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This paper extends an earlier study on sound propagation over poro-elastic layered
ground to range-dependent and topographic ground. The model is based on
a pressure}velocity "nite-di!erence formulation and is coded in the computer program
PORAC. To highlight the in#uence of range-dependent parameters and topographic
features on sound propagation, four cases are considered: (i) a homogeneous poro-elastic
half-space (the base case); (ii) the base case with a zone in the ground with a higher
permeability; (iii) the base case with a zone of higher sti!ness; (iv) the base case with
a rectangular hill. The paper presents typical results of sound propagation in these cases
comprising synthetic time histories of overpressure in the atmosphere and ground vibration
as well as snapshots of the response of the atmosphere}ground system at selected times.
Comparative results in these cases serve to highlight the e!ect of the various
non-homogeneities considered in this study.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

In recent years, researchers have used di!erent approaches to study the propagation of
airborne acoustic pulses. The applied methods have included complex impedance ground
representation (e.g., reference [1]), rigid-porous approximation (references [2, 3]),
visco-elastic approach (e.g., reference [4]), and frequency-wavenumber FFP (e.g., Schmidt,
[5]). The former model has been used by Chotiros [6] for studying sound propagation in
water-saturated sand in the 10}100 kHz frequency band and by Hole et al. [7] for the
simulation of low-frequency impulse noise and ground vibration in the Norwegian airblast
tests in Haslemoen. A similar model has been used by Tooms et al. [8] to predict sound
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.
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propagation at single frequencies and the possible e!ect of ground elasticity on atmospheric
sound propagation.
A di!erent computational technique based on pressure}velocity "nite-di!erence

formulation (PV}FD) was developed by Dong et al. [9] and used to simulate the
propagation of sound over a layered poro-elastic ground. This model is formulated in an
axisymmetric co-ordinate system and is a modi"cation of the model originally developed
for simulating acoustic wave propagation in borehole logging and seismics [10]. This paper
extends the "nite-di!erence computational technique of Dong et al. [9] to range-dependent
and topographic ground conditions. Four cases are considered: (i) a homogeneous poro-
elastic half-space (the base case, Case A); (ii) the base case with a zone in the ground with
a higher permeability (Case B); (iii) the base case with a zone of higher sti!ness (Case C);
(iv) the base case with a rectangular hill (Case D). The paper presents typical results of
sound propagation in these cases comprising synthetic time histories of overpressure in the
atmosphere and ground vibration as well as snapshots of the response of the
atmosphere}ground system at selected times. Comparative results in these cases serve to
highlight the e!ect on the various non-homogeneities considered in this study.

2. THEORY AND METHOD

Figure 1 sketches the type of problems considered in this study. The model consists of
a homogeneous atmospheric half-space above a poro-elastic ground with arbitrary terrain
condition and range-dependent properties. The ground is assumed to satisfy Biot's theory
[11, 12]. A cylindrical co-ordinate system (r, �, z) is considered and a point source is located
on the z-axis above the ground. Under azimuth symmetry (i.e., wave "eld being independent
of �) the air pressure P(r, z, t) and the velocities for a heterogeneous poro-elastic ground,
u(r, z, t) and W

(
(r, z, t), satisfy the equations [9]:
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where � (r) is the Kronecker Delta, g (t) de"nes the time variation of the point source, (r
�
, z

�
)

speci"es the position of the point source, and <
�
and �

�
are the sound speed and mass

density of the atmosphere. The vector u denotes the velocity of the solid frame,
W"� ) (U!u) is the velocity of the pore #uid relative to the solid frame in the ground,
W

(
"W(r, z, t)/�, U represents the velocity vector of the pore #uid, � is porosity and e is
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#uid respectively. The energy dissipation in the porous medium is re#ected by the
parameter b"���/	, where 	 denotes the permeability and � is the dynamic viscosity of the
pore #uid. The sti!ness attribute of the porous medium is represented by the shear modulus
of the solid frame �
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D
�
(f; A)"A�� ) f#�A� ) f, (3)



Absorbing boundary
z=H

z=h

Atmosphere

Range-dependent and topographic
groundA

xi
s

of
sy

m
m

et
ry

Model

*S

z

r=dAbsorbing boundary

Real

r

A
bs

or
bi

ng
bo

un
da

ry

o

Figure 1. Model geometry used for the "nite-di!erence simulation. A point source is located at z-axis above the
ground with range-dependent and topographic characteristics.
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If the ground is homogeneous, the wave equations for heterogeneous media reduce to
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On the interfaces between atmosphere and poro-elastic medium, the continuity and
equilibrium conditions result in
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for horizontal interfaces and
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for vertical interfaces.



TABLE 1

Parameters of the ground

Group �
�

K
�

�
�

K
�

K
�

�
�

	 �
(kg/m�) 10� Pa (kg/m�) (10� Pa) (10� Pa) (10�Pa) (10���m�)

1 1)2 0)13 2700 9060 60)7 25)5 1)0 0)44
2 1)2 0)13 2700 9060 60)7 25)5 100)0 0)44
3 1)2 0)13 2700 11000 136)8 56)63 1)0 0)44
4 * * 1500 * 62)6 29)4 0)0 0)0
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To simulate the in"nite lateral and vertical extent of the media, the far-end boundary as
well as the top and bottom boundaries of the model is equipped with dashpots (denoted as
absorbing boundary in Figure 1). This measure accounts for the radiation damping in the
system. The numerical model, however, does not include the material damping resulting
from inter-granular friction in the soil medium.
The governing equations satisfying the pertinent boundary conditions are solved by an

integration technique and second order "nite-di!erence formulation. The appendix gives
a summary of the mathematical derivations. More details can be found in reference [9]
where the validity of the implemented formulation is also illustrated through comparisons
with the frequency-wavenumber solution of OASES [5] and full-scale measurements.

3. SIMULATIONS

3.1. CASES CONSIDERED

Four cases of ground conditions were considered in this study (see Figure 1). Case A is
a homogeneous poro-elastic half-space with the parameters given under Group 1 in Table 1.
Although the developed code can handle a layered ground and atmosphere, this option is
not considered in this study. Case B is similar to Case A except that a region between
r"100 and 150m in the ground was assigned a higher permeability (	

�
"100 ) 	

	
, Group

2 in Table 1). Case C is similar to Case A except that the seismic velocities <


and <

�
in the

region r"100}150 m was increased by 50% (Group 3 in Table 1). Finally, Case D defers
fromCase A by the addition of a rectangular hill of height 8)65m on the ground in the range
r"100}150m. The selection of a simple geometry for the hill was just a matter of
convenience. Figure 1 shows how a realistic hill geometry could be represented by piecewise
straight segments. The properties of the hill are listed under Group 4 in Table 1. The
dynamic viscosity of the pore air and tortuosity in the four cases were taken as
�"1)74�10�� kg/m s and e"1)25.
The time function describing the acoustic source was taken as the "rst derivative of the

Gaussian function:

g(t)"!2
 (t!t
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with a Fourier transform which can be expressed as
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Figure 2. Source pulse and its Fourier amplitude spectrum used in present study. Central frequency is 20Hz.

TABLE 2

Parameters of the source and atmosphere

f
�

f
��


 t
�

�
�

<
�

(Hz) (Hz) (s��) (s) (kg/m�) (m/s)

20 60 8000 0)035 1)2 330
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where 
 and t
�
are the pulse-width and time shift parameters respectively. The source and its

Fourier spectrum are shown in Figure 2. The central frequency is 20Hz.The source was
positioned on the symmetry axis, 2m above the ground. The parameters of the source and
atmosphere are listed in Table 2.

3.2. NUMERICAL RESULTS

The "nite-di!erence formulation presented in section 2 was used to simulate the dynamic
overpressure in the air and the corresponding particle velocity in the ground for the four
cases outlined in section 3.1.
Figure 3 displays the time histories of overpressure at 2m above the ground, at distances

of 80 and 160m from the source. The results are plotted for Case A (homogeneous
poro-elastic) as dashed line, Case B (poro-elastic with higher permeable zone) as dotted line
and Case C (poro-elastic with sti!er zone) as solid line. As expected, the "rst arrivals at 80m
are identical in the three cases. At 160m, however, both the amplitude and the dominant
frequency for Case B reduce. This is due to the passage of the sound over the more
permeable zone in Case B. The results further show that the sti!ened zone in Case C does
not change the amplitude nor the frequency content of the overpressure.
Figure 4 displays the corresponding time histories of the vertical particle velocity on the

ground surface for the three cases considered in Figure 3. The arrival times as well as the
amplitudes of the sound-induced wave and the surface (Rayleigh) wave are the same for the
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Figure 3. Comparison of air pressures among Case A (dashed line), Case B (dotted line) and Case C (solid line).
Air pressure at 2 m above ground where the distances between source and receiver are 80m (upper "gure) and
160m (lower "gure) respectively.
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velocity traces at 80m. The trace for Case C, however, shows clearly the additional P-wave
re#ection from the sti!er zone. A very weak re#ection can also be detected in Case B. For
the particle ground velocity at 160m, the amplitude of the "rst peak in Case C is di!erent
from the other two cases due to the near coincidence of the direct wave and P-wave. In
addition, there is a second re#ected P-wave from the sti! zone at about 0)7 s. The amplitude
of the "rst peak in Case B is smaller than in Case A and a small re#ected P-wave can be
observed around 0)83 s. Finally, due to the sti!er zone in Case C, the surface wave has an
earlier arrival (about 0)2 s) and smaller amplitude than in Cases A and B.
Figure 5 presents stacked plots with distance of the air overpressures at 2m above ground

(left set of "gures) and the corresponding ground surface vibrations (right set of "gures). The
distances range from 16 to 176 with 8m spacing. The upper two "gures correspond to Case
A, the middle "gures to Case B and the bottom "gures relate to Case C. For the pressure
plots, the waveforms are almost identical in the three cases, except for a slight #attening of
the signals in Case B due to the higher permeability zone in this case. For the velocity plots,
the direct (blast-induced) and surface waves can be clearly discerned and the velocities of
both waves calculated from the traces match well with the model parameters. Furthermore,
both Cases B and C show clearly the in#uence of the added zones on the velocity signals
which can be identi"ed in the form of a reduced amplitude of the direct wave in Case B and
a reduced amplitude and earlier arrival of the surface wave in Case C.
Figure 6 shows the same set of stacked plots for Case D (elastic hill). Since the

overpressure plots are for 2m above the ground, no traces are displayed in the range
100}150m (the part of the shadow) due to the presence of the hill. The "gure clearly shows
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Figure 4. Comparison of vertical particle velocities on the ground surface in Case A (dashed line), Case B (dotted
line) and Case C (solid line). Distances between source and receivers are 80 m (upper "gure) and 160 m (lower
"gure).
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the re#ections from the hill in both the overpressure and ground motion traces. It is
interesting further to note that the signals behind the hill become weaker because of partial
re#ection of the blast energy from the hill.
To examine the e!ect of the hill on the overpressure, Figure 7 presents comparisons

between overpressures in Cases A and D at a height of 8)65m (that is right at the hill top) at
distances of 125m (top plot) and 170m (bottom plot). The considerably lower amplitude of
the overpressure behind the hill signi"es the noise isolation role of the hill.
A global picture of the sound propagation and its interaction with the ground can be

observed by the snapshots of the spatial variation of air overpressure and particle velocity
in the ground.
Figure 8 presents a set of such plots for Case A normalized by air overpressures at times

0)303, 0)453 and 0)543 s. The "gures vividly display the P-, S- and Rayleigh-waves in the
ground as well as the Mach surfaces associated with the two body waves. Because both the
S- and P-wave velocities are lower than the sound speed in the atmosphere, the case
considered here corresponds to a superseismic condition with two Mach surfaces moving
with the propagating sound wave.
Figure 9 shows the same set of snap-shots for Case C. Location of the sti!er zone is

marked in the plots. In addition to the general features observed in Figure 8, these plots
show a remarkable re#ection and refraction pattern in the ground waves by the sti! zone. It
is also interesting to note in Figure 9(b) that the P-wave Mach surface vanishes over the
sti!er zone as this zone represents a transeismic (and not a superseismic) case.
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Figure 5. Stacked plots of air pressure at 2m above ground (left "gures) and vertical particle velocity on the
ground surface (right "gures) at distances from source ranging from 16 to 176 m with spacing of 8 m. Upper two
"gures corresponding to Case A, second two "gures to Case B and lowest ones to Case C.
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Figure 10 presents a similar set of snapshots for Case D. Large re#ections from the
hill can be clearly seen in these plots. In particular, there are two pairs of Mach surfaces,
one connected to the incident body waves and the other related to the re#ected body
waves.

4. CONCLUSION

In this paper, the pressure}velocity "nite-di!erence technique was used to simulate sound
propagation over poro-elastic ground with range-dependent parameters and topographic
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Figure 7. Comparisons of air pressures between Case A (solid line) and Case D (dotted line) at 8)65 m above
ground with distances between the source and the receiver at 125 m (top) and 170 m (bottom) respectively.
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features. Numerical simulations were carried out for di!erent poro-elastic zone and hill.
Typical results of the simulations of the overpressure in the atmosphere and the velocities of
the ground were presented. The results for the range-dependent and topographic ground
were compared with those in homogeneous ground. A number of snapshots of air
overpressure and particle velocity in the ground were presented at di!erent time steps to
show the global wave propagation in these cases.



Figure 8. Snapshots of air pressure and vertical particle velocity in ground for Case A at t"0)303, 0)453 and
0)543 s.
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APPENDIX A: FINITE DIFFERENCE FORMULATION

In inhomogeneous poro-elastic ground, the "nite-di!erence solution of equation (2) can
be simpli"ed by using the "nite-di!erence operators de"ned by the form
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where ��
�
and ��

�
contain only spatial derivatives that need to be evaluated at the current

time k�t in the context of a time marching algorithm. Using the standard second order
explicit "nite-di!erence approximations
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one can derive the "nite-di!erence schemes for ��
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and ��

�
. Using the central "nite-

di!erence representation in time on the left-hand side of equation (A3) and rearranging the
terms, one can write

�
a
��

u���#a
��

W���
(

"b
�
#(�t)���

�
a
��

u���#a
��

W���
(

"b
�
#(�t)���

�
�. (A4)

The vectors u���and W��� can be obtained from

u���"�
�
/�, W���

(
"�

�
/�, (A5)

where a
�

, b

�
, �

�
(i, j"1, 2) and � are expressed as
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The velocity of the pore #uid at the next time step can be obtained from equation (A5) as

U���"u���#W���
(

(A8)
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