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1. INTRODUCTION

Propagation of acoustic waves through layered cylinders and spheres can be computed
from basic wave solutions in terms of Bessel and Hankel functions, see references [1}3] and
references therein. The cylinder or sphere is then considered to be built up by homogeneous
shells.

The basic wave solutions for a horizontally layered medium, on the other hand, are
obtained in terms of exponentials [4]. It is much more convenient to handle exponentials
than Bessel/Hankel functions. As shown in references [5, 6], there exist certain radial
dependencies of medium velocities and density for a solid spherical shell for which the basic
wave solutions are actually exponential. The spherical shell will of course not be
homogeneous. The medium velocities, for example, will be proportional to the radius.
Furthermore, a transformation of the radius variable is needed.

In the present paper, it is shown that basic wave solutions in terms of exponentials also
exist for a layered cylinder, for certain radial dependencies of medium velocities and density.
The shells may be #uid or solid, and combinations of #uid and solid regions are allowed
(&&#uid}solid media''). Compound-matrix theory is introduced for the cylindrical as well as
spherical cases to handle the well-known numerical problems at high frequency. For
reasons of computational e$ciency, the compound matrices are factorized into sparse
matrices which can be applied in sequence, cf. reference [7]. Striking similarities appear
between the horizontally (section 3), cylindrically (section 4), and spherically (section 5)
layered cases.

A cylinder or sphere with an arbitrary variation with radius of medium velocities and
density can be approximated by a sequence of shells with the type of medium parameter
variation considered here, that allows basic wave solutions in terms of exponentials rather
than Bessel/Hankel functions. An interior homogeneous shell, however, is handled without
propagation by including boundary conditions at its interface. Such a a small shell can be
useful to avoid velocities unnaturally tending to zero at the centre. For an arbitrary
parameter variation with radius, extrapolation techniques can be used to increase the order
of convergence and to obtain error estimates. In this way, the approximation process can be
automated, and the solution can be obtained within a prescribed error tolerance by
adaptively increasing the number of shells. Focusing by Luneberg lenses is studied as
a computational example (section 6).
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.
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2. PRELIMINARIES

Monofrequency waves are considered with angular frequency �. As is common practice,
the time (t) factor e�i�� is suppressed in the formulas. Basic equations for the displacement
vector u

�
and the stress tensor �

��
, as given in Cartesian three-dimensional co-ordinates

(x
�
,x

�
,x

�
), are [4]

!���u
�
"�

����
#f

�
, (1)

�
��

"��
��
e
��

#2�e
��
. (2)

Here, standard Cartesian-tensor notation is used and �
��
is the Kronecker delta. The source

function is given by f
�
. The LameH parameters are denoted � and �, and the density is denoted

�. The medium P- and S-velocities are obtained as �"[(�#2�)/�]��� and �"[�/�]���
respectively. The strain tensor e

��
that appears in equation (2) is de"ned as e

��
"

(u
���

#u
���
)/2.

For horizontally, cylindrically and spherically layered #uid-solid media, separation of
variables is appropriate and the partial di!erential equation (1) can be simpli"ed. With the
variable z related to depth or radius, things will typically boil down to an ordinary
di!erential equation (ODE) system of the type

y	(z)"A(z) ) y(z)#f(z) (3)

with boundary conditions at a number of points 
 (di!erent G for di!erent 
)

G ) y(
)"0 . (4)

Here, y(z) is an n-dimensional column vector, related to the displacement}stress vector, with
n"4 for a solid region and n"2 for a #uid region. A(z) is an (n�n) matrix and the source
function is incorporated by the n-dimensional column vector f (z). The integer m is used to
denote the number of boundary conditions in a particular instance of equation (4), such that
G is an (m�n) matrix. The boundary conditions appear at #uid-solid interfaces (where the
tangential component of the traction vector must vanish) and at the interior and exterior
regions (with radiation conditions, for example). It can be noted that m"2 in the solid case
and m"1 in the #uid case.

Linear boundary-value problems of the type (3)}(4) can be solved with the
compound-matrix method [8]. In particular, consider an (m�n) matrix G"(g

�
,g

�
,2, g

�
)

from (4). It is appropriate to introduce

>
����2��� �

(
)"det(g
��
, g

��
,2, g

��
), (5)

where the k's take on values from 1 to n, and collect the >
��� �2��� �

(
) with
1)k

�
(k

�
(2(k

�
)n in a (1�(�

�
)) row vector Y(
)"(>

���2���
(
),

>
���2���������

(
),2,>
���2�������

(
),>
���2�����������

(
),2,>
�������2���

(
)). Y(
)"G�
� ,

themth order compound matrix of G. Them boundary conditions (4) are now characterized
by Y(
) and they can be conveniently transported to other points z by

Y (z)"Y(
) ) [P(
, z)]�
� , (6)

where P(z, 
) is the propagator matrix for system (3) de"ned by

�P(z, 
)
�z

"A(z) ) P(z, 
) and P(
,
)"I. (7)
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The compound matrix [P(
, z)]�
� , of dimension ( �

�
)�( �

�
), comprises all (m�m)

subdeterminants of P(
, z). It is de"ned, for rows as well as columns, in analogy to the
columns of G�

� .
If the source function f does not vanish between 
 and z, however, the boundary

conditions as transported to z will be non-homogeneous and inclusion of another
compound vector Z will be needed [8].

3. HORIZONTAL STRATIFICATION

It is convenient to introduce the additional notation (x, y, z) for the Cartesian
co-ordinates (x

�
, x

�
,x

�
). The third co-ordinate z is the depth co-ordinate, and the

horizontal strati"cation means per de"nition that the medium parameters are independent
of x and y (&&range-independence''). For P}S< waves, independent of y and without
displacements in the y direction, Fourier transformation of the x co-ordinate is appropriate
and the wave "eld can be synthesized from components

(u
�
, u

	
, �

	�
, �

		
)"ei�� (r

�
, i r

�
, r

�
, i r

	
), (8)

where k is the horizontal wavenumber. The horizontal slowness is denoted by p, and
k"�p.

For each k, the vector y(z)"(�r
�
(z), �r

�
(z), r

�
(z), r

	
(z))
 for a solid region ful"lls an ODE

system of type (3) with system matrix A(z) given by [4, (7.28)]

A(z)"� �
0 p ���(z) 0

!

�(z)
�(z)#2�(z)

p 0 0
1

�(z)#2�(z)

4�(z)[�(z)#�(z)]
�(z)#2�(z)

p�!�(z) 0 0
�(z)

�(z)#2�(z)
p

0 !�(z) !p 0
� . (9)

For a homogeneous layer, the corresponding propagator matrix P"P(z, 
) can be
written [7, (11)}(14)]:

P"C�� ) P



) C, (10)

where

P



"�
CQ 0 S¹Q 0

0 CP 0 S¹P

!SDQ 0 CQ 0

0 !SDP 0 CP � , (11)

CP"cosh(�d�), CQ"cosh(�d
), (12)

SDP"��� sinh(�d�), SDQ"
�� sinh(�d
), (13)

S¹P"!� sinh(�d�), S¹Q"!
 sinh(�d
) (14)
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with d"(z!
),

��"(p�!���), 
�"(p�!���) (15)

and

C"�
1 0 0 !p

0 1 !p 0

0 0 1 0

0 0 0 1 � ) �
1 0 0 0

0 1 0 0

0 2��p 1 0

2��p 0 0 1� )diag(1, 1, ���,���), (16)

C��"diag (1, 1, �,�) ) �
1 0 0 0

0 1 0 0

0 !2��p 1 0

!2��p 0 0 1� ) �
1 0 0 p

0 1 p 0

0 0 1 0

0 0 0 1� . (17)

The matrices C and C�� have here been written in factorized form. The compound matrix
P�

� can then also be obtained in factorized form, which is most useful for computational
e$ciency [7, 9]. A further factorization of P



as P



"D�� ) P

�
) D, where

P
�
"diag(e����, e����, e���, e���) is also appropriate in this context [7, (22)}(25)].

3.1. FLUID REGIONS

For a #uid region, for which �
	�

"0, y"(�r
�
, r

	
)
 is considered and an ODE system of

type (3) is obtained with system matrix A(z) given by

A(z)"��
0 [�(z)��!p�]/�(z)

!�(z) 0 � . (18)

For a homogeneous layer, the corresponding propagator matrix P"P(z, 
) can be written

P"diag(1, �) )�
CP S¹P

!SDP CP � )diag(1, ���) . (19)

4. CYLINDRICAL STRATIFICATION

Cylindrical co-ordinates (r, �, z) are introduced such that x
�
"r cos(�), x

�
"r sin(�),

x
�
"z. The medium parameters are assumed to be independent of z and �. Restriction is

made to waves that are independent of z without displacements in the axis direction z.
A Fourier series for the � co-ordinate is appropriate and the wave "eld can be synthesized
from components

(u� , u
 , �
� , �

 )"ei�� (<, i;, S, iR ). (20)
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For each integerm, the vector (<(r),;(r),S(r),R(r))
 for a solid region ful"lls an ODE system
of type (3) with z replaced by r and system matrix A(r) given by

A(r)"�
1/r m/r ���(r) 0

!

�(r)
�(r)#2�(r)

m

r
!

�(r)
�(r)#2�(r)

1

r
0

1

�(r)#2�(r)

�(r)�
m

r �
�
!�(r)�� �(r)

m

r�
!2/r

�(r)
�(r)#2�(r)

m

r

�(r)
m

r�
�(r)

1

r�
!�(r)�� !m/r !

2�(r)
�(r)#2�(r)

1

r
� (21)

where �(r)"4�(r)[�(r)#�(r)]/(�(r)#2�(r)), which follows from (1) to (2) together with the
co-ordinate transformation relations in reference [4, section 2.6].

Instead of (<(r),;(r),S(r),R(r))
, however, the vector

y"((�a/r)< , (�a/r);, (r/a)� S , (r/a)�R )
 (22)

will be considered, where a is a chosen reference radius. To obtain a propagator matrix
which can be expressed in terms of exponentials, the appropriate type of cylindrical shell
turns out to be the one for which

�(r)"�
�
a�/r�, �(r)"�

�
a�/r�, �(r)"�

�
a	/r	, (23)

where �
�
, �

�
, �

�
are constants. In particular, the P- and S-velocities depend on r according

to

�(r)"�
�
r/a, �(r)"�

�
r/a, (24)

where �
�
"[(�

�
#2�

�
)/�

�
]��� and �

�
"[�

�
/�

�
]���. The variable r also needs to be

changed:

r/a"exp(z/a), (25)

where z is the new variable, not to be confused with the z"x
�
co-ordinate.

It can now be veri"ed that y(z) ful"lls an ODE system of type (3) with constant system
matrix A(z) given by

A(z)"��
0 m/a� ���

�
0

!

�
�

�
�
#2�

�

m

a�
!

2(�
�
#�

�
)

�
�
#2�

�

1

a�
0

1

�
�
#2�

�

�
��

m

a��
�
!�

�
�
�

m

(a�)�
0

�
�

�
�
#2�

�

m

a�

�
�

m

(a�)�
�
�

1

(a�)�
!�

�
!m/a�

2(�
�
#�

�
)

�
�
#2�

�

1

a�
� (26)

where �
�
"4�

�
(�

�
#�

�
)/(�

�
#2�

�
) , and that the corresponding propagator matrix

P"P(z, 
) can be written

P"C�� ) P



) C (27)
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where P



is still given by equations (11)}(14) but with

��"�
m

a��
�
!���

�
#4(1!��

�
/��

�
)

1

(a�)�
, (28)


�"�
m

a��
�
!���

�
(29)

and

C"�
�
�

!m/a� !���
�

m/2�
�

!m/a� !�
�

!m/2�
�

!���
�

1 !m !a�/2�
�

0

m 1 0 a�/2�
�
� (30)

C��"�2#

a���

2��
�
�
��

) �
!a� 0 2 m

0 a� !m 2

!2�
�

!2�
�
m 2�

�
�
�

!2�
�
m/a�

2�
�
m !2�

�
!2�

�
m/a� !2�

�
�
�
� , (31)

where �
�
"m�/a�!a�/2��

�
. It is useful, however, to write C and C�� in terms of sparse

matrix factors. By some Gaussian elimination algebra, it follows that

C"diag�
1

a�
,
1

a�
, 1, 1� �

!1 0 0 m

0 1 !m 0

0 0 !1 0

0 0 0 1� �
1 0 2 0

0 1 0 !2

0 0 1 0

0 0 0 1�
�diag�2#

a���

2��
�

, 2#

a���

2��
�

, 1, 1� (32)

��
1 0 0 0

0 1 0 0

!1 0 1 0

0 1 0 1� �
1 0 0 0

0 1 0 0

0 m 1 0

m 0 0 1� diag�1, 1,
a�
2�

�

,
a�
2�

�
� ,

C��"diag�1, 1,
2�

�
a�

,
2�

�
a� � �

1 0 0 0

0 1 0 0

0 !m 1 0

!m 0 0 1� �
1 0 0 0

0 1 0 0

1 0 1 0

0 !1 0 1� )

�diag��2#

a���

2��
�
�
��

, �2#

a���

2��
�
�
��

, 1, 1� (33)
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��
1 0 !2 0

0 1 0 2

0 0 1 0

0 0 0 1� �
!1 0 0 m

0 1 !m 0

0 0 !1 0

0 0 0 1� diag(a�,a�, 1, 1) .

Since the compound matrix of a product of matrices equals the product of the compound
matrices of the factor matrices, relation (27) immediately gives a factorization of P�

� . The
factor P�

�



is handled as described in references [7, 9]. Concerning C�
� , it follows from (32)

that

C�
�"(2�

�
)���2#

a���

2��
�
� diag�

1

a�
, 1, 1, 1, 1, a�� )

��
!1 m 0 0 !m m�

0 1 0 0 0 m

0 0 !1 0 0 0

0 0 0 !1 0 0

0 0 0 0 1 !m

0 0 0 0 0 !1
� �

1 0 !2 !2 0 !4

0 1 0 0 0 0

0 0 1 0 0 2

0 0 0 1 0 2

0 0 0 0 1 0

0 0 0 0 0 1
� )

�diag�2#

a���

2��
�

, 1, 1, 1, 1,�2#

a���

2��
�
�
��

� ) (34)

��
1 0 0 0 0 0

0 1 0 0 0 0

1 0 1 0 0 0

1 0 0 1 0 0

0 0 0 0 1 0

!1 0 !1 !1 0 1
� �

1 0 0 0 0 0

m 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

!m 0 0 0 1 0

!m� !m 0 0 m 1
�

�diag�
2�

�
a�

, 1, 1, 1, 1,
a�
2�

�
� .

A factorized expression for (C��)�� is obtained analogously from (33). The relation
&&>

�
"!>

�
'' [7, (9)] will be maintained during the implied compound-matrix propagation

of a (1�6) row vector Y entering from the left.

4.1. FLUID REGIONS

For a #uid region, for which �

�"0, the m-dependent vector (;(r), R(r))
 ful"lls an ODE

system of type (3) with z replaced by r and system matrix A(r) given by

A(r)"�
!1/r [�(r)��!(m/�r)�]/�(r)

!�(r)�� 0 � . (35)
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Instead of (;(r),R(r))
, however, the vector

y"((�r/a); ,R )
 (36)

is considered, where a is a chosen reference radius. To obtain a propagator matrix which
can be expressed in terms of exponentials, the appropriate type of #uid cylindrical shell
turns out to be the one for which

�(r)"�
�
r�/a�, �(r)"�

�
, (37)

where �
�
, �

�
are constants. The P-velocity will depend on r according to �(r)"�

�
r/awhere

�
�
"[�

�
/�

�
]���. The variable r needs to be changed to z as in (25).

It can now be veri"ed that y(z) ful"lls an ODE system of type (3) with constant system
matrix A(z) given by

A(z)"��
0 [���

�
!(m/a�)�]/�

�
!�

�
0 � . (38)

This is of the same type as (18) for the horizontally strati"ed case, and the
propagator-matrix expression (19) is applicable, with � replaced by �

�
, � by �

�
, and p by

m/a�.

5. SPHERICAL STRATIFICATION

Spherical co-ordinates (r, �,�) are introduced such that x
�
"r sin(�)cos(�),

x
�
"r sin(�)sin(�), x

�
"r cos(�). The medium parameters are assumed to be independent

of � and �. Restriction is made to spheroidal waves, and the more simple toroidal waves are
thus neglected. The wave "eld can be synthesized from components, l"0, 1,2, and
m"!l,2, l,

(¸u� , u
 ,¸ �

� , �

 )"(<�>�

�
/�� ,;>�

�
, S �>�

�
/�� ,R>�

�
), (39)

where ¸"[l(l#1)]��� and >�
�
are the spherical surface harmonics given by

>�
�
(�, �)"(!1)��

2l#1

4�
(l!m)!

(l#m)!�
���

P�
�
(cos(�))ei�( (40)

with associated Legendre functions P�
�
. Furthermore, ¸ sin(�)u

(
"< �>�

�
/�� and

¸ sin(�) �

(

"S �>�
�
/��. It is understood that u� , u(

,�

� ,�
( vanish when l"0.

For each l,m pair, the vector (<(r),;(r),S(r),R(r))
 for a solid region ful"lls an ODE
system of type (3) with z replaced by r and system matrix A(r) given by [4, (8.32)]

A(r)"�
1/r !¸/r ���(r) 0

�(r)
�(r)#2�(r)

¸

r
!

2�(r)
�(r)#2�(r)

1

r
0

1

�(r)#2�(r)

�(r)�
¸

r �
�
!�(r)��!

2�(r)
r�

!�(r)
¸

r�
!3/r !

�(r)
�(r)#2�(r)

¸

r

!�(r)
¸

r�
2�(r)

1

r�
!�(r)�� ¸/r !

4�(r)
�(r)#2�(r)

1

r
� , (41)

where �(r)"4�(r)[�(r)#�(r)]/(�(r)#2�(r)) and �(r)"2�(r)[3�(r)#2�(r)]/(�(r)#2�(r)) .
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Instead of (<(r),;(r),S(r),R(r))
, however, the vector

y"(�(a/r)���<, �(a/r)���; , (r/a)���S, (r/a)���R )
 (42)

will be considered, where a is a chosen reference radius. To obtain a propagator matrix
which can be expressed in terms of exponentials, steps analogous to (23)}(25) turn out to be
appropriate. Following references [5, 6], a spherical shell is considered for which

�(r)"�
�
a�/r�, �(r)"�

�
a�/r�, �(r)"�

�
a	/r	 (43)

where �
�
, �

�
, �

�
are constants. It follows that �(r)"�

�
r/a and �(r)"�

�
r/a, where

�
�
"[(�

�
#2�

�
)/�

�
]��� and �

�
"[�

�
/�

�
]���. The variable r is changed to z according to

r/a"exp(z/a).
It can now be veri"ed that y(z) ful"lls an ODE system of type (3) with constant system

matrix A(z) given by

A(z)"��
1/2a� !¸/a� ���

�
0

�
�

�
�
#2�

�

¸

a�
!

5�
�
#2�

�
�
�
#2�

�

1

2a�
0

1

�
�
#2�

�

�
��

¸

a��
�
!�

�
!

2�
�

(a�)�
!�

�

¸

(a�)�
!1/2a� !

�
�

�
�
#2�

�

¸

a�

!�
�

¸

(a�)�
2�

�

1

(a�)�
!�

�
¸/a�

5�
�
#2�

�
�
�
#2�

�

1

2a� � , (44)

where �
�
"4�

�
(�

�
#�

�
)/(�

�
#2�

�
) and �

�
"2�

�
(3�

�
#2�

�
)/(�

�
#2�

�
), and that the

corresponding propagator matrix P"P(z, 
) can be written

P"C�� ) P



) C (45)

where P



is still given by (11)}(14) but with

��"�
¸

a��
�
!���

�
#(25/4!8��

�
/��

�
)

1

(a�)�
(46)


�"�
¸

a��
�
!���

�
!

7

4(a�)�
(47)

and

C"[2a��8#

a���

��
�
��

��
) �

�
�
!3 ¸ !5a�/2�

�
!a�¸/�

�
!3¸ �

�
#2 !a�¸/�

�
5a�/2�

�
2a� 2a�¸ !a���/�

�
0

2a�L !4a� 0 !a���/�
�
� , (48)

C��"�
!2a� 0 5 2¸

0 !2a� 2¸ !5

!4�
�

!4�
�
¸ 2�

�
(�

�
!3)/a� !6�

�
¸/a�

!4�
�
¸ 8�

�
2�

�
¸/a� 2�

�
(�

�
#2)/a�� , (49)
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where �
�
"2¸�!a���/��

�
. It is useful, however, to write C and C�� in terms of sparse

matrix factors. By some Gaussian elimination algebra, it follows that

C"diag�
1

2a�
,

1

2a�
, 1, 1� �

!1 0 0 !2¸

0 !1 !2¸ 0

0 0 !1 0

0 0 0 !1 � �
1 0 5 0

0 1 0 !5

0 0 1 0

0 0 0 1� )

�diag(1, 1,�8#

a���

��
�
�
��

,�8#

a���

��
�
�
��

� ) (50)

��
1 0 0 0

0 1 0 0

!1 0 1 0

0 2 0 1� �
1 0 0 0

0 1 0 0

0 !L 1 0

!L 0 0 1� diag�1, 1,
a�
2�

�

,
a�
2�

�
�

C��"diag�1, 1,
2�

�
a�

,
2�

�
a� � �

1 0 0 0

0 1 0 0

0 ¸ 1 0

¸ 0 0 1� �
1 0 0 0

0 1 0 0

1 0 1 0

0 !2 0 1� )

�diag�1, 1, 8#

a���

��
�

,8#

a���

��
�
� (51)

��
1 0 !5 0

0 1 0 5

0 0 1 0

0 0 0 1� �
!1 0 0 2¸

0 !1 2L 0

0 0 !1 0

0 0 0 !1� diag(2a�, 2a�, 1, 1) .

Relation (45) immediately gives a factorization of P�
� . The factor P�

�



is again handled as
described in references [7, 9]. Concerning C�

� and (C��)�� , factorized expressions can be
obtained directly from (50)}(51). The relation &&>

�
"!>

�
'' [7, (9)] will again be

maintained during the implied compound-matrix propagation of a (1�6) row vector
Y entering from the left.

5.1. FLUID REGIONS

For a #uid region, for which �

�"0, the l,m-dependent vector (;(r),R(r))
 ful"lls an ODE

system of type (3) with z replaced by r and system matrix A(r) given by

A(r)"�
!2/r [�(r)��!(¸/�r)�]/�(r)

!�(r)�� 0 � . (52)
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Instead of (;(r),R(r))
, however, the vector

y"(�(r�/a�); ,R )
 (53)

is considered, where a is a chosen reference radius. To obtain a propagator matrix which
can be expressed in terms of exponentials, the appropriate type of #uid spherical shell turns
out to be the one for which

�(r)"�
�
r�/a�, �(r)"�

�
r/a (54)

where �
�
, �

�
are constants. The P-velocity will depend on r according to �(r)"�

�
r/awhere

�
�
"[�

�
/�

�
]���. The variable r is changed to z in the familiar way: r/a"exp(z/a).

It can now be veri"ed that y(z) ful"lls an ODE system of type (3) with constant system
matrix A(z) given by

A(z)"��
0 [���

�
!(¸/a�)�]/�

�
!�

�
0 � . (55)

This is of the same type as (18) for the horizontally strati"ed case, and the
propagator-matrix expression (19) is applicable, with � replaced by �

�
, � by �

�
, and p by

¸/a�.

6. DISCUSSION

An interior or exterior homogeneous region without sources is conveniently handled
without propagation by including boundary conditions at its interface. The required
compound matrix G� of a boundary-condition matrix G as in (4) is easily obtained from
vectors that span the solution space. The cylindrical case can be treated using reference
[10, sections 6.9 and 2.13]. For a homogeneous solid sphere, see reference [11, (2.2.28}30)
and (2.3.6}8)].

For media with an arbitrary variation, with depth or radius, of medium velocities and
density, a sequence of approximating media is considered. Each approximating medium is
built up by layers or shells with the speci"c variation considered previously, for example in
(23). It can be useful to initialize propagation from boundary conditions at the interface of
a small interior homogeneous shell, however, since (23) is not appropriate at the centre
(r"0). Each medium in the sequence represents a re"nement of its predecessor, and
extrapolation techniques can be used to speed up convergence. Let the parameter
h represent the "neness of a medium discretization, in depth or radius, and suppose that
some "eld quantity S is to be computed. If the discretization is done in analogy with the
mid-point rule, an asymptotic expansion is anticipated according to

S(h)"S
�
#

�
�
�
�

c
�
h��#O(h����) . (56)

Expansion (56) has been veri"ed by numerical experiments. For the extrapolation, the
Bulirsch}Stoer rational technique is suggested, which was also used in reference [12]. Error
estimates are conveniently obtained from di!erences in the extrapolation table.

As a computational example, an acoustic Luneberg lens [13] is considered. This is
a sphere, of radius a say, for which the P-velocity varies according to �(r)"
[2!(r/a)�]�����

�
, where �

�
is the P-velocity of the surrounding #uid. The Luneberg lens

focuses an incoming plane wave at the opposite surface of the lens. This is illustrated in



Figure 1. Focal polar patterns (lens gain at the opposite side of the lens for an incoming plane wave) for a #uid
Luneberg lens (F) and a solid one with �(r)"�(r)/2 (S). The frequency is such that k

�
a"40, where k

�
is the

wavenumber in the surrounding #uid. The density is constant throughout the medium. Panels (a) and (b) are for the
spherical and cylindrical cases respectively.
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Figure 1a, which shows the focal polar patterns for a #uid lens (F) and a solid lens with
�(r)"�(r)/2 (S). The #uid result was obtained in a di!erent way, with a particular
eigenfunction expansion, in reference [13, Figure 6]. Corresponding results for a cylindrical
lens are shown in Figure 1b, with less focusing gain as expected.

7. CONCLUSIONS

It is well-known that wave propagation through a spherically symmetric object
composed of concentric solid and #uid shells can be computed by spherical Bessel functions,
whereby each shell is divided into homogeneous sub-shells. As recently shown in the
seismological literature [5, 6], however, wave propagation in the earth can be computed by
ordinary exponentials if the earth is divided into particular concentric shells, in each of
which the P- and S-velocities vary proportionally to the radius. A number of advantages are
obtained by using exponentials rather than spherical Bessel functions. Analytical scaling,
di!erentiation, and integration, for example, become quite trivial.

In the present paper, the exponential-function technique has been developed for wave
propagation through cylinders as well as spheres. Fluid and solid regions, and
combinations thereof, have been considered. For #uid shells, it turned out that the
formalism becomes identical to the one for handling #uid regions built up by homogeneous
layers in horizontally strati"ed range-independent media. For solid shells,
compound-matrix techniques were introduced to overcome the numerical cancellation
problems for high-frequency computations in the evanescent regime. Each (6�6)
compound matrix is factorized as a product of sparse matrices, which are applied in
sequence to the pertinent row vector entering from the left. Computational e$ciency is
enhanced signi"cantly in this way. The central compound-matrix factors, involving the
exponential and/or trigonometric functions, become formally identical to corresponding
matrices for the range-independent case. Although di!erences appear concerning the
remaining compound-matrix factors, which are no longer independent of frequency,
a compound-matrix code for wave propagation in range-independent media can easily be
adapted to handle cylindrical- and spherical-shell applications.

Extrapolation techniques are useful to reduce the number of sub-shells needed
for accurate computations when the elastic parameters vary in an arbitrary way with
radius.
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