to apply the
non-smooth impact condition (equation (2)), at u = a, the velocity components for the
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Figure 2. Schematic representation of a continuous cantilever beam: (a) before impact, (b) at time t = 7_, (c) at
time t = t, and (d) after impact. Note: for simplicity a = 0 in this figure.

non-impacting part of the beam s # b remain unaffected. Therefore in addition to
equation (2), the relation

u(s #b,ty)=u(s#b,t_), ub,t_)=a (3)

also applies.
The combination of equations (2) and (3) are essentially a non-smooth representation of

the physical impact process for the beam. In the physical beam system, the contact time will
be finite (though small for materials with high stiffness) and the velocity reversal will
propagate outwards from the point of impact, a process which is captured with this type of
model.

The application of this type of non-smooth impact law to a continuous beam can be
illustrated using the schematic diagrams shown in Figure 2. In Figure 2(a) the beam is away
from impact, but with a velocity field, indicated with arrows, is acting in a direction which is
forcing the beam towards the impact stop. Figure 2(b) represents the time t = ¢t_, which is
the first part of the non-smooth impact process; the beam has come into contact with the
stop, u = a at time t =t _, just before the application of the coefficient of restitution rule.
The next stage in the impact process is the application of the coefficient of restitution rule at
time t = ¢, shown in Figure 2(c), where the velocity at the point of contact has been
reversed and reduced. Finally, the beam leaves contact with the stop (Figure 2(d)) with time
t > t,. Figure 2(d) also shows the case where the velocity field for the beam has both
positive and negative components at the same time.

So, after an impact has occurred it is possible for some parts of the beam to be moving
away from the impact stop, and at the same time other parts of the beam are still moving
towards the impact stop. This type of behaviour has been observed qualitatively during
experimental testing of vibro-impacting flexible beam systems. The aim here is to use the
non-smooth impact conditions for the beam, equations (2) and (3), combined with
multi-modal modelling techniques to obtain a continuous non-smooth model of such

flexible beam systems.

2.2. GALERKIN REDUCTION

The Euler-Bernoulli equation can be reduced to a series of ordinary differential
equations by using the standard Galerkin approach (see for example reference [34]), such
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that the transverse displacement of the beam is approximated by
u(s, t) =Y, ¢;(s) q;(), (4)
j=1

where ¢;(s) are the normal mode shapes of the beam, and g;(t) are the modal co-ordinates.
Then, by substituting equation (4) into the Euler-Bernoulli equation (equation (1)), applying
the orthogonality principle for normal modes [3], and then truncating to N equations
yields

N

Z <w,%jqj(t) + 20 m,;4;(t) + G;(t) = piA L f(s, 1) ¢; ds> j=1,2,3...N, (5)

j=1

where the natural frequency of each mode is

El

g = (£)? DAL® (6)

and &; is the jth eigenvalue. A further assumption is that damping # is linearly proportional
to stiffness where {; = #/n, is the ratio of damping to critical damping 1, = 2pAw,;.

It is assumed that f(s,t) can separated into a space-dependent function and
a time-dependent function such that f(s, t) = g(s) h(t). Therefore, as the forcing is applied at
a single point, s = ¢, g(s) is a Dirac delta function g(s) = d(s — ¢). Thus, the integral term in
equation (5) becomes

1

Jl f(s, 1) ¢;ds = h(r) J 8(s — ¢/L) §j ds = h(t) di(c/L) = h(t) o;, ™

0 0

where o; is a constant value for each mode, dependent only on the predefined position of

forcing at s = ¢. Note that when c¢ is close to a node point for a particular mode, the

excitation of this mode can be significantly reduced, because ¢; =0 at a node point.

Conversely, if ¢ is at an anti-node, then the excitation of that mode will be maximized.
For each mode, the equation governing the modal co-ordinate is then

%

(1) + 20;0,54,(0) + wpiq;(t) = m h(1), ()

where m = pAL. Equation (8) has a well-known exact solution (see for example reference
[3]) which applies during non-impacting motion, u(b, t) < a.

2.3. MODE SHAPES AND INITIAL CONDITIONS

In previous studies of the constrained cantilever beam, Moon and Shaw [7] and Shaw
[8], the solution of a clamped—-free cantilever is matched with a clamped-pinned beam at
impact to obtain a solution for a piecewise linear beam model. This approach is based on
the assumption that the beam is in contact with the stop for some contact time ¢, and that
only a single mode of vibration is considered. Our current approach is to use a non-smooth
coefficient of restitution rule (equations (2) and (3)) for which ¢, is assumed to be so short as
to be approximately equal to zero. Thus, when an impact occurs, the beam is in contact with
the constraint for a negligible (ideally zero) amount of time, and as a result mode shapes of
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the beam during impact are not considered to be those of a clamped-pinned beam (see
discussion on sticking in section 5.1).
The normal modes shapes for a cantilever beam can be defined as

¢;(s) =(cosh &;s —cos &;5) — oj(sinh &;s —sin &;s), j=1,2,3,... 9)
where

_(sinh {; —sin &)
%= (cosh &; + cos &)

(10)

and ¢; are the eigenvalues of the beam [35].
If required, the initial conditions for the motion of the beam can be determined from

us,0)= ¥ 4,09 4,0 (1

and

0= 3 /940 12)

In all the simulations and experiments in this current work, the initial conditions are
u(s, 0) = 1(s, 0) = 0.

3. VIBRO-IMPACT CANTILEVER BEAM ANALYSIS

In this section, a non-smooth model for a vibro-impacting continuous beam is obtained
by combining the non-smooth impact law with a Galerkin reduction of the Euler-Bernoulli
equation. Firstly, following the standard Galerkin approach, the number of modes is
truncated to N, such that the dynamics of the beam is modelled by N ordinary differential
equations of the form of equation (8). The condition for an impact to occur is that
u(b, t) = a, and as the systems is now truncated to a set of N modes, the condition for impact
can be written as

M =

ulb, )y =a= ), ¢;(b) ¢;(t) = d(b) q(2), (13)

J

1

where  ¢(b) = [¢1(b), ¢(b), ..., dx(b)] and q(t) = [41(2), g2(0), ..., qn(®)]". Using this
relationship in the impact law, equation (2) can be expressed as

o(b)qt:) = —rdbd)qt-), ¢(b)q() = a (14)
In the N =1, cases ¢(b) and q(t) become scalar and the relationship reduces to
q(t+) = —rq(t-). However, for N > 1 this cannot hold because for the remainder of of the

beam, s # b, equation (3) applies during impact.

3.1. EXAMPLE: TWO-MODE MODEL OF BEAM

To demonstrate how to include the effect of equation (3) consider the case for N = 2,
using the displacement of the beam at the point of impact, s = b and the point of forcing,
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s = c. Thus, for such a system at an impact

(b, ty) = — rii(b,t_),

(e, t4) = (e, t2), (15)

which can be written as

o) q(ts) = —rd(b)q(r-),
() 4(r4) = d(c)q(r-),

where, in this case ¢(b) = [$1(), ¢2(b)], ¢(c) = [$1(c), pa(c)] and §(2) = [4:1(1), ¢2(t)]". The
relations in equation (16) can be combined to give

(16)

[P]14(t+) = [RI[®]q(z-), (17)

where [®@] = [¢p(b), dp(c)]" is a (2 x 2) matrix and
i 18
[R] = [ 0 J (18)

is the coefficient of restitution matrix. Finally, from equation (17) a relationship for the
modal velocities at impact is obtained,

q(t+) = [@] '[RI[®]4(t-), (19)

which is a modal form of the coefficient of restitution rule.
The following observations on this example are made:

1. To have square matrices, this analysis requires that the number of modes N to be equal
to the number of points considered on the beam. Square matrices simplify the analysis
as matrices have to be inverted.

2. The matrix [@] is effectively a subset of the full modal matrix containing the normal
modes for the beam. As N becomes larger, [ @] becomes a better approximation of the
full modal matrix.

3. For vibro-impact systems, the effect of decoupling the governing Euler-Bernoulli
equation into normal mode components is to couple the modes via impact;
equation (19).

This analysis can be generalized to consider any number of points along the beam. To
ensure that square matrices are used, it is assumed that the number of modes, N, and the
number of points along the beam are the same. Note also that this set of points must include
the point of impact. Then the matrix [@] can be written as

[$ils)  dals) .. das)]
Gi(s2)  Palsz) ... Pals2)
[@]=| di(s3) as3) ... dals3) |- (20)

| Pilsy)  dalsy) ... dalsw)

and [R] =diag[1,1,...,—r,...,1,1], with the coefficient of restitution positioned to
coincide with the position of the impact stop.
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Figure 3. Schematic representation of the beam apparatus.

4. EXPERIMENTAL RESULTS

The experimental results were recorded from a steel cantilever beam apparatus
constructed specifically for this work. A schematic representation of the experimental
apparatus is shown in Figure 3. The cantilever beam has dimensions of length 300 mm
width 25-5 mm and thickness 0-49 mm. The beam is clamped vertically into a steel base, to
which a steel frame is attached which provides a housing for the impact stop, displacement
and forcing transducers. The impact stop is a 3 mm diameter steel rod, with a rounded tip,
fixed to the frame with a lock nut. The magnetic forcing transducer consists of an electro
magnet capable of producing a variable magnetic field from an input analogue voltage
signal which is provided via a LabPC + data acquisition card installed in a personal
computer. The capacitative displacement transducer works in conjunction with a Wayne
Kerr TE 100 Mk II feedback amplifier. The transducer is calibrated to read displacements
in the range of + 1-25 mm. The signal from the Wayne Kerr is recorded using the
LabPC + card.

Using equation (6), the first four natural frequencies for the beam have been computed
using the following parameter values. Young’s Modulus E = 205 x 10° N/m?, second
moment of area I =244x10"'*m* density p = 8500kg/m>, cross-sectional area
A =124x10"°m? and length L = 0-3m. The results are f; = 43, f, = 26:84, f5 = 751,
fa = 1473, where f; = w,;/2n Hz. These compare with measured frequencies (see Figures 4
and 5(b)) of f; ~38Hz, f,~21'5Hz, f;~106Hz and f, ~210Hz From these
measurements, it can be seen that the analytically computed frequency is a reasonably close
approximation for f;, but the accuracy of the predicted frequency decreases with increasing
mode number.

A frequency response diagram for the beam is shown in Figure 4. For this and all
subsequent figures, the convention of reference [36] is followed where the amplitude of
response is shown in voltage units. From Figure 4 the shape of the resonance peaks indicate
that the beam is lightly damped. The damping for the flexible beam was estimated using
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Figure 4. Experimentally recorded frequency-response diagram for the beam, showing first two resonance
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impacting time series sample rate 1000 samples/s, (b) power spectrum, (c) numerical simulation of non-impact
motion in (a), parameter values; F = 0-6(V), Q = 144, N = 4, n = 0-005.
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a half-power bandwidth on the first two resonance peaks to occur in the response spectrum
corresponding to the first two natural frequencies of the beam. Using this frequency
response data gives a value of 5 (including data from some free vibration tests) in the range
0-01-0-005 (Ns/m)/m. The value 1 = 0-005 was subsequently used for all modes in the
numerical simulations. If data could be obtained for more than the first two modes, it is
anticipated that the accuracy of the model could be improved by including individual
damping values for each mode. Each experimental test was started from the static state, so
determining initial conditions for the experimental beam, was straightforward because
u(s, 0) = (s, 0) = 0, Vs.

In Figure 5(a) 1 s of a typical non-impacting time series sampled at a rate of 1000 samples
per second from the flexible beam forced at f= 21 Hz (close to the second natural
frequency) is shown. The power spectrum of this signal is shown in Figure 5(b). From the
power spectrum, it can be seen that for the non-impacting response the most significant
modal components are the first four, fi, f>, f3 and f,, and as the system is being forced close
to f5, this is the largest component in the response. In fact, it is not possible to distinguish
any other modal contribution from noise above f;, (approximately 210 Hz). Thus, by
viewing the power spectrum for this particular beam time series the number of modes which
contribute to the overall motion can be estimated, by the appearance of the associated
modal frequency in the spectrum. This gives a basis for choosing N in the Galerkin
approach developed in section 2.2.

Two other approaches have been discussed for estimating the number of modes to
include in modelling continuous vibro-impacting systems. Cusamano et al. used
a correlation dimension approach [26] and Azeez and Vakakis have demonstrated
a method based on proper orthogonal decomposition [27].

5. NUMERICAL SIMULATION OF FLEXIBLE BEAM

Having chosen N, and estimated the parameters and initial conditions for the beam
a numerical time series of the beam motion can be computed. This is achieved by computing
the exact solution to equation (8) in small time steps At such that t,.; = t, + 4t, for each
mode included in the model. This is by assuming that initially the beam starts away from the
impact stop. At each time step, the condition ¢ (b) q(t,) < a is checked. When ¢ (b) q(t,) > a,
the values q(t,- ;) and q(t,) are on either side of the impact discontinuity, and a secant-type
root finding method is used to compute the exact time of crossing t; from which the modal
values at impact q(t;) are found. Then the impact law (equation (19)) is applied and the time
stepping of the exact solutions continues.

5.1. STICKING MOTIONS

For some parameter values, the beam undergoes a succession of low-velocity impacts in
quick succession. In impacting systems, this phenomenon is referred to as “chatter” [37]. If
the sequence of low-velocity impacts continues, the beam can become stuck to the stop, in
a similar way that a bouncing ball eventually comes to rest on a horizontal surface. For the
beams considered in this study, the regions of chatter were very small, and periods of
sticking behaviour were very short in comparison to the forcing periods. As a result, this
behaviour could not be qualitatively observed experimentally due to limitations in the
experimental sampling rate, but was observed in the numerical simulations of the beam.

A sticking motion typical of those observed during numerical simulation is shown in
Figure 6. In Figure 6(a), a 2 s sample of a vibro-impact time series is shown, and in (b)
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Figure 6. Numerical simulation of a typical sticking motion. Parameter values a = — 1-05, r =08, F = 01,
N =4, p=28500, E =205x10'!, Q = 2721 and n = 0-005. (a) Time series of motion with sticking close to
t = 22-76. (b) Close up around the sticking region.

a close up around the sticking region, which in this case occurs close to t = 22-76. Here
a succession of low-velocity impacts forming a chatter sequence followed by a short sticking
period can be observed.

To deal with sticking motions numerically the approach proposed by Cusumano et al.
[22] is adopted, which is based on recording the time interval between subsequent impacts.
When this time interval falls below a certain threshold, as it can after a chatter sequence, the
beam is assumed to be stuck to the stop. The method proposed by Cusumano et al. [22] was
for a lumped mass system with a single mass subject to a motion limiting constraint. Once
sticking had been detected the force holding the constrained mass against the stop could be
computed from the motion of the remaining masses. When this force passed through zero,
the mass will no longer be held against the stop and so the sticking motion ends.

For continuous systems this approach cannot be so easily applied, and for this study
a different method has been applied. The onset of sticking is computed in the same way, by
monitoring the time interval between successive impacts. Then during the sticking phase,
a root finding method is used to compute the required force, applied at the point of impact,
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to keep the beam displacement equal to the stop distance, i.e., u(b, t;) = a. When this force
passes through zero the sticking motion is deemed to have ended.

To model sticking motion, the approach of assuming that the beam is clamped—-pinned
during sticking [7, 8] was also considered. However, for systems where N > 1 this means
that at impact

M =

u(b, t) =

J

¢j(5) qj = Z, lﬁj(s) qj = 4a, (21)

1

where ;(s) are the modes for a clamped-pinned beam. In general, this relation cannot
hold as

N N
Y b a; # Y vi9)g;. (22)
j=1 j=1
An alternative would be to use the relationship
N N
ub,t) =Y ¢is) q; =Y, ¥;(s) 4; = a, (23)
ji=1 ji=1

where §; are the modal co-ordinates for a clamped-pinned beam. However, this leaves the
problem of the relating the two sets of modal co-ordinates g; and §; at the point of
discontinuity. Therefore, clamped—free modes were used during simulations of sticking
motion.

5.2. COMPARISON BETWEEN NUMERICAL AND EXPERIMENTAL RESULTS

For comparison between numerical and experimental results, Figure 5(c) shows
a simulation of the non-impact motion shown in Figure 5(a). This simulation (using
a four-degree-of-freedom model) has been computed using the Galerkin method, with
N =4, and using a harmonic forcing function of the form f(t) = F cos(Qt). It can be seen
from Figures 5(c) and 5(a) that there is good qualitative correlation, indicating that the
modelling method works for the non-impacting case, a fact which is already well known
from the general literature on classic vibration theory [1-3].

In Figure 7(a), a typical vibro-impact time series recorded from the flexible beam
experiment at a forcing frequency of © = 20-8 Hz close to the second natural frequency is
shown. The power spectrum of this motion is shown in Figure 7(c), here vertical lines
represent the theoretically computed natural frequencies of the non-impacting beam. It is
interesting to compare this power spectrum with the non-impact example in Figure 5(b).
The vibro-impacting power spectrum has a much greater high-frequency content. In
addition, there are several significant power spikes in the spectrum, and it is not obvious
whether these are due to a modal contribution or could be attributed to the non-linearity in
the system. For the first two computed natural frequencies, there does seem to be
a reasonable correlation with a nearby power spike in the spectrum. The power spike at
approximately 60 Hz may be due to the third mode, but from the three remaining spikes at
120, 160 and 195 Hz, it is not possible to distinguish which correlates to the fourth and fifth
modal contributions. However, in common with the non-impacting case there is no
significant modal contribution above 250 Hz. By comparison with Figure 5, it can be
observed that the additional power spikes in the spectrum are due to the non-linearity
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Figure 7. Impacting beam simulation: (a) Experimentally recorded signal for the beam and power spectrum
sample rate 1000 sample/s, (b) numerical simulation, parameter values u;= — 07, N =4, F = 06, Q = 283,
n = 0005, r = 0-8, (c) power spectrum of signal shown in (a), vertical lines represent natural frequencies computed
using classical beam theory and (d) numerically generated power spectrum.

caused by impacts, and therefore it is assumed that a four-mode model is sufficient to model
the beam dynamics.

Thus, in Figure 7(b) a numerical simulation of the motion in Figure 7(a) is shown, using
the non-smooth Galerkin approach, with N =4. As with the non-impact result this
simulation appears to give a good qualitative agreement with the experimental recorded
time series in Figure 7(a). The power spectrum of the numerical simulation is shown in
Figure 7(d). As would be expected, the main frequency components of this signal correspond
to the first four computed natural frequencies. One significant additional frequency
component occurs close to the second natural frequency; this can also be seen in the
experimental spectrum, and is due to the forcing frequency at 20-8 Hz.

5.3. DIMENSIONALITY OF THE MODEL

In order to chose the number of modes to include in the modelling of the beam, the
qualitative technique of examining the power spectrum of a recorded experimental time
series has been used. By examining the spectrum, individual power spikes can be attributed
to a particular modal contribution, and hence the number of modes for a model estimated.
It is interesting therefore to consider the effect of underestimating the number of modes
which contribute to the beam response.
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In Figure 8, numerical simulations for both the non-impacting case (a) and the

vibro-impacting case (b) are presented with simulations using N = 1,2, 3 and 4. For the

non-impacting case, Figure 8(a), it can be seen that using a single-mode N =1, the

amplitude of response is significantly underestimated by the model. This is due to the fact

that in this example the system is being forced close to the second natural frequency
f>» =~ 21-:5Hz, and thus for a single-mode model with a resonance at f; =~ 3-8 Hz the
response to excitation at f, will be low amplitude. When the second mode is added, N = 2,

as would be expected, the response becomes much closer to the experimental values, in fact,

a slight overestimate. Finally there is very little difference between the solutions for N = 3

and 4, which gives a close qualitative agreement with experimental results.

For the vibro-impacting model, Figure 8(b), the single-mode solution N = 1 predicts
a periodic vibro-impact solution. It is interesting to note that in this case the system is also

being forced away from the first natural frequency but unlike the non-impact case the
amplitude of response of the single-mode model is in good agreement with experimental

data, Figure 7(a). The main difference is that the model is only capable of simulating
periodic-type motion for a single harmonic forcing term, whereas the experimental system
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Figure 9. Power spectrum of the numerical simulations shown in Figure 8: (a) N = 1, (b) N = 2, (c) N = 3, and
(d) N =4.

appears to qualitatively exhibit a quasi-periodic-type response. Thus when additional
modes are included in the model, N =2, 3,4 the quasi-periodic nature of the motion is
represented in the response of the model. Note also that although each of the solutions
N =2, 3,4 produces a qualitatively different response, the time of impact and maximum
amplitudes are all approximately similar.

The power spectral densities for the numerical simulations in Figure 7 are shown in
Figure 9. In Figure 9(a), a large number of harmonics are visible in the spectrum due to the
sharply defined non-smooth discontinuity in the time series. In Figures 9(b)-(d) the
harmonics are substantially reduced and the additional modal contributions, modes 2,
3 and 4, respectively, can be seen in the spectra.

5.4. BIFURCATION DIAGRAMS

Using the four-mode model for the beam, a measure of the beam displacement can be
computed for a range of frequency values; for this analysis, the maximum minus the
minimum displacement per forcing period is used. In this study, only frequency values close
to the first resonance peak in the spectrum are considered which, for the experimental
system, is f; ~ 3-2 Hz. Figure 10(a), shows an experimentally recorded bifurcation diagram
for the beam. In Figure 10(a) approximately 10 steady state readings from the beam tip at
each frequency value were recorded, having first allowed the transients to decay. In this
example, the impact stop was positioned at a displacement equivalent to approximately
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Figure 10. Flexible beam: (a) experimentally recorded bifurcation diagram (c) and (b) numerical simulation,
parameter values ug = — 1-05, N =4, A = 0-1, ¢ = 0-0-005, r = 0-6.

— 1:05 V. Therefore as the maximum minus minimum displacement is being plotted, the
first grazing will occur at approximately 2.1 V. During these experiments, forcing amplitude
was significantly reduced so that non-impacting resonance curves could also be recorded
without excessively large beam vibrations.

In Figure 10(b), a numerically computed bifurcation diagram is shown for the first
resonance peak in the four-mode model for which f; ~ 4-3 Hz. It can be seen that the
qualitative appearance of the two plots is similar, with a non-impacting behaviour below
Max-Min =21 and hysteresis loop behaviour for frequencies greater than the
non-impacting natural frequency indicating, as expected, hardening spring-type behaviour
[7, 9]. Quantitatively, the numerical solution gives good agreement for Max—Min
amplitude but is less accurate for the frequency values even after accounting for the
approximately 1 Hz frequency shift between experiment and simulation. It appears that
both the frequency scale and range have significant differences between experiment and
simulation.
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6. CONCLUSIONS

In this paper, non-smooth modelling techniques have been applied to continuous
systems such as beams. Numerically computed simulations have been presented for
flexible cantilever beam vibro-impact motion using this technique, which provide
reasonable qualitative comparisons with experimentally recorded results within the
parameter range studied.

The formation of the numerical model depends, in its current form, on the number of
modes chosen being equal to the number of points considered on the beam. A further
condition is that the point of impact must be included. This is a generalization of previous
studies, where for a beam with a single point of impact the system was reduced to a single
degree of freedom.

The impact process has been modelled using an instantaneous coefficient of restitution
rule. The main limitation with this approach is that the impact time for flexible beams may
not always be small, although allowance has been made for chatter and sticking motions. In
systems where impact times are not short, the assumption of an instantaneous impact
would not be valid and a different modelling approach would be required.

For engineering structures with high flexibility subject to non-smooth effects, such as
impact and friction, multi-modal behaviour is a significant part of the dynamical behaviour.
Single-degree-of-freedom models, although useful, do not fully capture this behaviour. The
modelling process presented here provides a means of modelling the dynamics of
continuous systems, with the inclusion of the higher dimensional dynamics.
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