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This paper outlines various methods for separating fundamental longitudinal waves
propagating along a Hopkinson pressure bar. Advantages and disadvantages of the di!erent
methods are presented and discussed in detail. A new method is then proposed for
separating the fundamental waves in the frequency domain. This newmethod is based on the
assumption that wave propagation can be adequately described by the "rst mode of the
Pochhammer}Chree theory. The method requires two-point strain gauge measurements on
the pressure bar. Fourier components of the positive wave at one gauge location are
determined either from the corresponding Fourier components of the measured strain
histories or from their derivatives. The method also makes use of the derivative of the wave
number with respect to the circular frequency of the pressure bar. Important points of the
implementation of the technique are described. Numerical accuracy of the proposed method
is veri"ed by considering a simple example with analytical solution and by comparing
measured data derived from a large diameter Hopkinson pressure bar. The proposed
method will "nd application in dynamic material tests using the split Hopkinson pressure
bar technique.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION AND BACKGROUND TO WAVE SEPARATION

The purpose of wave separation is to determine the fundamental elastic wave propagating
in two single directions of an elastic bar. These waves are obtained by measurement at one
or more locations along the bar. Wave separation is useful in processing experimental data
generated in long duration tests using the split Hopkinson pressure bar (SHPB) technique.
Under these conditions, waves propagating in di!erent directions are intermingled in the
pressure bars whose lengths may be shorter than normally encountered in conventional
practice.

Wave separation methods are classi"ed into two broad groups: two-point and one-point
measurement methods. A two-point measurement method suggested by Lundberg and
Henchoz [1] assumes that strain pulses propagate in one-dimensional manner so that the
strain value at one location is determined from that at another upstream location. Figure 1
illustrates a pressure bar with two strain gauges at A and B, and the wave propagation
diagram. Location A is the origin of the spatial co-ordinate z and is closer to the impact end
of the bar. The incident strain at location A is equal to the total strain for time t(¹,
¹ being the time when the re#ected wave reaches location A. The incident strain at point
A at time t'¹ is determined by appropriate time-shift procedure:
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Figure 1. Strain gauge location and wave propagation diagram.
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where ��
�

is the incident strain at location A, �
�

and �
�

are the recorded total strains at
locations A and B, respectively, and �t is the time for the elastic wave to propagate from
A to B. Repetitive application of equation (1) leads to the determination of ��

�
, whose time

duration is unlimited.
For the technique to be applicable to a large diameter SHPB system, the direct time shift

along lines CD and DE may be substituted with a dispersion correction procedure [2],
based on the Pochhammer}Chree dispersion equation [3, 4]. But the dispersion correction
procedure requires that the "rst incident wave has completed itself before the re#ected wave
reaches location A. This leaves an undisturbed duration on the incident wave, so the
specimen is loaded by a stress path with several loading/unloading cycles.

Bacon [5] proposed a new two-point method by determining the Fourier components of
the positive wave at location A, PM (�), through

PM (�)"
��
�
(�)!��

�
(�)exp[!k(�)d]

1!exp[!2k(�)d]
, (2)

where ��
�
(�) and ��

�
(�) are the spectra of strain histories recorded at locations A and B,

respectively, k(�) is the complex wave number corresponding to a given circular frequency
and d is the distance between A and B. The quantity PM (�) needs to be treated by a special
iteration procedure when the denominator of equation (2) is zero. This method can be used
for initial incident waves of any duration. The main disadvantage, however, is that the
algorithm has to perform a lengthy iteration process.

A separation method using one-point strain measurement was proposed by Park and
Zhou [6]. Essentially, this method uses the free end condition of the pressure bar as an
additional natural strain measurement. However, the method extends the duration of the
initial incident wave only to twice as long as classical data processing method.

2. PROPOSED WAVE SEPARATION PROCEDURE

Consider equation (2), which is derived from a general situation and where three-
dimensional and viscoelastic e!ects are included as long as the complex wave number k(�)
is determined from an appropriate frequency equation. It is assumed that the parameter
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k(�) takes the "rst-mode root of the frequency equation. In developing an alternative wave
separation method, equation (2) is taken as the starting point and only geometrical
dispersion is considered. Thus, the complex wave number k(�) in equation (2) is reduced to
a pure imaginary number ik(�) and equation (2) can be rewritten as

PM (�)"
��
�
(�)!��

�
(�)exp[!ik(�)d]

1!exp[!i2k(�)d]
, (3)

where i is the imaginary unit and k(�) is the wave number related to frequency through

k(�)"
�
c(�)

(4)

and in which c(�) is the phase velocity at circular frequency �.
Equation (3) determines PM (�) uniquely, except at some isolated frequencies given by

�
�
"n

�c(�
�
)

d
, n"0, 1, 2, 2 . (5)

At these frequencies, PM (�) in equation (3) is unde"ned. However, PM (�) is continuous if the
Fourier transform of the absolute value of the time function �P(t)� exists. This is normally the
case of strain signals acquired in split Hopkinson pressure bar tests. Thus, PM (�

�
) can be

determined by examining the trend of PM (�) in a neighbourhood (�
�
!�, �

�
#�), where � is

a real number. In fact, PM (�
�
) can be replaced by its limit lim����

PM (�).
The foregoing discussion leads to the idea that PM (�

�
) can be determined by taking the

limit of the right-hand side of equation (3) as �P�
��
if it exists. To con"rm the existence of

the limit, the numerator of equation (3) at circular frequency �
�

is calculated. The
relationships between the Fourier spectra at locations A and B for single-directional waves
can be found through frequency-domain solution of the wave equation, and the summation
of the spectra of the single-directional waves is equal to the spectra of measured strain
histories. This leads to the following relationships

��
�

"PM (�)#NM (�), (6)

��
�
(�)"PM (�)exp(!ikd)#NM (�)exp(ikd), (7)

where PM (�) and NM (�) are the spectra of the positive and negative waves at location A.
Eliminating NM (�) in equations (6) and (7) and rearranging gives

PM (�)[1!exp(!i2kd)]"��
�

!��
�
exp(!ikd), (8)

The right-hand sidemust be zero at circular frequencies�
�
because the second item of the

left-hand side is zero at these frequencies and PM (�
�
) is "nite. Therefore,PM (�

�
) is an unde"ned

fraction of type 0/0, and its limit can be obtained by applying L'Ho( pital's rule, resulting in
the expression:

PM (�
�
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�
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�
)d

. (9)

Note that the right-hand side of equation (9) is fully de"ned and so the spectrum of the
positive wave-induced strain can be determined using either equation (3) or (9). We shall call
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this method, which incorporates the limit of equation (3) at singular frequencies, the ¸imit
Replacement Method.

3. IMPLEMENTATION OF THE LIMIT REPLACEMENT METHOD

Equations (3) and (9) apply to the situations where wave dispersion e!ect caused by
three-dimensionalmotion is considered. They are exact to the extent of the assumption that
wave propagation is governed by the "rst mode of the Pochhammer}Chree theory. Earlier
researchers [7}9] have demonstrated the adequacy of this assumption in tests using
a conventional split Hopkinson pressure bar. Therefore, the accuracy of the wave
separation method depends on its numerical implementation.

3.1. DISCRETIZATION OF THE LIMIT REPLACEMENT METHOD

An appropriate discretization scheme is adopted to implement the proposed method.
Continuous Fourier transform is replaced by discrete Fourier transform (DFT) de"ned by
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N �, (10)
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C
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i2�nm
N �, (11)

whereC
�
is the spectrum of the nth Fourier component, F

�
the signal value of the mth point

of the discrete time series, �t the sampling period,N the total number of samples and ¹ the
total duration of the time-series signal. The scaling coe$cients �t and (1/¹) make equations
(10) and (11) approximate the continuous Fourier transform. Further, the time t

�
and

circular frequency �
�
are calculated as

t
�

"m�t, �
�
"

2�n
¹

"

2�n
N�t

, n, m"0, 1, 2,2,N!1. (12)

The highest frequency that the discrete Fourier transform can represent is governed by
the Nyquist frequency, which is written as

f
��	

"f
���

"

1

2�t
. (13)

The discrete Fourier transform can be implemented by fast Fourier transform (FFT)
algorithm [10]. The simplest form of FFT is obtained for a time series of N"2
 points,
where ¸ is a positive integer. To demonstrate the capability of DFT to approximate the
continuous Fourier transform, consider the following non-periodic function

F(t)"�
0, t(a,

(t!a)h

b!a
, a(t(b,

(c!t)h

c!b
, b(t(c,

0, t'c.

(14)
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Figure 2. Amplitude spectrum of a triangular function (a"100�s, b"120�s, c"270�s and h"1).
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The amplitude of the analytical spectrum of the above triangular function (a"100�s,
b"120 �s, c"270 �s and h"1) is plotted in Figure 2 as a continuous line. Plotted in the
same "gure are the DFT amplitude spectrum (�t"1�s) computed through an FFT using
two di!erent signal lengths. It is observed that both DFT spectra approximate the
continuous spectrum to a high degree of precision. Adding zeros to the end of the signal
(e.g., 1024 points series) produces a more densely distributed spectrum.

3.2. COMPUTATION OF SPECTRAL DERIVATIVE OF STRAIN SIGNALS

Before the proposed method can be utilized, the e$ciency and accuracy of the calculation
of the derivative of the spectrum of a sampled signal have to be assessed because it forms
part of equation (9).

The FFT gives excellent approximation for the spectrum of a discrete signal but it does
not necessarily provide good results for its derivative if it is calculated by simply taking the
di!erence of the discrete spectrum. The reason is that the frequency resolution of the FFT
spectrum depends on the total duration of the signal. The sampling period cannot be larger
than a certain limit for the spectrum to represent the highest harmonic component. It
follows that the number of points in the time series must be as large as possible in order to
obtain a satisfactory result of the spectrum derivative. This requirement is necessary
because the spectrum changes rapidly at some frequency range.

Consider the triangular function of equation (14). The real part of the spectral derivative
calculated by analytical and by two-point forward di!erence is plotted in Figure 3.
Although 1024-point FFT provides a very good approximation of the spectrum, the plot
indicates otherwise with respect to the spectral derivative. The result of 4096-point FFT (by
adding zeros) improves the accuracy signi"cantly but it may still be regarded as inaccurate
in the low-frequency range. To overcome this di$culty, a di!erent method has been devised.

For a transient signal whose value is non-zero in a limited time range, the continuous
Fourier transform is de"ned as

C(�)"�
�

�

F(t)e�i��dt, (15)

where ¹ is the time duration comprising non-zero range of the time function F(t).
Taking the derivative of C(�) with respect to � leads to

dC(�)

d�
"!i�

�

�

tF(t)e�
��dt. (16)
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Figure 3. Comparison of the real part of spectral derivative.
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Figure 4. Spectral derivative by analytical and direct methods.
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This expression relates the derivative of the spectrum to the spectrum of a new function
tF(t). Hence, the spectral derivative of a sampled signal �F(i�t), i"0, 1, 2,2,N!1	 can be
determined to high accuracy by applying FFT to the series �i�t F(i�t), i"0, 1,
2,2,N!1	. We shall refer to this as the Direct Method.

Figure 4 shows a comparison of the real and imaginary parts of the spectral derivative of
the triangular function with analytical solution. A total of 1024 points was used for the
Direct Method calculation. The result is in excellent agreement with the exact solution for
the entire frequency range (including zero frequency).

3.3. DETERMINATION OF THE DERIVATIVE OF WAVE NUMBER k�(�)

The Pochhammer}Chree frequency equation relates many parameters, and may be
described by

2

a

(��#k�)J
�
(
a)J

�
(�a)!(��!k�)�J

�
(
a)J

�
(�a)!4k�
�J

�
(
a)J

�
(�a)"0, (17)

where a is the radius of the bar, J
�
and J

�
are 0th and 1st order Bessel's functions of the "rst

kind, k is the wave number, and 
 and � are parameters related to the circular frequency
� and wave number given by


"�
��

c�
�

!k�, �"�
��

c�
�

!k� (18)

and in which c
�
and c

�
are dilatational wave velocity and shear wave velocity respectively.

Parameters a, c
�
and c

�
are known constants for a given pressure bar.
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Substituting equation (18) into equation (17) leads to a complicated non-linear equation
relating two variables: k and �. Solving this equation gives the wave number k as a function
of �. It can be shown that there are an in"nite number of roots to equation (17) for a single
�. Only the "rst root is sought in this research because of the "rst-mode assumption.

Equation (17) can also be written in terms of dimensionless variables as [11]

f (x, �
�
, ka)"(x!1)��(ka���x!1)!(��x!1)[x!�(ka�2x!1)]"0, (19)

where

��"
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c
�
�
�
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D

¸

(20}23)

in which k is the wave number, � the Poisson ratio, c the phase velocity, c
�
the bar vpelocity,

D the bar diameter and ¸ the wavelength.
The "rst-mode solution can be expressed by the following relationship for a given �:

c

c
�

"g�
D

¸

; ��, (24)

where c/c
�
and D/¸ are ratios of phase velocity to bar velocity and bar diameter to wave

length respectively.
Numerical solution of equation (19) was derived by Bancroft [11] but the resolution is

inadequate for calculating the derivative of the wave number. In another attempt, Davies
[7] solved the frequency equation, obtaining numerical results that are in good agreement
with Bancroft's data. However, Davies did not provide the necessary data of his results.

In the present investigation, equation (19) is solved numerically to derive a high-precision
derivative of wave number. Modi"ed Bessel's functions are substituted for Bessel's functions
with a pure imaginary argument and approximate expressions for small arguments are
used. A comparison with Bancroft's data [11] shows that our numerical solution is identical
up to the "fth digit after the decimal point. Once the relationship between c/c

�
and D/¸ is

established, the derivative of the wave number can be calculated from

k�(�)"
1

c
�
h(�)

, (25)

h(�)"
c

c
�

#

D

¸

d(c/c
�
)

d(D/¸)
. (26)

It is noted that k�(�) of a Pochhammer}Chree bar is similar to that of a one-dimensional
bar but with a modi"cation factor h(�). Both the relationship between c/c

�
and D/¸ and

that between h(�) and D/¸ are shown in Figure 5 for �"0)3.

3.4. WAVE SEPARATING PROCEDURE

According to basic wave theory, the dimensionless wave number and dimensionless
frequency at each D/¸ can be calculated from the solution of frequency equation as

fM"
f

c
�
/D

"

c

c
�

D

¸

, (27)

kM "
k

2�/D
"

D

¸

. (28)
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Three relations can then be developed and these are inter-related to determine (1) D/¸
from known fM , (2) c/c

�
from D/¸ and (3) h(�) from D/¸. These relations are plotted in Figure

5 for �"0)3.
To separate the waves, the following steps should be completed successively:

(1) Spectral analysis is performed through FFT to obtain the spectra and derivative of the
spectra of the recorded strain}time histories at locations A and B.

(2) Calculate fM using the "rst part of equation (27) for each Fourier component of frequency
f


(i"0, 1, 2,2,N!1). Determine D/¸ corresponding to fM by interpolation.

(3) Calculate wave number using equation (28) from known D/¸. Determine c/c
�

by
interpolation from the known D/¸. Calculate the phase velocity from c/c

�
.

(4) The condition of equation (5) is checked.
(5) Determine PM (�



) using equation (3) if equation (5) is not satis"ed. If equation (5) is

satis"ed for some integerm, equation (9) has to be used to determinePM (�
�
). Before doing

this, h(�) is found by interpolation from known D/¸ and then k�(�) by using equation
(25).

(6) After processing all frequency components, inverse FFT is used to compute P(t), the
time-domain function of the positive wave at location A.

3.5. EXAMPLE OF ONE-DIMENSIONAL ELASTIC WAVE

The triangular wave discussed earlier is used as an example to illustrate the capability of
the proposed method. The strain is measured at locations A and B, and B is 0)75m
downstream of A. The assumed measured triangular strain histories are shown in
Figure 6. According to one-dimensional wave theory, the strain history observed at location
B has exactly the same shape as that at location A but it is delayed by 150 �s
(c

�
"5000 m/s).
Zero frequency component of function P(t) was determined using the Limit Replacement

Method. In addition, the 257th Fourier component has circular frequency of
1570796)3 rad/s, which is 74)99999981 times �

�
(20943)950667). The Fourier coe$cient of

this component calculated by equation (3) has a real part (8)29�10��) and an imaginary
part (8)2937�10��). But the more accurate coe$cients are calculated as the real part
(!3)76�10�	) and the imaginary part (1)04�10�
) by using the Limit Replacement
Method*equation (9)*with n"75. Clearly, the computational error caused by the small
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denominator in equation (3) could approach several orders of magnitude higher than the
true Fourier coe$cient at some frequencies. The function P(t) obtained by the analytical
and the proposed method (N"1024 and �t"1�s) is plotted in Figure 7. The results are in
excellent agreement.

4. VALIDATION OF THE PROPOSED WAVE SEPARATION METHOD

To validate the proposed wave separation method, an experiment was conducted to
generate the strain wave in a 75mm diameter, 1)5 m long pressure bar (�"0)3 and
c
�
"5155 m/s) made of high strength steel [12], shown in Figure 8(a). The bar is

instrumented with a single resistance strain gauge at mid-length. The strain wave is
generated by the impact of a 0)54 m long solid cylindrical striker of the same diameter and
same material. The strain gauge records the strain pulses induced by the "rst incident wave
and subsequent re#ected waves separately.

Re#ection at the right end changes the incident wave from compressive to tensile but does
not change its amplitude. So, the re#ected wave recorded at the gauge location, after
allowing for reversal of sign, is essentially the same as the strain wave which would be
recorded at half length of the incident bar from the free end of an imaginary extension of the
incident bar. The problem becomes that of separating the waves from the strain histories
measured at locations A and B, which are 1)5 m apart. Similarly, the gauge distance
becomes a multiple of 1)5 m if the strain history after multiple re#ections is used. In this
paper, the strain histories of the "rst incident wave and the second re#ected wave are used to
emphasize the dispersion e!ect, so the distance between locations A and B is 3 m.

It is recognized that the best way of validating a wave separation method is to process the
experimental data recorded by two strain gauges. For our equipment, this is di$cult
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because of the short pressure bar. The length/diameter ratio of 20 necessitates mounting the
strain gauge in the middle of the bar so that the wave satis"es the Pochhammer}Chree
theory at 10 times diameter away from the ends. But two-gauge records can be simulated by
the single-gauge con"guration based on the above description. In addition, this procedure
has an advantage that the exact positive wave at location A is known.

The gauge record is shown in Figure 8(b). It can be observed that the shape of the second
negative pulse di!ers from the "rst negative pulse. This shows the dispersion occurs after the
wave travels 3 m along the pressure bar. So, dispersion correction may be necessary in
separating waves. The two strain histories used in separation are illustrated in Figure 8(c),
which is extracted from the curve in Figure 8(b) by cutting its "rst and third pulses and
adding zeros before the beginning and after the end of each pulse.

The strain history of the positive wave at location A is shown in Figure 9. Three strain
histories are plotted. They are: (1) the exact solution, (2) the strain history separated by the
proposedmethod with consideration of wave dispersion, and (3) the strain history separated
by the proposed method without consideration of wave dispersion.

It is observed from Figure 9 that the one-dimensional result di!ers considerably from the
exact solution, which is especially manifested by the disagreement of the troughs and peaks
in the two curves. The three-dimensional separation improves the result signi"cantly by
incorporating dispersion correction into wave separation process. The three-dimensional
result matches the exact solution better in the rise-up phase.

It is well-known that high-frequency components are distorted during propagation
because of dispersion. Therefore, one-dimensional separation methods, ignoring dispersion
e!ect, can produce acceptable results only in the low-frequency range. The methods break
down if the recorded wave contains signi"cant high-frequency components. Three-
dimensional wave separation method, such as the proposed method, avoids this problem.
This point was also discussed in reference [5].
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A second example is given to demonstrate the capability of the proposed method for
processing the strain records with intermingled positive and negative waves. The strain
histories recorded at locations A and B (0)75 m away from each other) are shown in
Figure 10 and they are constructed from the known positive and negative waves at both
locations. This is a numerical example corresponding to an in"nitely slender bar because
dispersion is intentionally excluded in construction of the waves. This example also shows
the performance of the proposed method in separating intermingled waves in a very small
diameter pressure bar. In the computation, the bar diameter is taken as 1mm to eliminate
the dispersion e!ect.

Figure 11 shows a comparison between the exact and separated positive waves at
location A. The positive wave has been reconstructed successfully from recorded total
waves. This is especially demonstrated by the correct removal of the negative wave when it
interferes with the positive wave. In addition, the head of the pulse is very accurate.
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5. CONCLUSIONS

(1) A method has been developed and this has been used successfully to separate the
fundamental waves propagating along a Pochhammer}Chree pressure bar.

(2) Unlike other methods, the proposed technique uses full frequency-domain separation
and does not impose any limit to the time duration of the "rst incident wave.
Implementation of the technique does not require a lengthy iteration procedure.

(3) Examples show that by incorporating dispersion correction in wave separation, the
accuracy of the computed result is signi"cantly improved.
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