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In a previous series of papers, a semi-analytical model based on Hamilton’s principle and
spectral analysis has been developed for geometrically non-linear free vibrations occurring
at large displacement amplitudes of clamped—clamped beams and fully clamped rectangular
homogeneous and composite plates. In Part I of this series of papers, concerned with
geometrically non-linear free and forced vibrations of various beams, a practical simple
“multi-mode theory”, based on the linearization of the non-linear algebraic equations,
written in the modal basis, in the neighbourhood of each resonance has been developed.
Simple explicit formulae, ready and easy to use for analytical or engineering purposes have
been derived, which allows direct calculation of the basic function contributions to the first
three non-linear mode shapes of the beams considered. Also, various possible truncations of
the series expansion defining the first non-linear mode shape have been considered and
compared with the complete solution, which showed that an increasing number of basic
functions has to be used, corresponding to increasingly sized intervals of vibration
amplitudes; starting from use of only one function, ie., the first linear mode shape,
corresponding to very small amplitudes, for which the linear theory is still valid, and ending
by the complete series, involving six functions, corresponding to maximum vibration
amplitudes at the beam middle point up to once the beam thickness. For higher amplitudes,
a complementary second formulation has been developed, leading to reproduction of the
known results via the solution of reduced linear systems of five equations and five
unknowns. The purpose of this paper is to extend and adapt the approach described above
to the geometrically non-linear free vibration of fully clamped rectangular plates in order to
allow direct and easy calculation of the first, second and higher non-linear fully clamped
rectangular plate mode shapes, with their associated non-linear frequencies and non-linear
bending stress patterns. Also, numerical results corresponding to the first and second
non-linear modes shapes of fully clamped rectangular plates with an aspect ratio o = 0-6 are
presented. Data concerning the higher non-linear modes, the aspect ratio effect, and the
forced vibration case will be presented later.

© 2002 Elsevier Science Ltd. All rights reserved.

1. INTRODUCTION

New materials with high stiffness-to-weight ratio, such as those made of fibre-reinforced
plastics, are becoming increasingly used to build high-performance structures which are
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required for aerospace applications. Also, to reach the performance required in the latest
applications, even when classical isotropic materials are used, the necessary weight saving
cannot be achieved unless the structures are designed with the lowest possible thickness. In
both cases, if resonant behaviour occurs, the amplitude of the dynamic response will be
relatively high and fatigue may occur [1, 2]. The geometrical non-linearity due to the high
displacement amplitudes occurring in severe environment or in the neighbourhood of
resonances has to be properly taken into account in the design of the structural components
considered. Non-linear analysis methods are therefore necessary to predict the non-linear
structural behaviour at large vibration amplitudes, and establish the appropriate design
criteria [3, 4].

In spite of the considerable research which has been carried out in the last few decades,
concerned with plate vibrations [5], no exact solution for the complicated problem of
non-linear vibrations of rectangular plates is known. Even in the linear case, approximate
numerical methods, like finite difference techniques, the Galerkin technique, Weinstein’s
method, integral equations and series methods have been used in the literature to determine
the linear mode shapes and natural frequencies of fully clamped rectangular plates (FCRP)
[6]. The only case of a rectangular plate for which exact linear analytical results are
available is that of a plate with two opposite edges simply supported. A comprehensive
treatment of the linear problem and references corresponding to all of the above-mentioned
methods are given in the monograph of Leissa [ 7], and in his more recent review [8]. The
non-linear analysis of plates has been for many years a subject of high interest and has led to
the publication of reference books [9, 10]. Also, although a large number of studies have
been carried out on non-linear plate vibrations, each problem has received a special
treatment involving some particular approximations. Some of the relatively older models
available, such as those proposed in references [11, 12], are based on the perturbation
procedure, and, consequently, are practically limited to the first order effects of finite
displacements upon natural frequency, as has been mentioned in reference [13]. Also, in
most of the studies carried out on non-linear vibrations of rectangular plates, the common
approach to such problems had been to assume a spatial function, usually the linear mode
shape, and seek a solution for the time variable, assuming that the space and time functions
can be separated, which is an assumption which does not rigorously hold in the non-linear
case, as has been noticed in the early paper of Chu [14]. More recently, the hierarchical
finite element method, denoted in what follows as the HFEM, has been proposed to study
the first and higher non-linear modes of vibrations of FCRP, using the von Karman type of
geometrical non-linear strain-displacement relationships, and the harmonic balance
method, to derive the equations of motion [15, 16]. This approach has also been used in
reference [17] to solve the equations of motion by the Newton and continuation methods
and applied to the study of the non-linear free and steady state periodic forced response of
plates, both homogeneous and composite. Another approach [18], called the asymptotic
numerical method, has been developed for large-amplitude free vibrations of thin elastic
plates. It is based on a combination of the perturbation method and the finite element
method, and it eliminates the limitation of the validity of the classical perturbation method,
practically restricted to weak non-linearity [13].

On the other hand, it may be noted that, as stated in reference [19], in spite of the
considerable amount of research which has been carried out in the last few decades on
non-linear vibrations, linear theories remain widely used in most of the practical
applications, particularly in the field of modal testing. This may be attributed, as stated in
reference [20], among other reasons, to the fact that the various attempts to describe
mathematically the non-linear structural dynamic behaviour which have been developed
and presented in the literature still appear somewhat esoteric and difficult to deal with in
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practical situations. Also, no equivalence has been found, in the non-linear case, to the
powerful and nice description of the linear dynamic behaviour of a structure, in terms of its
natural frequencies and natural modes of vibration. The various attempts made in the last
two decades by Benamar and co-workers, reported in references [6, 13, 19, 21-27], to
describe the non-linear behaviour of some structures with a relatively simple geometry, such
as beams, plates, and circular cylindrical shells, using their normal mode bases, show that
although the development of such an equivalence may be a laborious task, the concept of
normal modes of vibration remains in the non-linear case very useful and yields a deep
insight into the structural dynamic behaviour. This has been shown theoretically by the
considerable computing time saving and the relative mathematical simplicity of the
non-linear semi-analytical models developed, in which linear mode shape bases are used to
expand the unknown displacement series. Also, experimental measurements of an FCRP
non-linear response harmonic distortion spatial distribution have been carried out in
reference [24]. It was shown that this distribution was related to the plate linear mode
shapes. Therefore, it was thought that investigations could be directed toward a further step
in the development of a sort of “non-linear modal analysis theory”, allowing direct
determination of the non-linear mode shapes, the non-linear frequencies, and the associated
non-linear bending stress patterns of thin straight structures, for the vibration amplitude
ranges of interest in practical applications. It was also hoped that such an attempt could
provide users with simple formulae, ready to use for analytical and engineering purposes,
which would be much more practical than the published tables of data, obtained from the
numerical iterative solution of a non-linear algebraic system, which necessitates the use of
appropriate software in each case. Part I of this series of papers [20] was concerned with
beams, with the objective of developing a practical simple “multi-mode theory”, based on
the linearization of the non-linear algebraic equations, written on the modal basis, in the
neighbourhood of each resonance.

The purpose of this paper is the extension of this approach to geometrically non-linear
free vibration of FCRP in order to allow direct calculation of the first, second, and higher
non-linear FCRP mode shapes, with their associated non-linear frequencies and bending
stress patterns. In section 2, a review of the theory and some numerical results obtained by
solving iteratively the non-linear algebraic equations, for the first and the second non-linear
mode shapes of FCRP, published previously, are summarized. Section 3 is concerned with
the development of the new approach for free vibration analysis of FCRP and the
presentation and discussion of the results obtained by the application of the first and second
formulations to FCRP with an aspect ratio o = 0-6. In the last section, the results obtained
by the new approaches are discussed, to determine accurately the limit of validity of each
formulation, via comparison with the previous known results.

2. REVIEW OF THE SEMI-ANALYTICAL METHOD FOR THE DETERMINATION
OF THE NON-LINEAR MODE SHAPES AND RESONANCE FREQUENCIES
OF FCRP AT LARGE VIBRATION AMPLITUDES

The objective of the present paper is to present an improvement of the semi-analytical
model for non-linear free vibration of FCRP developed in references [6, 19, 217, in order to
establish new explicit formulae, or reduced linear systems, allowing easy reproduction of the
results given in these references, which have been obtained via numerical iterative solution
of non-linear algebraic systems. We start by presenting in this section a brief review of the
theory, which is reproduced here using Lagrange’s equations, in order to make it easy for
the reader to understand the notation and the analytical developments presented in the
remainder of the paper.
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Figure 1. Plate notation.

Consider the transverse vibrations of the FCRP shown in Figure 1 and having the
characteristics given in the Nomenclature. For such a plate, the strain energy V' is given as
the sum of the strain energy due to the bending V,, and the membrane strain energy
induced by large deflections V. In references [ 19, 217, the expressions used for V,, V,, and
the kinetic energy T have been extensively discussed on the basis of a systematic
comparison of the results obtained previously both experimentally and theoretically, based
on various approaches. The approximate expressions adopted were

1 0w PW\? 3D oW \? OWN\??
—- | p(E 2 v,=— | [(E£ o 1,2
Vs ZJS <(3x2+6y2>ds’ ¢ 2H2L[<6x> +<ay>]ds’ (1.2

1 oW \?
" f <W> gs. 3)

in which W is the transverse deflection function, S is the plate area, and V, is the simplified
bending strain energy expression, which is valid for the FCRP boundaries considered
here [28].

In the above expressions, terms involving the in-plane displacements U and V' and their
derivatives, which are given, for example, in reference [28], have been omitted. This
assumption has been made in references [19, 21] when calculating the first and second
non-linear mode shapes of FCRP and its range of validity has been discussed in the light of
the experimental and numerical results obtained for the non-linear frequency amplitude
dependence and the non-linecar bending stress estimates obtained at large vibration
amplitudes. For the first non-linear mode shape, it was found that the percentage error in
the non-linear frequency estimates based on this assumption, for amplitudes up to 1-5 the
plate thickness, does not exceed 1:3%. On the other hand, the rate of increase in the bending
stress estimates, obtained from measured data, was in good agreement with that obtained
from the theory, in which the assumption of zero in-plane displacements was made [24].
For the second FCRP non-linear mode shape [19], the assumption of zero in-plane
displacements has led to results which were in a very good agreement with those given in
reference [16], based on the HFEM. Also, the effects of neglecting or taking into account
the in-plane displacements U and V have been examined in the excellent discussion given in
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reference [15], in which a cancellation effect, which explains the reasonable results obtained
if U and V are taken equal to zero, has been noticed. As the purpose of the present work was
the development of a direct and simple theory, valid for a reasonable range of vibration
amplitudes, the assumption of zero in-plane displacements has been made as in references
[19, 21]. Further investigations are being directed toward the development of more
complex and complete formulations of the non-linear vibration problem, including the
in-plane displacements, and other non-linear effects, such as the harmonic distortion,
spatially distributed, which will be presented later.

Using a generalized parameterization and the usual summation convention used in
reference [21], the transverse displacement of a point (x, y) of the plate mid-plane can be
written as

W(X, Vs t) ={; (t) Wi(x7 y) (4)
Substituting W into expressions (1-3) for V,, V,, and T, and rearranging leads to
Vy = %qiqjkija Ve= %qiqjchhbijkla T = %Qinmij, (5-7)

in which m;;, k;; and b;j, are the general terms of the mass tensor, the rigidity tensor, and the
non-linear rigidity tensor defined in references [6, 21] as

m;j = pH J wi(x, y)w;i(x, y)dx dy, (8)
S
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and indices i, j, k and [ are summed over 1,...,n.

The dynamic behaviour of the structure may be obtained by Lagrange’s equations for
a conservative system, which leads to

6<6T> or ov
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Replacing in this equation T and V = (V, + V) by their expressions given above leads to
the following set of coupled non-linear differential equations, which is similar to that found
in reference [22], and considered as a multi-dimensional form of the very well-known
Duffing equation:

qimy + qiki + 2q:9qbijie =0, v =1,...,n, (12)
which can be written in the matrix form as
[M]1{d} + [K1{q} + 2[B({q})]{q} = {0}, (13)

where [M], [K] and [B] are, respectively, the mass matrix, the linear rigidity matrix, and
the geometrically non-linear rigidity matrix depending on the column vector of
time-dependent generalized parameters {q}" = [¢19; --- 4. ]-
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The present work is concerned with the free response of FCRP with the objective of
determining the spatial dependence of the non-linear mode shapes on the amplitude of
vibration, which has been observed experimentally in the early paper of White [29], and
carefully measured by Benamar et al. in reference [24]; and its consequences on the
non-linear bending stress patterns. So, harmonic motion has been assumed as in references
[19, 217:

q;(t) = a; cos(wt). (14)

Substituting equation (14) into equation (13) and applying the harmonic balance method
leads to

2[K] — w*[M]){A} + 3[B(A)]{A} = {0}, (15)

in which {A} is the column vector of the basic function contribution coefficients
{A}" = [ay4a, ... a,]. To obtain non-dimensional parameters, we put, as in reference [21]:

wilx, y) = Hw} (g %) = Hw} (x*, %), (16)
(/02 _ D kij - D(JI"I2 mij - H3ab bijkl _ D(IH2 (17 20)
o pHO® K5 B omy PO pr T B
Substituting these expressions into equation (15) leads to
([K*] — 0*2[M*]) {A} + 3 [B*(A)]{A} = {0} (21)
which may also be written, using the tensor notation, as
— o*2ami + aki + 3 aiaja b, =0, r=1-n. (22)

Equation (22) is identical to that obtained in reference [21] for the non-linear vibrations of
beams and plates using Hamilton’s principle and integration of the time functions over the
range [0, 2n/w]. These equations are a set of non-linear algebraic equations, involving the
parameters m¥, k¥ and bf, which have been computed numerically by a routine called
PREP [6]. In order to obtain the numerical solution for the non-linear problem in the
neighbourhood of a given mode shape, the contribution of the dominant function
participating in this mode was chosen and those of the other functions were calculated
numerically. For example, for the first mode shape of a FCRP, the procedure consisted in
fixing a, , which is the contribution of the function w¥; defined in section 3.1, and calculating

the higher mode contributions a,, r = 2-n, from the system
— o*?ami + alkl + 3 aaably, =0, r=2-n. (23)

in which w*? is replaced by the expression obtained from the principle of conservation of
energy, i.e.,

* %
o a;a;k + a;a;0a1b5

(24)

*
ai(ljmij

Numerical data corresponding to the first two non-linear FCRP mode shapes have been
computed and tabulated in references [ 19, 21] for a wide range of vibration amplitudes and
different aspect ratios.
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3. THE NEW APPROACH FOR DIRECT DETERMINATION OF THE
GEOMETRICALLY NON-LINEAR FREE RESPONSE OF FCRP

3.1. INTRODUCTION

The purpose of this section is to extend the first and second formulations developed for
beams in Part I of this series of papers in order to re-obtain the FCRP first and second
non-linear mode shapes and the associated non-linear frequencies and bending stress
patterns, at large vibration amplitudes, via simple explicit formulae, ready to use for
engineering or analytical purposes, or via the solution of reduced linear systems of eight
equations and eight unknowns. Then, comparison of the new results with the previous ones
is made in order to determine accurately the limit of validity of each formulation. Analytical
details are given in this section for the first FCRP non-linear mode shape. Results for the
second non-linear mode shape obtained similarly are presented in sections 3.2.4 and 4.2.

Consider the large vibration amplitudes of the FCRP shown in Figure 1, having an aspect
ratio o = b/a, in the neighbourhood of its first resonant frequency. Following the choice of
basic functions adopted in reference [21], the plate transverse deflections in the x and
y directions are presented by clamped-clamped beam functions. So, the simple index k of
the contribution g, used in series expansion (4) for the plate deflection function wy(x, y), or
its non-dimensional equivalent wi(x*, y*), may be replaced by a double index o;;, which
means that the plate function wy, is the product of the ith and jth clamped-clamped beam
functions in the x and y directions respectively:

WH (¥, y¥) = awit (X, %) = o wi (x*, y). (25)

The relationship between the simple index k and the corresponding double indexes ij when
using nine plate functions obtained as products of the first three beam functions in the x and
y directions is

k=33—1)+], (26)

so that when i and j vary from 1 to 3, k varies from 1 to 9. In the remainder of this paper,
either simple or double index notations will be used, depending on the context.

To determine the first non-linear mode shape of FCRP, the linear rigidity matrix k and
non-linear geometrical rigidity tensor b, have been calculated using the first nine
symmetric-symmetric plate basic functions, obtained as products of the first three
symmetric clamped-clamped beam mode shapes, given in Appendix A, in the x and
y directions. This choice has been adopted because it leads to nine plate functions whose
contributions to the first linear mode shape of fully clamped square plates have been shown
to be significant in results, considered now as classical, published by Leissa from Young’s
work, based on Rayleigh—Ritz analysis [7, 8, 30]. Also, this conclusion has been confirmed
in the non-linear case by the convergence study performed in reference [21], in which 36
plate functions have been used, for different plate aspect ratios, but only the contributions of
the nine functions mentioned above have been found to be significant. For the second
non-linear mode of FCRP having an aspect ratio « less than unity, it was shown similarly
that the nine plate functions contributing significantly are those obtained by multiplying the
first three antisymmetric clamped-clamped beam functions in the x direction by the first
three symmetric clamped-clamped beam functions in the y direction [19].

To illustrate now the main idea behind the present approach, we present here in Table 1
data obtained via the iterative solution of the non-linear algebraic system (23) previously
published in reference [21]. It can be seen from in this table, corresponding to the first
non-linear mode shape of FCRP with an aspect ratio o = 0-6, that the contribution a; of the



TaBLE 1

Contribution coefficients in the BF B to the first non-linear mode shape of a FCRP, obtained numerically from the iterative solution of the non-linear algebraic
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system, published in reference [21] (o = 0-6)
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0-1223 1-0027 0-05 0-2870E —03 0-4128E—04 0-1688E—02 —09539E—04 —0-1959E—04 0-2660E —03 —0-5795E—04 —0-1462E—04
0-2441 1-0108 0-10 0-6430E —03 0-1118E—03 0-3626E—02 —0-1723E—03 —0-4638E—04 0-5535E—03 —0-1183E—03 —0-2846E—04
0-3649 1-0239 015 0-1129E—02 0-2390E —03 0-6029E—02 —0-2123E—03 —0-8645E—04 0-8849E —03 —0-1822E—03 —0-4108E—04
0-4844 1-0417 0-20 0-1793E—02 0-4471E—03 09051E—02 —0-1971E—03 —0-1439E—03 0-1284E — 02 —0-2487E—03 —0-5259E —04
0-6025 1-0636 0-25 0-2665E —02 0-7561E—03 0-1278E—01 —0-1091E—03 —0-2206E—03 0-1774E—02 —0-3144E—03 —0-6362E—04
07191 1-0893 0-30 0-3763E —02 0-1182E—02 0-1724E —01 0-67499E—04 —0-3164E—03 0-2375E—02 —0-3735E—-03 —0-7507E—04
0-8344 1-1181 0-35 0-5089E —02 0-1735E—02 0-2241E—01 0-3460E—03 —0-4292E—03 0-3107E—02 —04191E—03 —0-8788E—04
0-9486 1-1499 0-40 0:6637E —02 0-2423E —02 0-2824E —01 0-7369E—03 —0-5560E —03 0-3980E — 02 —04433E—03 —0-1028E—03
1-0619 1-1840 0-45 0-8396E —02 0-3251E—02 0-3465E—01 0-1247E—02 —0-6930E—03 0-5001E —02 —04381E—03 —0-1201E—03
1-1744 1-2203 0-50 0-1035E —01 0-4212E—02 0-4157E—01 0-1882E—02 —0-8359E—03 0:6172E —02 —0-3964E—03 —0-1398E—03
1-2864 1-2584 0-55 0-1248E —01 0-5323E—02 0-4892E —01 0-2640E—02 —0-9809E—03 0-7491E—02 —0-3117TE-03 —0-1615E—03
1-5093 1-3392 0-65 0-1719E —01 0-7934E — 02 0-6463E—01 0-4525E—02 —0-1262E—02 0-1054E —01 0-5518E—05 —0-2078E—03
1-7316 14251 075 0-2238E—01 0-1104E—01 0-8130E—01 0-6868E—02 —0-1510E—02 0-1408E—01 0-5390E—03 —0-2512E—03
1-9538 1-5151 0-85 0-2793E—01 0-1458E —01 0-9860E —01 0-9618E—02 —0-1705E—02 0-1802E —01 0-1296E—02 —0-2833E—03
2:1763 1-6085 095 0-3375E—01 0-1849E—01 0-1163E+00 0-1271E—01 —0-1836E—02 0-2228E—01 0-2269E—02 —0-2967E—03
2:3992 1-7046 1-05 0-3975E —01 0-2272E—01 0-1342E 400 0-1610E—01 —0-1894E —02 0-2678E —01 0-3442E—02 —0-2862E—03
3-4069 2:1630 1-50 0-6781E—01 0-4425E—01 0-2156E 400 0-3352E—01 —0-1272E—-02 0-4858E —01 0-1058E —01 0-1114E—03
4-5320 27049 2:00 0-9936E —01 0-7030E —01 0-3055E+00 0-5457E—01 0-7031E—03 0-7362E —01 0-2042E —01 0-1141E—02
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first basic function, which is the product of the first clamped-clamped beam linear mode
shape in the x direction, with the first clamped-clamped beam linear mode shape in the
y direction, remains predominant for the whole range of vibration amplitudes considered,
compared to the contributions of the other functions. So, the contribution coefficient vector
{A}, defined in reference [21] by {A}" = [a;4, ... ao], can be written as {A}" = [a¢; ... &o]
in which ¢;, representing the ith FCRP basic function contribution, may be considered as
small, compared to a;, for i = 2-9. Since the non-linearity parameters b;; defined in
equation (9) are of the same order of magnitude (see Appendix B), due to the above
observation, some terms may be neglected in the non-linear expression a;a;abfy, in
equation (22), which leads to two simple formulations, called in the remainder of this paper
the first and the second formulation, defined in the next sections.

3.2. THE FIRST FORMULATION, LEADING TO EXPLICIT ANALYTICAL EXPRESSIONS
FOR THE NON-LINEAR MODE SHAPES OF FCRP

3.2.1. Formulation in the beam functions basis (BF B) and necessity of use of the modal function
basis (M FB)

The formulation presented in this section is said to be made in the beam functions basis,
denoted in what follows as the BFB, since it is based on equation (23), in which the
parameters mj;, k% and b¥,, are calculated from expressions (8-10), involving the basic
functions w¥, defined in section 3.1, and obtained as products of beam functions.

The first formulation is based on an approximation which consists in neglecting in the
expression a,a;a;biy,. of equation (23), which involves summation for the repeated indices i, j,
k over the range {1,2, ... ,n}, both first and second order terms with respect to ¢;, i.e., terms of
the type ate bt s, or of the type a,€6:b¥ i, s0 that the only remaining term is a3b*,,,. This
leads to

(k¥ — w**m¥)e; + 3 a3b¥t, =0 forr=2,...9. (27)

If k%, for i # r, is assumed to be negligible compared with k%, with the objective of obtaining
an analytical solution, the above system permits one to obtain explicitly the basic function
contributions &,, 3, ... ,&¢ Of the second and higher functions, corresponding to a given value
of the assigned first basic function contribution a, as follows:

% a%bfl 1r

= = o) r=23..9). (28)

In equation (28), the ¢,’s, for r > 1, depend on the classical parameters m;%, k%, and the
non-linear parameters b¥,,, calculated in the BFB. They depend also on the assigned first
function contribution @, and the non-linear frequency parameter w*. On the other hand,
the single mode approach gives a good estimate of the non-linear frequency parameter w*
for maximum plate displacement amplitudes up to 1-:34 times the plate thickness, as may be
seen from Figure 2, in which the non-linear frequency estimates, calculated using the single
function formula (29) given below, and the complete formula (24), are plotted against the
maximum non-dimensional displacement amplitude w,,, obtained at the plate centre.
Consequently, ®** may be estimated, in the range of displacement amplitudes considered,
with a percentage error below 3%, compared with equation (24), by

_ & b¥111 2

ay. (29)

w*? * *
myy miy
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4
T 1D in MFB ( equation 40)
3T 9D in BFB (equation 24)
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=

1D in BFB ( equation 29)

1.0 12 14 1.6 18 2.0
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Figure 2. Comparison of the single function formula, for the non-linear frequency parameter, w,;/w; written in
the BFB, i.e., equation (29), and in the MFB, i.e., equation (40), with the multi-mode formula (equation (24)).

Substituting equation (29) into equation (28) leads to

3%
3aibfi14

m
2((kTy + a%bﬁu)m—* — k)
i1

(r=23,...9) (30)

& =

As the normalization procedure applied in reference [21] to the elements of the BFB leads
to a mass matrix identical to the identity matrix, m¥; and m} are equal to 1 and equation
(28) may be simplified to
e — 3aib}i 1y
"2k 4 atbtig — k)

r=23,..9). (31)

Expression (31) is an explicit simple formula, allowing calculation in the BFB of the higher
function contributions to the first non-linear FCRP mode shape, as functions of the
assigned first function contribution a;, and of the known parameters k¥, m} and
b¥i1, (given in Appendix B).

In Table 2, numerical results for the basic function contributions to the fundamental
non-linear mode shape of FCRP with an aspect ratio a = 0-6, based on the first formulation
applied in the BFB, and calculated using equation (31), are summarized. A comparison
between Table 2 and Table 1 shows notable differences between contributions. These
differences can be explained as follows: in the beam cases presented in reference [20], the
bases used to expand the displacement function series were those of the linear normal
modes of vibration of the beam considered in each case, in which the mass and rigidity
matrices are diagonal. In the FCRP case considered here, the basic functions used in the



TABLE 2

Contribution coefficients in the BF B to the first non-linear mode shape of a FCRP, calculated via the explicit expressions obtained from application of the first
formulation in the BFB (o0 = 0-6)

%
Winax [omiar diy a3 dys asy ass ass dsy ds3 dss

0-12598149 E+00 0-100273E+401 0-5000000 E—01 0-1433550 E—04 0-5217108 E—05 0-5498663 E—04 0-8078420 E—06 —0-188534 E—05 02660310 E—05 —0-108640 E —05 0-3222832 E—06
025118467 E+00 0-101081E 401 0-100000E +00 0-1147758 E—03 0-4174233 E—04 0-4419214 E—03 0:6466099 E—05 —0-150844 E—04 0-2130097 E—04 —0-869360 E —05 0-2578469 E—05
0-37480756 E+00 0-102388E +01 0-150000E +00 0-3878857 E—03 0-1409111 E—03 0-1503036 E—02 0-2184203 E—04 —0-509191 E—04 0-7199500 E —04 —0-293540 E —04 0-8703485 E—05
049599940 E+00 0-104142E +01 0-200000E +00 09211556 E—03 0-3341137 E—03 0-3601805 E—02 0-5183671 E—04 —0-120727 E—03 0-1710018 E—03 —0:696237 E—04 0-2063429 E —04
0-61383224 E+00 0-106287E +01 0-250000E +00 0:1803476 E—02 0-6528225 E—03 0-7135336 E—02 0-1014022 E—03 —0-235873 E—03 0-3348636 E—03 —0-136093 E—03 0-4031094 E—04
072726728 E+00 0-108773E+01 0-300000E+00  0-3125632 E—02 0-1128619 E—02 0-1254911 E—01 0:1755593 E—03 —0-407753 E—03 0-5805044 E—03 —0-235402 E—03 0-:6967757 E—04
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deflection function expansions have been calculated as products of x- and y-beam functions,
as explained in section 3.1. Although the dominant component of the first and second linear
FCRP mode shapes with an aspect ratio less than unity are w¥; (x*, y*) and w¥,(x*, y*),
respectively, these functions do not coincide exactly with the FCRP first and second normal
modes of vibration, and the corresponding rigidity matrices are not diagonal (cf., Appendix
B). It is then necessary to make a change of basis, and formulate the problem on the basis of
the linear mode shapes of the FCRP considered, called in the remainder of this paper the
modal functions basis, and denoted as the MFB, in order to develop an explicit analytical
solution of the problem. The linear diagonal rigidity matrix, corresponding to the first nine
FCRP linear mode shapes, symmetric in both the x and y directions, in the MFB is given in
Appendix B. It will be shown in sections 4.1 and 4.2 that the use of the MFB will lead to
much more accurate values for the basic function contributions to the first and second
FCRP non-linear mode shapes.

3.2.2. Formulation of the F CRP non-linear free vibration problem in the modal functions basis
(MFB)

It appeared in the last section that the first formulation leads to poor results in the BFB.
The purpose of the present section is to reformulate the FCRP non-linear free vibration
problem in the MFB, in which the results obtained via the new formulations developed in
the present paper will be found much more accurate, as will be shown in section 4. To do so,
the expansion of the transverse displacement function w* (x*, y*) in the form of the finite
series:

W (x*, y*) = awif (x*, %) (32)
given in equation (25) is rewritten as
W¥(x*, y*) = @i (x*, y), (33)

where a summation is performed for the index k over the range {1, ....,n} in both cases, and
dF(x*, y*)is the k™ symmetric-symmetric FCRP linear mode shape, denoted in what
follows as the k™ SSFCRP linear mode shape, which is obtained from the numerical
solution of the linear eigenvalue problem:

— o*¥amt + ak: =0, r=1-n, (34)

performed using the software MATLAB.
Using the new notation, corresponding to the MFB, the non-linear algebraic system (23)
may be written as

®2z ok | Z Pk 3z =z oz bR —
— W7 Ay, + AsKsr + 2 A5y Ay Dgypy = 0: r=2-n (35)
with w*? given by
= 7 Lk T a4 a ¥
a.a + a,a,a,a
(,()*2 _ ArtsTrs i _r_s*u v rsub’ (36)
A, Ay

in which the diagonal mass and rigidity matrices general terms k¥ and m}, and the

non-linear rigidity tensor b}, are calculated in the MFB, using the formulae established in
Appendix C.
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3.2.3. Application of the first formulation in the M F B to obtain explicit analytical expressions
for the FCRP first non-linear mode shape

The first formulation, developed now in the MFB, is based, like in section 3.1.2, on an
approximation which consists in assuming that the contribution vector {A}" = [d,a, ... a,]
can be written as {A}" = [a,£, ... §,], with &, being small compared to a,, for r =2, ... n.
Then, both first and second order terms with respect to &, i.e., terms of the type aie,b¥ ., or
of the type a,5,6,b%., are neglected, so that the only remaining term is a3b%,,, in the
expression a,a,a,b¥,, of equation (35), which becomes

(kK — w**mk)e +3a3bt,, =0 forr=2,3,...9, (37)

in which the repeated index i should be summed over the range {1,2, ...,9}. However, since
use of the FCRP linear mode shapes as basic functions leads to diagonal mass and rigidity
matrices, equation (37) can be written as

(k¥ — w**m¥)e, + 3a3bty,, =0 forr=2,3,....9, (38)

in which no summation is involved. The above system permits one to obtain explicitly the
modal contributions &, &3, ...,&, in the MFB, of the second and higher basic functions,
which are in the present case the higher linear mode shapes of the FCRP considered,
corresponding to a given value @, of the assigned first basic function contribution, i.e., the
first FCRP linear mode shape, as follows:
§d3b* .

&=—@fi$%ﬁ (r=2,3,..9). (39)
In the above equation, the &s, for r > 1, depend on the classical modal parameters mi%, ki,
the non-linear modal parameters b}, ,,, the assigned first mode contribution d;, and the
non-linear frequency parameter w*.

On the other hand, the single mode approach gives also in the MFB an accurate estimate
of the non-linear frequency parameter w*for high amplitudes, as may be seen from Figure 2.
For displacement amplitudes up to 1.34 times the plate thickness, w** may be well
estimated, with a percentage error below 2-2%, compared with equation (36), by
_ @ bii11 2

as. (40)

w*?

miy - miy
Substituting equation (40) into equation (39) leads to

=37
P = 3aibfi11
r * =27 % =K [k %
2((kTy + arbii11) miy/my, — ki

r=23,..9). (41)

As the mass matrix is identical to the identity matrix, due to the normalization procedure
applied to the eigenvectors obtained from equation (34), m¥; and mi} are equal to 1 and
equation (41) may be simplified to

— 3&?5?111

o= 2(k%; + atb¥iy — k)

r=23,..9). (42)

Expression (42) is an explicit simple formula, allowing direct calculation of the higher modal
function contributions to the first non-linear FCRP mode shape, as functions of the
assigned first modal function contribution @,, and of the known parameters ni, k¥ and
b} 11 (given in Appendix B). This defines the first non-linear amplitude-dependent FCRP
mode shape wi (x*, y* a,), for a given assigned value a; of the first modal function
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contribution, as a series involving the plate modal parameters depending on the first nine
SSFCRP modes shapes ¢¥,¢%,...,0%:

3dib_§lll
W;k *’ *’ a_ — d * *’ * + _ — _ * *, *
1 (x*, y¥, ay) 17 (X, y) AKF + @bty — k) ¢35 (x*, y*)
3aib%i1,
4+ 1 _ HxE ) 4 -
A + @bty R Y
3&?[)3111
" P8 (x*, ). @3)

2((k¥y + aibtiiy) — ko)

in which the predominant term, proportional to the FCRP first linear mode shape
QT (x*, y*), is a;¢¥(x*, y*); and other terms, proportional to the higher SSFCRP mode
shapes ¢% (x*, y*), ....0&(x*, y*), are the corrections due to the non-linearity.

3.2.4. Application of the first formulation in the M F B to obtain explicit analytical expressions
for the FCRP second non-linear mode shape

The FCRP second linear mode shape has been expressed in reference [8], in the case of an
aspect ratio o = b/a less than unity, using nine functions (obtained as products of the first
three antisymmetric by the first three symmetric clamped—-clamped beam functions in the
x and y directions respectively), i.e., why, wis, wis, wi, wi;, wis, wi, wé; and wis. In
reference [ 197, it was shown that these functions are those which contribute significantly to
the second non-linear mode shape of the FCRP considered. Following the analysis
presented in the above section, in the light of the previously published results summarized in
Table 3, the model presented here may be developed for the second FCRP non-linear mode
shape either in the new function basis, denoted as the BFB’, made of the functions just
mentioned above, or in the corresponding modal functions basis, denoted as the MFB’,
made of the first nine FCRP linear mode shapes, which are antisymmetric in the x direction,
and symmetric in the y direction, denoted in what follows as: ¢¥’, qb;, ...,0¥ and refereed
to as the ASFCRP modes. Using this notation, an analysis identical to that developed in the
previous sections may be performed, leading to the contributions &, of the rth AS linear
mode shape, to the first non-linear ASFCRP mode shape, given by

3a’b*x
B = (44)
20k + arbiii — ki)

Expression (44) is an explicit simple formula, allowing calculation of the higher AS modal
function contributions to the second non-linear FCRP mode shape, or the first non-linear
ASFCRP mode shape, as functions of the assigned first AS modal function contribution a;,
and of the known parameters k,* and b,¥,, (given in Appendix B).

The second amplitude-dependent FCRP non-linear mode shape w}, (x*, y*, @) for
a given assigned value a; of the first AS modal function contribution is given similarly by

o 32 b3k,
W;l* X*, *’a/ :a’ xk/ X*, * + — — — *x/ X*, ES
12( y 1) 1¢1( y) 2((k1"1‘+a12b1”{11)—k2"‘2)¢2( )’)
332 B3k,
+ _ —— — R/ X*, * +
2+ alhi, ) — kg 73 )

3ap b
o 08 (R ) (45)

+ i’ 4 i’ i’
2((ki% + ar*bi%yy) — kob)



TABLE 3

Contribution coefficients in the BF B to the second non-linear mode shape of a FCRP, obtained numerically from the iterative solution of the non-linear algebraic
system, published in reference [19] (o = 0-6)

Wiax O/ (31 (G5} dzs Qg Qa3 Ayas de1 de3 des
0-116951 1-0035 0-05 0-9592E—03 0-1404E—03 0-1345E—02 —O0-1188E—03 —0-3003E—04 0-2691E—03 —0:6280E—04 —0-2482E—04
0-232905 1-0138 0-10 0-2073E—02 0-3112E—03 0-:3108E—02  —0-2313E—03 —0-5638E—04 0-5291E—03 —0-8882E—04 —0-5781E—04
0-347148 1-0305 015 0-3475E—02 0-5416E—03 0-5588E—02 —0-3275E—03 —0-7535E—04 0-7843E—03 —04413E—04 —0-1055E—03
0459498 1-0530 0-20 0-5260E — 02 0-8580E—03 0-8924E—02 —0-3940E—03 —0-8329E—04 0-1055E—02 0-1005E—03 —0-1715E—-03
0-569933 1-0807 025 0-7488E—02 0-1283E—02 0-1311E—01 —04162E—03 —0-7670E—04 0-1368E—02 0-3688E—03 —0-2566E—03
0-678659 1-1130 0-30 0-1018E—01 0-1834E—02 0-180SE—01  —0-3811E—03 —0-5243E—04 0-1749E—02 0-7788E—03 —0-3583E—03
0-785952 1-1493 035 0-1333E—-01 0-2524E—02 0-2362E—01  —0-2800E—03 —0-7929E—05 0-2218E—02 0-1343E—02 —0-4720E—03
0-892088 1-1890 0-40 0-1691E—01 0-3359E—02 0-2970E—01  —0-1087E—03 0-5854E—04 0-2781E—02 0-2068E—02 —0-5918E—03
0997705 1-2317 045 0-2088E—01 0-4341E—02 0-3615E—01 0-1327E—03 0-1479E—03 0-3441E—02 0-2956E—02 —0-7109E—03
1-10271  1-2772 0-50 0-2519E—01 0-5470E —02 0-4289E —01 0-4409E —03 0-2601E—03 0-4193E—02 0-4004E—02 —0-8229E—03
1-20720  1-3249 0-55 0-2981E—01 0-6739E—02 0-4984E —01 0-8106E—03 0-3945E—03  0-5029E—02 0-5207TE—02 —0-9218E—03
1-41526  1-4263 0-65 0-3974E —01 0-9670E — 02 0-6413E—01 0-1708E—02 0-7244E—03  0:6920E —02 0-8035E—02 —0-1061E—02
1-62326 15342 075 0-5037E—01 0-1306E—01 0-7869E —01 0-2770E—02 0-1124E—02 0-9041E—02 0-1135E—01 —0-1100E—02
1-83068 1:6473 0-85 0-6145E—01 0-1682E —01 0-9335E—01 0-3947E —02 0-1577E—02 0-1133E—01 0-1506E—01 —0-1027E—02
2:03815 17646 095 0-7280E—01 0-2088E—01 0-1080E 400 0-5200E—02 0-20609E—02 0-1373E—01 0-1907E—01 —0-8426E—03
2:24604 1-8853 1-05 0-8430E —01 0-2517E—01 0-1226E 4+ 00 0-6501E —02 0-2588E—02 0-1621E—01 0-2331E—01 —0-5534E—-03
3-18189  2:4590 1-50 0-1365E 400 0-4599E —01 0-1873E+00 0-1254E—01 0-5045E—02 0-2775SE—01 0-4373E—01 0-1698E—02
422402 31314 2-:00 0-1936E 400 0-6994E — 01 0-2576E 400 0-1913E—01 0-7756E—02 0-4058E—01 0-6697E —01 0-5111E—02
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Equation (45) defines the second non-linear amplitude-dependent FCRP mode shape
wi, (x*, y*, a}), for a given assigned value @) of the first AS modal function contribution, as
a series involving the plate modal parameters depending on the first nine
antisymmetric-symmetric FCRP modes ¢§', ¢3', ... ,¢%’, in which the predominant term,
proportional to the second FCRP linear mode shape, or the first ASFCRP linear mode
shape, is @) ¢¥ (x*, y*);, and the other terms, proportional to the higher ASFCRP mode
shapes ¢%'(x*, y*), ..., 0¥ (x*, y*), are the corrections due to the non-linearity.

3.3. THE SECOND FORMULATION, PERMITTING CALCULATION OF THE FCRP NON-LINEAR
MODE SHAPES, VIA THE SOLUTION OF A LINEAR SYSTEM OF EIGHT EQUATIONS AND
EIGHT UNKNOWNS, FOR EACH VALUE OF THE AMPLITUDE OF VIBRATION

As will be shown in sections 4.1.1 and 4.2, the explicit formulae established for the first
and second non-linear FCRP mode shapes obtained via the first formulation developed in
the above subsections yield accurate results for a relatively large range of vibration
amplitudes. For higher amplitudes, a complementary formulation, called in the remainder
of this paper the second formulation, may be considered, in which only second order terms
of the type a,&,&,b%,,» are neglected when considering the first non-linear mode shape, in
equation (35), corresponding to the non-linear free vibration problem formulated in the
MFB, rewritten here for clarity as

*2 = ok 5 L% 3574 h% — —
— w**agmi + ak¥ + s aaa,bt,. =0, r=2,3,...,9. (46)
Separating in the non-linear expression a@,a,ad,b¥,, terms proportional to a;, terms
proportional to aie,, and neglecting terms proportional to a,&,z, leads to
4 4 h% — A3h% _|_ 725 h¥ (47)
Ay AyDgypy = A1011 15 ai&yDitvr

after substituting and rearranging, equation (46) can be written in matrix form as

((K# 1 — o** [ME]) {ap) + 3[oi] {ap) = { — 3a; b 1) (48)

in which [K}] = [k¥] and [M}] = [/}] are the reduced rigidity and mass matrices
associated with the first FCRP non-linear mode shape, obtained by varying i and j in the set
{2,3,....9}, [ai] is an (8 x 8) square matrix, depending on d,, whose general term &;; is equal
to aj b,,n, and { —3aib¥,,} is a column vector representing the right-hand side of linear
system (48), in which the reduced unknown vector is {ag}" = [&,&3...&]. The modal
function contributions &,,3, ... ,&9 can be obtained very easily by solving linear system (48)
of eight equations and eight unknowns for each assigned value of the first modal function
contribution da;.

To obtain via the second formulation, the second non-linear FCRP mode shape, or the
first non-linear ASFCRP mode shape, a linear system similar to equation (48) is written as

([K - w*'? [MRH]) {aRII} +3 [an*] !aRII} = ( % b i111}5 (49)

in which the general term of the matrix [&'] is equal to @b}, [K&] and [M7] are
reduced rigidity and mass matrices corresponding to the second FCRP non-linear mode
shape, and { —3a’’h;¥,;} is a column vector representing the right-hand side of linear
system (49) in which the reduced unknown vector is {2z} " = [&5 ... &5]. The modal function
contributions can be obtained by solving a reduced linear system of eight equations and
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eight unknowns. Higher FCRP non-linear mode shapes may be obtained in a similar
manner, using appropriate reduced matrices in each case.

3.4. CONCLUSION

It appears from the two above subsections that the basic function contributions to the
amplitude-dependent non-linear FCRP mode shapes may be calculated via the first
formulation, developed in the MFB, i.e., the basis of the FCRP linear mode shapes, using
simple explicit expressions involving the plate modal parameters m;, k% and b%,;. As will be
shown in sections 4.1.1 and 4.2 in the light of the numerical results obtained, these simple
expressions lead, in the case of FCRP with an aspect ratio « = 0-6, to accurate values for the
basic function contributions, for maximum plate vibration amplitudes, reached at the plate
centre (x*, y*) = (0-5, 0-5), up to about 0-6 times the plate thickness, for the first non-linear
FCRP mode shape. For the second non-linear mode shape, the domain of validity of the
first formulation is restricted to maximum vibration amplitudes up to about 0-5 times the
plate thickness, reached at (x*, y*) = (0-29,0-5). For higher amplitudes, more accurate
results may be obtained in each case, based on the second formulation, via solution of
a reduced linear system of eight equations and eight unknowns for each value of the
amplitude of vibration. In the case of the first non-linear mode shape of the plates
mentioned above, i.e., corresponding to o = 0-6, it is shown in section (4.1.2) that the second
formulation leads to accurate results for maximum vibration amplitudes, up to about once
the plate thickness.

4. PRESENTATION AND DISCUSSION OF THE NUMERICAL RESULTS OBTAINED
BY APPLICATION OF THE NEW APPROACH TO THE FIRST AND SECOND
NON-LINEAR MODE SHAPES OF FCRP WITH AN ASPECT RATIO o = 0-6

In this section, numerical results obtained from application of the theory presented
above, to the first and second non-linear mode shapes of FCRP with an aspect ratio
o = b/a = 0-6, are presented and discussed. Results corresponding to other aspect ratios,
higher non-linear mode shapes, and the non-linear periodic forced response will be
presented later.

4.1. FIRST NON-LINEAR MODE SHAPE OF FCRP WITH AN ASPECT RATION « = 0-6

4.1.1. Explicit analytical expression for the first FCRP non-linear mode shape corresponding
to oo = 0.6

Replacing in equation (43) the FCRP modal parameters by their numerical values given
in Appendix B, for an aspect ratio o = 0-6, leads to the following explicit expression for the
first non-linear mode shape of this plate, involving nine terms:

913,69a;
((670-47 + 1461-21a3) — 3242-59)

W:l:ll(X*’ y*s dl) = dld)T(X*’y*) + dflk(X*»y*)

267,04a
(670-47 + 1461-21a%) — 14261.23

A )dfs"(X*,y*)
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1446,57a3

* % *
(67047 1 14612187 — 1548328) P+ )
— 71,85a e
(67047 1 14612187 — 234753) O3 XY
303,78a3
+ o % (x*,1%)
(67047 + 146121a2) — 45040-81)

— 3448,094°
(670-47 + 1461-21a%) — 91294-62)

e 93 (", 3*)

1746,84a;
(670-47 + 1461-21a3) — 109581-94)

Y DF(x*, y¥)

— 98,4743
(670-47 + 1461-21a%) — 1516642

i ) P35 (x*, y¥). (50)
In which x* and y* are the non-dimensional geometrical co-ordinates defined in equation
(16), which vary in the interval [0, 1], and ¢%, ¢%, ... ,¢¥ are the first nine SSFCRP linear
mode shapes, whose components in the BFB are given in Appendix B.

The explicit expressions of equation (50) for the modal function contributions obtained
via the first formulation, applied in the MFB, have been transposed to the BFB via the
change of bases rule, in order to obtain the corresponding basic function contributions in
the BFB, and enable comparisons to be made with the previous results, based on iterative
solution of the non-linear algebraic system, previously published in reference [21]. The
results summarized in Table 4 correspond to the values of ay3, a; s, as, dss, dss, dsy, ds3, dss
obtained for some assigned values of a,; varying from 0-05 to 0-25, which correspond to
maximum non-dimensional vibration amplitudes at the plate centre varying from 0-1223 to
0-5995. For each solution, the corresponding value of w,;/w, is also given. Comparison
between Table 4 and Table 1, taken from reference [21], in which the basic function
contributions have been calculated via iterative solution of the non-linear algebraic system
(23), shows that the higher basic function contributions to the first non-linear FCRP mode
shape obtained from the explicit expressions based on the first formulation, i.e., equation
(50), are very close to those calculated via iterative solution of the non-linear algebraic
system for finite amplitudes of vibration up to a maximum plate displacement amplitude
equal to 0-6 times the plate thickness, which corresponds to a;; ~ 0-25. For higher values of
the vibration amplitude, slight differences start to appear and increase with the amplitude of
vibration. This is illustrated in Figures 3-5, in which the basic function contributions of the
most significantly contributing functions, i.e., a;3, as; and as;, expressed in the BFB,
obtained from application of the first and second formulations in the MFB, are plotted
versus the maximum non-dimensional plate vibration amplitude w,,, obtained at the plate
centre, and compared with the exact numerical solution. To have an accurate conclusion
concerning the limit of validity of the first explicit solution, i.e., equation (50), in engineering
applications, a criterion based on the effect of the differences appearing in the estimated
basic function contributions to physical quantities, such as the non-linear frequency, the
maximum plate non-linear bending stress, and the bending stress distribution in sensible
regions of the plate has been adopted. The expressions used for the non-linear bending
stress distribution associated with a given non-linear mode shape are given in Appendix D.
It was found, as may be seen in Figure 6 and Table 5 respectively, that for amplitudes of



TaBLE 4

Contribution coefficients in the BF B to the first non-linear mode shape of a FCRP, calculated via the explicit expressions obtained from application of the first
formulation in the MFB, i.e., equation (50), and use of the change of based rule, to obtain the corresponding basic functions contributions in the BFB (o = 0-6)

®
V”max

[omyon

dyy

a3

dys

azy

ass ass

dsy

ds3 dss

0-122325E+00
0-244140E + 00
0-364618E + 00
0-483341E+00
0-599523E +00
0-712404E +00

0-100271E+01
0-101078E+01
0-102389E + 01
0-104165E+01
0-106357E 401
0-108921E +01

0-500010E —01
0-100032E +00
0-150003E + 00
0-200004E + 00
0-250000E + 00
0-300001E +00

0-287073E—03
0-645960E —03
0-114791E—02
0-186666E — 02
0-287626E —02
0-425330E —02

0-412773E—04
0-112363E—03
0-242908E —03
0-463073E—03
0-802985E —03
0-129328E—02

0-168996E —02
0-364988E —02
0-615257E—02
0-949605E — 02
0-139994E —01
0-200238E —01

—0-954032E —04 —0-196109E —04
—0-172176E—03 —0-467079E —04
—0-211199E—-03 —0-886716E—04
—0-192875E—03 —0:152956E —03
—0-963603E —04 —0-246844E—03

0-100768E —03 —0-377550E —03

0-266182E —03
0-554102E—03
0-885014E —03
0-128185E —02
0-176763E —02
0-236691E —02

—0-580222E —04 —0-146400E — 04
—0-118865E —03 —0-284080E — 04
—0:185209E —03 —0-404030E — 04
—0-260000E —03 —0-497772E — 04
—0-346068E —03 —0-556598E — 04
—0-446381E—03 —0-572030E —04

¢ L¥Vd ‘SHLVId 40 dSNOdSHY DINVNAA YVANIT-NON

LE



38 M. EL KADIRI AND R. BENAMAR

0.08

0.06+
T (b) first formulation
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Figure 3. Comparison between the values of the contribution a, 3 to the first non-linear mode shape of a FCRP
with an aspect ratio (« = 0-6) obtained by: (a) non-linear algebraic equations, (b) first formulation, and (c) second
formulation.
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Figure 4. Comparison between the values of the contribution a3, to the first non-linear mode shape of a FCRP
with an aspect ratio (« = 0-6) obtained by: (a) non-linear algebraic equations, (b) first formulation, and (c) second
formulation.
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Figure 5. Comparison between the values of the contribution as; to the first non-linear mode shape of a FCRP
with an aspect ratio (x = 0-6) obtained by: (a) non-linear algebraic equations, (b) first formulation, and (c) second

formulation.

Comparison between the values of the non-dimensional stresses a7, (025, 0), associated with the

TABLE 5

first non-linear mode shape of a FCRP with an aspect ratio o = 0-6 calculated using: (a) the
exact solution of the non-linear algebraic system, i.e., equation (23), (b) the first formulation,
i.e., equation (42) and (c) the second formulation, i.e., equation (48)

W Non-linear First Second Percentage Percentage
equations (I) formulation (II) formulation (III) (I and II) (I and III)
0-1223 2-:0739 2:0741 2-:0740 0-0096% 0-0048%
0-2441 41924 4-1958 4-1946 0-081% 0-052%
0-3649 6-3962 6-4085 6-4047 0-192% 0-133%
0-4844 8-7191 87648 87470 0-52% 0-32%
0-6025 11-1869 11-3144 112615 1-14% 0-67%
0-7191 13-8171 14-1127 139811 2:14% 1-19%
0-8344 16:6198 17:2190 169371 3:6% 1:9%
0-9486 19-5992 20-7001 20-1549 5:62% 2-84%
10619 22-7549 24-6310 23-6547 8-24% 3-95%
1-1744 260828 29-1006 27-4531 11-57% 5-25%
1-2864 29-5765 34-2094 31-5652 15:66% 672%
1-5093 37-0271 46-8926 40-7574 26:64% 10-07%
17316 450315 64-1838 51-2757 42:53% 13-87%
19538 53-5101 88-9218 63-1203 66:18% 17:96%
2-1763 62-3868 127-9688 762714 105:12% 22:26%
2:3992 71-5925 210-8172 90-6849 194-:47% 26:67%
3-4069 115657 169-5205 46:57%
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1.6

1.4 +
§_
3‘ 4

(a) exact solution
1.2 +
(c) second formulation
1 (b) first formulation
1.0 ' T y : t } t
0.0 0.5 1.0 1.5 2.0

w*
max

Figure 6. Comparison between frequency parameter w,,;/w,, associated with the first non-linear SSFCRP mode
shape, obtained by: (a) non-linear algebraic equations, (b) first formulation, and (c) second formulation.

vibration up to the plate thickness, the error induced by the first formulation does not
exceed 0-066% for the non-linear frequency, and 562% for the maximum associated
non-linear bending stress, determined numerically, and obtained at point (0-25,0). In
Figure 7, the bending stress ¢, calculated at point (0-25, 0) by different methods, is plotted
against the maximum non-dimensional amplitude of vibration w,... This particular point
has been chosen in the region in which the maximum value of ¢}, is reached, with the
objective of illustrating the effect of the various approximations adopted. It can be seen
from this figure that the first formulation can give a good approximation for the values of
the bending stress for relatively high amplitudes of vibration. The difference between the
exact value and that based on the first formulation does not exceed 5% for wk,. ~ 09.

The non-dimensional bending stress distribution associated with the FCRP first
non-linear mode shape is plotted against y* in Figure 8, for x* = 0-25, « = 0-6, and different
values of the amplitude of vibration. It can be seen from this figure, corresponding to
a region in which the maximum non-dimensional bending stress associated with the first
non-linear mode shape is reached, that for the smallest non-dimensional amplitude
considered, i.e., w* = 0-1223, the results based on the first formulation coincide with the
solution obtained by the iterative procedure. For a maximum non-dimensional vibration
amplitude w* = 09486, the maximum difference between the two curves is reached at
y* =0, and is approximately 5%. For a maximum non-dimensional amplitude
w* = 1-5093, the difference is approximately 25%. Figure 9 shows that for relatively small
amplitudes, up to wi,. ~ 0-5, the first formulation gives a very good approximation for the
bending stress o3, (0275, y*). For higher maximum amplitudes of vibration, some differences
between the first formulation and the iterative solution may be noticed, with a maximum
percentage of difference of 25% corresponding to wi,. ~ 1-5
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Figure 7. Non-dimensional bending stress ¢}, calculated at point (025, 0) and associated with the first
non-linear mode shape of a FCRP with an aspect ratio o = 0-6.

4.1.2. First non-linear mode shape of FCRP with an aspect ratio o. = 0-6 obtained via the
second formulation, from solution of a linear system of eight equations and eight unknowns for
each value of the amplitude of vibration

In Table 6, the modal function contributions to the first non-linear mode shape of FCRP
with an aspect ratio o = 0.6, calculated via the second formulation developed in section 3.3
are summarized. It may be noticed from comparison of this table with that obtained via
iterative solution of the non-linear algebraic system, i.e., Table 1, and from Figures 3-5, that
the corresponding intervals of validity largely exceed those obtained via the first
formulation, and can reach vibration amplitudes up to once the plate thickness for the first
FCRP non-linear mode shape.

In Figure 7 the bending stress ¢} calculated at point (0-25, 0) by different methods is
plotted against the maximum non-dimensional amplitude of vibration wi;,.. It can be seen
that the second formulation gives, at this particular point, a good approximation for the
values of the bending stress, the difference between the exact value and the second
formulation does not exceed 10% for wi,. ~ 1-5.

In Figures 10 and 11, the distribution of the non-dimensional bending stress o3 is plotted
against y* for two sections corresponding to x* =0-275 and 0-325 for a maximum
non-dimensional amplitude of vibration wi,. ~ 1.5. For the first section, the maximum
percentage of difference is about 25 and 10% for the first and second formulations
respectively. For the second section, the maximum percentage of difference is approximately
17% for the first formulation and 8-5% for the second formulation. Also, from Figure 12, it
may be seen that the second formulation gives a non-dimensional bending stress
distribution o3} (0-325, y*) which is very close to that calculated by the iterative solution of
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Figure 8. Non-dimensional bending stress distribution along the section x* =025 of a FCRP (x = 0-6)
obtained by the exact solution and the first formulation. First non-linear mode shape: (1) wi,, = 0-1223,
(2) wika = 09486, and (3) wik,. = 1:5093.

exact solution (3)

0,,%(0.275,y*)

exact solution and first formulation (1)

exact solution and first formulation (2)

0 y*
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20 4+ first formulation (3)
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Figure 9. Non-dimensional bending stress distribution along the section x* = 0-275 of a FCRP (x = 0.6)
obtained by the exact solution and the first formulation. First non-linear mode shape: (1) wi,. = 0-3649, (2)
wikae = 0-6025, (3) k.. = 09486, and (4) wi,. = 1:5093.



TABLE 6

Contribution coefficients in the BF B to the first non-linear mode shape of a FCRP, calculated via the explicit expressions obtained from application of the second
formulation in the MF B, and use of the change of based rule, to obtain the corresponding basic functions contributions in the BFB (o = 0-6)

Wihax Oy diy a3 dys asy ass ass Asy ass3 dss

0-122326E + 00 0-100271E+01  0-500010E—01  0-287054E—03  0-412713E—04  0-168978E—02 —0-954072E—04 —0-196076E —04 0-266191E—03 —0-580177E—04 —0-146410E —04
0-244118E+00 0-101078E+01  0-100018E400  0-645213E—03  0-112143E—03  0-364337E—02 —0-172288E—03 —0-465892E—04 0-554290E—03 —0-118704E —03 —0-284389E —04
0-364744E +00 0-102389E+01  0-150012E400  0-114330E—02  0-241492E—03  0-610885E—02 —0-212188E—03 —0-878603E—04 0-887145E—03 —0-184160E —03 —0-406678E —04
0-483768E + 00 0-104166E+01  0-200000E+400  0-184683E—02  0-457005E—03  0-931088E—02 —0-197030E—03 —0:149544E—03 0:129015E—02 —0-255620E —03 —0-508613E —04
0-600854E + 00 0-106359E+01  0-250006E+00  0-281647TE—02  0-784766E—03  0-134411E—01 —0-109005E—03 —0-236672E—03 0-179168E—02 —0-333089E —03 —0-588722E —04
0-715644E + 00 0-108918E+01  0-300002E+400  0-410540E—02  0-124838E—02 0-186474E—01 0-692484E —04 —0-352842E—03 0-242238E—02 —0-415095E—03 —0-648981E —04
0-827977E +00 0-111801E+01  0-350002E4+00  0-575997E—02  0-186923E—02  0-250393E—01 0-354757E —03 —0-500237E—03 0-321552E—02 —0-498816E —03 —0-694851E —04
0-937772E +00 0-114968E+01  0-400009E+400  0-781825E—02  0-266601E—02  0-326855E—01 0-764189E —03 —0-679533E—03 0-420560E—02 —0-580120E —03 —0:734679E —04
0-104498E + 01 0-118393E4+01  0-450009E+400 0-103087E—01  0-365420E—02 0-416147E—01 0-131358E—02 —0-889858E—03 0-542662E—02 —0-653754E—03 —0:778891E —04
0-114969E + 01 0-122056E+01  0-500001E+400  0-132519E—01  0-484664E—02 0-518264E—01 0-201856E—02 —0-112903E—02 0:691140E—02 —0-713669E —03 —0-839045E —04
0-125207E +01 0-125947E+01  0-550013E4+00 0-166622E—01  0-625424E—02  0-633016E —01 0-289467E —02 —0-139384E—02 0-869126E—02 —0-753277E—03 —0-926848E —04
0-145037E+01 0-134400E+01  0-650003E+400 0-248914E—01  0-973984E—02 0-898323E—01 0-521527E—02 —0-198157E—02 0:132355E—01 —0-743731E—03 —0:122677E—03
0-164151E +01 0-143769E+01  0-750014E+400  0-349672E—01  0-141437E—01  0-120733E4+00  0-837940E —02 —0-260951E—02 0:192206E—01 —0-569722E—03 —0:174119E—03
0-182706E + 01 0-154090E+01  0-850009E+400 0-467798E—01  0-194628E—01  0-155433E4+00  0-124693E—01 —0:322626E—02 0-267269E—01 —0-179349E —03 —0-:248880E —03
0-200853E 401 0-165404E+01  0-950015E400  0-601818E—01  0-256707E—01  0-193386E+400  0-175458E—01 —0-377836E—02 0:357663E—01 0-473169E—03 —0-343878E—03
0-218707E 401 0-177729E+01  0-105001E+01  0-750010E—01  0-327203E—01  0-234085E+00  0-236428E—01 —0-421342E—02 0-462892E—01 0-142586E—02 —0-451307E—03
0-297340E +01 0-245139E+01  0-150000E+01  0-154858E+00  0-731609E—01  0-441090E+00  0-635447E—01 —0-357741E—02 0-109125E+00  0-100578E—01 —0-729424E —03
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Figure 10. Non-dimensional bending stress distribution along the section x* = 0275 of a FCRP with an
aspect ratio o = 0-6 obtained for wj,, = 15093 by the exact solution, the first and the second formulations. First
non-linear mode shape.
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Figure 11. Non-dimensional bending stress distribution along the section x* = 0-:325 of a FCRP with an
aspect ratio o = 0-6 obtained for wj,, = 15093 by the exact solution, the first and the second formulations. First
non-linear mode shape.
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/ exact solution (2)
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Figure 12. Non-dimensional bending stress distribution along the section x* = 0-325 of a FCRP (z = 0:6)
obtained by the exact solution and the second formulation. First non-linear mode shape: (1) w,. = 0-9486,
(2) wika = 1:1744, (3) wik, = 1-5093.

the non-linear algebraic system for values of the maximum non-dimensional vibration
amplitude up to once the plate thickness.

4.1.3. Effect of various truncations of the displacement series defined in equation (58) for the
first FCRP non-linear mode shape

In Part I of this series of papers, various possible truncations of the series expansions
defining the non-linear mode shapes of the beams considered have been examined and
compared with the complete solution. It has been shown that an increasing number of basic
functions has to be used, corresponding to increasing ranges of vibration amplitudes,
starting from use of only one function, i.e., the linear mode shape considered, corresponding
to very small amplitudes for which the linear theory is still valid, and ending by the complete
series. In the present paper, a similar approach has been applied to the first non-linear mode
shape of FCRP. To define the truncations and the corresponding ranges, various possible
truncations of series (50) have been considered and their effect on the estimated non-linear
frequency and the maximum associated non-linear bending stress has been examined. It was
concluded from this analysis that three interesting truncations may be adopted, involving
the two, four and six functions given below, and referred to in what follows as the 2-D, 4-D,
and 6-D models respectively. In Table 7, the values of the non-linear frequencies associated
with the fundamental non-linear mode shape of FCRP with an aspect ratio o = 0-6, for
various truncations of the series are summarized. It can be seen from this table, or from
Figure 13, that the 2-D model, in which only the two first functions are used, leads to a good
approximation of the non-linear frequency for maximum non-dimensional displacement
amplitudes of vibration up to w,. ~ 1. In Table 8, the values of the percentage differences,
obtained for various maximum vibration amplitudes, between the plate maximum
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TABLE 7

Non-linear frequency parameter w,,/w, associated with the first non-linear mode shape of a
FCRP with an aspect ratio (o = 0-6) obtained with various truncations of the series defined in
equation (50)

Wik ax 9-D 2-D 4-D 6-D
0-1233E+00 0-10027E+01 0-10027E +-01 0-10027E 401 0-10027E +01
0-2441E+00 0-10108E +01 0-10109E +-01 0-10108E +01 0-10108E +01
0-3649E +00 0-10239E+01 0-10243E+-01 0-10240E+01 0-10240E +01
0-4844E +00 0-10417E+01 0-10429E+-01 0-10418E+01 0-10417E+01
0-6025E +00 0-10636E+01 0-10662E 401 0-10638E 401 0-10637E +01
0-7191E+00 0-10893E+01 0-10941E+-01 0-10896E +01 0-10893E +01
0-8344E+00 0-11181E+01 0-11261E+01 0-11187E+01 0-11183E+01
0-9486E +00 0-11499E +01 0-11620E+-01 0-11511E+01 0-11505E +01
0-10619E+01 0-11840E 401 0-12014E+-01 0-11871E+01 0-11864E +01
0-11744E+01 0-12203E+01 0-12439E+-01 0-12276E+01 0-12268E +01
0-12864E+ 01 0-12584E+01 0-12893E 401 0-12741E+01 0-12733E+01

2.0+
1.8 +
~ 1.6 1+
<]
3C
1.4 first formulation (4D,6D)
first formulation (2D)
1.2 +
exact solution (9D)
: | ' | ' | ' | '
04—t L
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

w*max

Figure 13. Non-linear frequency parameter of a FCRP with an aspect ratio («x = 0-6) obtained with various
truncations of the series defined in equations (51-53).

non-dimensional bending stress calculated via the iterative solution of the non-linear
algebraic system, and that calculated via the first formulation using various truncations are
listed, which leads to the following conclusions.

2-D model: A comparison of the percentage difference corresponding to different models
permits one to conclude that the fundamental non-linear mode shape can be approximated
with a percentage error on the associated maximum non-linear bending stress which does
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TABLE 8

Percentage error r between the values of the maximum bending stress associated with the first

non-linear mode shape of a FCRP with an aspect ratio (o« = 0-6) obtained by the complete

series  defined in equation (50), and various truncations of the series.
r= |Max(0yb*nD - ayb*ex)/Max (O-yb*ex)|

Wikox 2-D 4-D 6-D 9-D
0-1223 0-61% 0-094% 0-027% 0-0070%
0-2441 4-78% 0-78% 0-24% 0-11%
0-3649 15-67% 2:80% 0-99% 0-53%
0-4844 35:8% 7-06% 277% 1-98%
0-6025 67-:01% 1473% 6:33% 5:52%

not exceed 1%, using the 2-D model, for amplitudes up to 0.13 times the plate thickness. So,
the fundamental non-linear mode shape may be approximated, for this range of amplitudes
of vibration, by the following expression; involving only two-plate modal functions,
corresponding to the two first SSFCRP mode shapes:

913-69a;
(670-47 + 146121a°%) — 3242-59)

wiia (X%, y*,d1) = a, o (x*, y*) + T (x*,y*).  (51)

4-D model: For amplitudes of vibration up to 0-25 times the plate thickness, the 4-D
model may be used with a percentage error on the associated non-linear bending stress of
less than 1%. This leads to the following expression, involving four basic functions,
corresponding to the four SSFCRP mode shapes ¢F, ¢%, ¢pX and ¢#:

913-69a3
(67047 + 1461-21a%) — 3242-59)

WrTll(X*sy*aa_l) = dl (an(X*a y*) + ¢>2k(x>ka y*)

1446572 o
* (67047 1 1461217 — 1548328) P+ XY
3448098
a % (%, ). (52)

* (67047 + 1461-21a1) — 91294-62)
6-D model: For amplitudes of vibration up to 0-36 the plate thickness, the 6-D model may
be used with a percentage error on the associated non-linear bending stress of less than 1%.

This leads to the following expression, involving six basic functions, corresponding to the
first six SSFCRP mode shapes ¢¥F, ¢%, o3, ¢%, ¢% and ¢F:

913-69a3
(67047 + 1461-21a%) — 3242-59)

Wi (X%, y*,dy) = a7 (x*, y*) + o3 (x*, y%)

267-04a3
(670-47 + 1461-21a°) — 14261-23)

A D3 (x*, y%)

1446573
(670-47 + 1461-21a°) — 1548328

A )¢>Z’f (oc*, y)
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— 34480943
T (67047 + 146121a) — 9129462

7 (x*,y%)

1746-84a;
((670 47 + 1461-21a3) — 109581-94)

DF (x*, y¥). (53)

For higher vibration amplitudes, up to 0-6 times the plate thickness, the complete series (50)
has to be used, with a percentage error which does not exceed 0-:06% for the non-linear
frequency and 5-6% for the non-linear bending stress estimates.

4.2. EXPLICIT ANALYTICAL EXPRESSION FOR THE SECOND FCRP NON-LINEAR MODE
SHAPE CORRESPONDING TO o = 0-6

Replacing in equation (45) the FCRP modal parameters corresponding to the second
non-linear mode shape of FCRP with an aspect ratio o = 0-6 by their numerical values
given in Appendix B, leads to the following explicit expression of the second non-linear
mode shape of this plate, involving nine terms:

—2649,97a;3
PR (oE ok A\ A Ak (k) ’ ® (K ok
Wan(x ,y©,a 1) ald)l (x >y ) + ((138959 + 388543&{2) _ 712856) 2 (X >y )

2793,05a;?

%/ k *
T (138950 + 38854307) — 1824357) 5 )
367,824} -
(138959 + 3885-43a]7) — 2614586) ¥+ Y
923,40, -
T (138959 + 3885 43-/2) —31947.77) > Y
— 2274,66a; o
* {38950 + 388543a7) — 63949.00) 0 ¥V
— 2805,20a -
T (138959 + 3885-43a7) — 9787430 .
486,194} o
* {138950 + 388543a7) — 12684571 5 ¥
— 1968,84a;
a’ 5 (x%, %), (54)

T (138959 + 388543a]%) — 184259-95)

in which x* and y* are the non-dimensional geometrical co-ordinates defined in equation
(16), which vary in the interval [0, 1], and ¢¥’, ¢%’, ..., ¢ are the first nine ASFCRP linear
mode shapes, whose components in the BFB' are given in Appendix B.

In Table 9, numerical results for function contributions to the second non-linear mode
shape of FCRP having an aspect ratio o = 0-6, calculated via the first formulation are
summarized. Comparison of this table with Table 3, taken from reference [19], in which the
function contributions have been obtained by solving iteratively the non-linear algebraic



TABLE 9

Contribution coefficients in the BF B to the second non-linear mode shape of a FCRP, calculated via the explicit expressions obtained from application of the first
formulation in the MF B, and use of the change of based rule, to obtain the corresponding basic functions contributions in the BFB (¢« = 0-6)

Wikax [omien dz1 dz3 dzs A4y () Ay4s de1 de3 dss
0-117006E+00  0-100348E +01 0-500E —01 095324E—03  0-139176E—03  0-13296E—02 —0-119060E —03 —0-301803E—04 0-269613E—03 —0-643464E —04 —0-244848E —04
0-233207E+00  0-101380E+01 0-100E + 00 0-20302E—02  0-301564E—03  0-30113E—02 —0-233694E —03 —0-575076E—04 0-529871E—03 —0-100469E —03 —0-554611E—04
0-347598E+00  0-103050E +01 0-150E 400 0-33547E—02  0-510184E—03  0-54067E—02 —0-338730E—03 —0-789825E—04 0-771091E—03 —0-799988E —04 —0993891E—04

0-459441E+00  0-105304E+01  0-200E 400 0-50570E—02  0-788801E—03  0-89103E—02 —0-428078E—03 —0-914375E—04 0-984355E—03  0-2575459E—04 —0-162899E—03
0-567620E+00  0-108079E+01  0-250E+00 0-72696E—02  0-116097E—02  0-13953E—01 —0-493425E—03 —0-912786E—04 0:116029E—02  0-2459067E—03  —0-252605E —03
0-671030E+00  0-111335E+01  0-300E 400 0-10134E—-01  0-165103E—02  0-21034E—01 —0-523695E —03 —0:743809E —04 0:129006E—02  0-6103559E—03  —0-375330E—03
0-768318E+00  0-115072E+01  0-350E+00 0-13800E—01  0-228371E—02  0-30737E—01 —0-503678E—03 —0-358417E—04 0-136511E—02  0-1149791E—02 —0-538043E—03
0-857877TE+00  0-119361E+01  0-400E 400 0-18432E—01  0-308447E—02  0-43769E—01 —0-412467E—03  0-303140E—04 0-137753E—02  0-1895964E—02  —0-747946E —03
0937770E+00  0-124383E+01  0-450E+00 0-24208E—01  0-408003E—02  0-61013E—01 —0-221085E—03  0-131602E—03 0-132045E—02  0-2882353E—02 —0-101266E —02
0-100552E+01  0-130476E+01  0-500E 4-00 0-31330E—01  0-529835E—02  0-83597E—01 0-110899E—03  0-277693E—03 0-118851E—02  0-4144300E—02 —0-134028E—02

¢ L¥Vd ‘SHLVId 40 dSNOdSHY DINVNAA YVANIT-NON

6y
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(b) first formulation

a,

(a) exact solution

0.0 0.2 0.4 0.6 0.8 1.0

Figure 14. Comparison between the values of the contribution a4; to the second non-linear mode shape of a
FCRP with an aspect ratio (o« = 0-6) obtained by: (a) non-linear algebraic solution, and (b) first formulation.

system leads to the same conclusion as that given above for the fundamental FCRP
non-linear mode shape: the higher basic function contributions to the second non-linear
FCRP mode shape, or the first ASFCRP non-linear mode shape, obtained from the explicit
expressions based on the first formulation, applied in the MFB', are very close to those
calculated via the solution of the non-linear algebraic system, for maximum
non-dimensional plate amplitudes of vibration up to 0-5 times the plate thickness, obtained
at point (x*, y*) = (0-29, 0-50)." This is illustrated in Figures 14-17, in which the basic
function contributions of the most significantly contributing functions, i.e., a4y, d»3, deq and
a,s, expressed in the BFB’, obtained from application of the first formulation in the MFB’,
are plotted versus the maximum non-dimensional plate vibration amplitude w ., obtained
at point (x*,y*) =(0-29, 0-50), and compared with the exact iterative solution of the
non-linear algebraic system (23). To have an accurate conclusion concerning the limit of
validity of the first explicit solution for the FCRP second non-linear mode shape, i.e.,
equation (54), in engineering applications, a criterion based on the effect of the differences
appearing in the estimated contributions to physical quantities, such as the associated
non-linear frequency and bending stress distribution has been adopted. It was found, as
may be seen in Figure 18, that for amplitudes of vibration up to 0-6 times the plate thickness,
the error induced by the first formulation does not exceed 0-36% for the non-linear
frequency. For the bending stress distribution obtained from the contributions calculated
via the first formulation, it may be seen from Figure 19 that it remains very close to that
based on the contributions calculated via iterative solution of the non-linear algebraic
system for values of the maximum non-dimensional vibration amplitude up to w,. ~ 0-6.

As has been noticed in reference [19], the point at which the maximum vibration amplitude associated with the
second non-linear mode shape of a FCRP moves toward the clamps when the amplitude of vibration increases.
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(b) first formulation
(a) exact solution
. . ] .
} 1 } 1 } 1 } 1 }
0.0 0.2 0.4 0.6 0.8

w*

1.0

Figure 15. Comparison between the values of the contribution a,; to the second non-linear mode shape of a
FCRP with an aspect ratio (z = 0-6) obtained by: (a) non-linear algebraic solution, and (b) first formulation.

a61

0.003

0.002

0.001

0.000

+ (a) exact solution
(b) first formulation
) ] ) ] ) ] ) ] )
} 1 } 1 } 1 } 1 }
0.0 0.2 0.4 0.6 0.8
W*max

1.0

Figure 16. Comparison between the values of the contribution ag; to the second non-linear mode shape of a
FCRP with an aspect ratio (¢ = 0-6) obtained by: (a) non-linear algebraic solution, and (b) first formulation.
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0.008
0.006 +
<& 0.004
(a) exact solution

0.002 +

4 (b) first formulation
0.000 T } t } t } t } t

0.0 0.2 0.4 0.6 0.8 1.0

Figure 17. Comparison between the values of the contribution a,5 to the second non-linear mode shape of a
FCRP with an aspect ratio (¢ = 0-6) obtained by: (a) non-linear algebraic solution, and (b) first formulation.

14
§E 121 (b) first formulation
3
T (a) exact solution
1.0 ; } t } t } t } t
0.0 0.2 0.4 0.6 0.8 1.0

W*

Figure 18. Comparison between frequency parameter w,;/, associated with the second non-linear FCRP mode
shape (o = 0-6), obtained by: (a) non-linear algebraic equations, and (b) first formulation.
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100 ——

first formulation (3)

50 - exact solution (3) \

exact solution and first formulation (1)

" \

X

first formylation (2)

X*

o

o* (x*,0.25)

exact solution (2)

50

-100 4+~

0.0 0.2 0.4 0.6 0.8 1.0

Figure 19. Non-dimensional bending stress distribution along the section y* = 0-25 of a FCRP with an aspect
ratio (z = 0-6) obtained by the exact solution and the first formulation. Second non-linear mode shape: (1)
wikae = 01170, (2) wk,. = 0:6787, and (3) wi,. = 1-:2072.

5. GENERAL CONCLUSION

In the free vibration case, explicit analytical expressions for the higher mode contribution
coefficients to the first SSFCRP non-linear mode shape, and to the first ASFCRP
non-linear mode shape, have been obtained. These expressions practically coincide with the
numerical solution of the non-linear algebraic system previously developed for amplitudes
up to 0-6 times the plate thickness for the first SSFCRP non-linear mode shape, and up to
0-5 times the plate thickness for the first ASFCRP non-linear mode shape. For displacement
amplitudes between 0-6 times the plate thickness and the plate thickness, associated with the
first non-linear SSFCRP mode shape, an improved complementary formulation is
presented, which leads to the exact numerical solution, via the solution of a linear system of
eight equations and eight unknowns, for each value of the amplitude of vibration. These two
formulations make it very easy to obtain the non-linear mode shapes and resonance
frequencies of FCRP for finite amplitudes of vibration.

Approximate expressions have been given for the first FCRP non-linear mode shape,
corresponding to different intervals of vibration amplitudes. These expressions have been
obtained by various truncations of the series expansion defining the first FCRP non-linear
mode shape, based on the first formulation. It was shown that an increasing number of
modal functions has to be used, corresponding to increasingly sized intervals of vibration
amplitude, starting from use of only one function, i.e., the first linear mode shape,
corresponding to very small amplitudes for which the linear theory is still valid, and ending
by the complete series, involving nine functions.

Numerical results obtained from application of the two models to the first and second
mode shapes of FCRP with an aspect ratio o = 0-6 have been given. Data concerning the
higher FCRP non-linear mode shapes, other aspect ratios, are expected to be obtained
easily by extending the present theory. This will be presented later.
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€X

A similar approach will also be applied to the forced periodic response case, enabling
plicit determination of the non-linear multi-mode steady state periodic forced response of

FCRP.
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APPENDIX A: NUMERICAL DETAILS OF FCRP ANALYSIS

The chosen basic functions wf; have been obtained as a product of the linear
clamped-clamped beam functions in the x and y directions:

wii(x*, y¥) = fi* (x*) < fi* (v*) (A1)
with
s (€h(vx™) — cos (v;x7)) _ (sh(v;x*) — sin (v;x*))
R = (chv; — cosv;) (shv; —sinvy;) (A42)

where v;, for i = 1,2,... are the eigenvalue parameters for a clamped-clamped beam.

The values of the parameters v; have been computed by solving numerically the
transcendental equation ch v; cos v; = 1 using Newton’s method and are given in Table Al.
The functions f;* have been normalized in such a manner that

mi = Jlf,-*(x*)fj* (x*)dx* = 9;;. (A3)

TaBLE Al

Symmetric (a) and antisymmetric (b) eigenvalue parameters for a clamped—clamped beam

(@) (b)
1 473004075 2 7-85320462
3 10-99560784 4 14-13716549
5 17-27875966 6 20-42035225
7 23-56194490 8 26-70353756
9 29-84513021 10 32:98672286
11 36-12831552 12 3926990817
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APPENDIX B: LINEAR AND NON-LINEAR MODAL PARAMETERS FOR THE FCRP
FIRST AND SECOND NON-LINEAR MODE SHAPES CALCULATION.
ASPECT RATIO o = 06

(1) Values of non-linear FCRP modal parameters: b {1 for the first non-linear FCRP mode

shape and b{{,, for the second non-linear FCRP mode shape.

p¥,1, = 1461-20989046,

b%y11 = 609-12803852,

h%111 = 17802385498,

h¥111 = 964:37854234,

m*l

— 47-90243557,

i
-
—

o
|

111 = 202:51822941,

p%, 1y = — 229872645034,
p% .y, = 1164-55719747,
p%.1, = — 19897939619,

bi%,, = 388542971345,

— 1766:64404353,

H
=
Il

b%% 11 = 1862-03316985,

bi% 11 = 24521328319,

b1 = 61560263925,

by, = — 1516-43987900,

b%% .1 = — 1870-13312816,

hrt,, = 32412779714,

ot11 = — 1312:56075265.

(2) Rigidity matrix for the first non-linear mode shape of FCRP with an aspect ratio o. = 0-6
expressed in the BF B:

LA

6744143  —86:1874 — 674566 —86:1860 681604 53-3234 — 67-4299 53-3234 417161

— 861874 155587014 —215-8281  68:1604  — 692:9366  170-3977 533234 — 5421252 133-3061

— 674565 — 215-8281 915409905  53-3234 170-3977  —1850-0956  41-7161 133:3061  — 1447-5055

— 86:1860  68:1604 53-3234 3271-1858  —692-9313  — 542:1285 — 2155138  170-3977 133-3061
68:1604 — 6929366 1703977  — 6929313 23556:5089 — 1732:6789 1703977  — 1732:5269  425-9869
53-3234 1703977 — 18500956 — 542-1285 — 1732:6789 109839-1056  133-3061 4259869  — 46262467

— 674299  53-3234 41-7161 — 2155138 170:3977 1333061  14391-9895 — 1850-0548 — 1447-3859
53-3234  —542:1252  133:3061 170:3977  —1732:5269 4259869  — 1850-0548 44977-6201 — 4625-5414
41-7161  133:3061 — 1447-5055 133-:3061 4259869  — 46262467 — 1447-3859 — 4625-5414 150903-9226
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(3) First nine SSFCRP linear mode shapes:

[ 09994 ] [ 00329 ] [ 00045 ] [ 00054 ] [ 00037 ]
0-0055 0:0041 00217 — 09954 — 0:0920
0-0007 0-0006 0-0005 — 0:0026 — 0:0024
0:0329 — 09987 00178 — 0:0005 — 00343

pr=| —00020 |, ¢3=| —00342 |, ¢t=| 00106 |, ¢r=| —00903 [, ¢r=| 09919 |,
— 0:0004 — 0:0056 0:0013 0-0002 00195
0:0052 — 00181 — 09976 — 00211 0:0032
— 00012 0:0020 — 00611 — 00249 00779

| — 00003 | | 00007 | | — 00127 | | 00002 | | 00004 |

[ 00012 7] [ — 00007 ™ 00006 ] (00002 ]
— 00164 — 0:0025 00023 0:0010
— 00015 09937 — 01102 — 0:0206
0-0059 — 0:0000 — 0:0048 00012
dr=| —00791 |, ¢*=| —00000 |, ¢x=| —00196 |, ¢¥=]00053
— 0:0054 01073 09879 — 01097
— 0:0625 0:0001 — 0:0003 — 00100
09938 0-0006 — 0:0009 — 00435
| 00427 | | 00325 | | 01070 | (09927 |

The above vector components are given in the BFB = {w¥,, wis, wis, w¥;, wis, wis, wi,,
* %
W53, Wss}-

(4) Diagonal rigidity matrix for the first non-linear mode shape of FCRP with an aspect ratio
o = 0.6 expressed in MFB:

[ 6704738

3242:5882

142612275
154832756

[k¥] = 23475:3007
45040-8070

912946209

109581:9417

151664-2037
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(5) First nine ASFCRP linear mode shapes:

09994 [ — 00252 ] " 00183 [ — 00051
00186 — 0:0066 — 09951 0-0064
0:0027 — 00010 — 00095 — 00007
00254 09983 — 00018 — 00126
o =| —00024 |, ¢F=| 00489 |, ¢y =| — 00928 o =| — 00135
— 0:0006 0-0090 0-0000 — 00017
0-0054 00133 00071 09971
— 00014 — 00016 — 00276 00718
| — 00005 | | — 00007 | | 00007 | | oot61 |
[ 00055 ™ 00019 [ — 00024 ] " 00010
— 00941 — 00216 — 0:0095 00042
— 00043 — 00036 09919 — 01233
— 00493 0-0058 — 0:0001 — 00074
dF=| 09916 |, ¢r=| —00677 |, ¢F=| —00005 |, ¢g=| —00311 [,
00307 — 0:0066 0-1198 09870
0-0086 — 00731 0-0001 — 0:0004
0-0666 09933 00019 — 00012
| 00008 | | 00536 | | 00421 | | 00980 |

$ir =

" — 00004 ]
— 00019
00297
— 00014
— 00063
0-1022
00122
00548

— 09927

The above vector components are given in the BFB' = {w%,, w}3, wis, wi;, wis, wis, wy,

% %
We3, W65}~

(6) Diagonal rigidity matrix for the second non-linear mode shape of FCRP with an aspect

ratio o = 0-6 expressed in MFB'

13895893
71285637
18243-567
26145864
HE

31947-769

63949-002

97874-302

12684571

APPENDIX C: PROOF OF EQUATION (34)

184259-95

In the BFB, the transverse displacement function w* (x*, y*) has been written in the form
of a finite series:

W (¥, %) = awi (x*,y%) = {A}T {w*}

(C1)

with {A}" = [aya, ... a,], and {w*}T = [wiw} ... wi], in which wj (x*, y*) is the ith element
of the BFB defined in Appendix A.
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In the MFB, w*(x*, y*) has been written as
w* (x*, y*) = @i (x*, y*) = {A}" {6*} (€2

with {A}T = [a,d, ... a,] and {¢*}T = [PF% ... ¢}, where ¢ (x*, y*) is the rth linear mode
shape of the FCRP considered, given by

OF (X*, y*) = Prgwi (x*, 1) (C3)
This defines the transition matrix from the BFB to the MFB as
(0] = [v] (C4)
so that equation (C3) can be written in a matrix form as
{&*} = [T {w*}. (C5)
Now, combining (C1) and (C2), one obtains
(A%} = {A} {w*}. (C6)
Replacing from (C5) {¢*} by [¢]{w*} leads to
{A}TIO1{w*} = {A}T {w*}. (C7)
Therefore, we have, after identification and transposition:
(A} =[$]"{A} (C8)
which may be written in tensorial form as
a5 = sl (€9)

Combining equations (5) and (14), one obtains for the maximum bending strain energy, over
a period of vibration:

Vi = ajak¥ = duapgaks = a.aks, (C10)
which shows that
ks = ¢ridsikls, (C11)
in the same manner, one obtains from consideration of the kinetic energy T

m:‘i = ¢ri sjm;kj- (Clz)
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Similarly, we can write for the non-linear strain energy V,:
— — b A 7 Th¥ —aaaah
Vu - aiajakalb;kjkl - ¢riar¢sjas¢ukau¢ulavbijkl - arasauavbrsuva (C13)
which gives the expression for

Erﬂ;uu = q’)rid)sjd)uk(bvlb;kjkl (C14)

APPENDIX D: EXPRESSIONS OF THE NON-DIMENSIONAL BENDING STRESSES

The maximum bending strains ¢, and ¢, obtained for z = H/2 are given by

H [ 0*w H [ 0*w
8“’=E<W>’ Eyb =3<6_yz> (D1, 2)

Using the classical thin-plate assumption of plane stress and Hooke’s law, the
corresponding bending stresses can be obtained as

EH 0*w 0*w

o=zt wl(a) () >
EH 0w 0*w

Oyp = —2(1 7 <<6—yz> + v<ﬁ>> (D4)

In terms of the non-dimensional parameters defined in reference [3], the non-dimensional
bending stresses ¢ ¥, and o3, can be defined by

0*w* 0*w*
= (Fa) o (5%) >
o*w* o*w*
0;‘,3 = (W) + VOCZ <W> (D6)
The relationships between dimensional and non-dimensional bending stresses are
EH?
=—— g% D7
T -° D7)

APPENDIX E: NOMENCLATURE

General notation
Vi, Voand V bending, axial and total strain energy respectively

T kinetic energy

E Young’s modulus

v the Poisson ratio

D bending stiffness, D = EH3/12(1 — v?)

o mass density per unit volume of the plate

a, b length, width of the plate

o the plate aspect ratio o = b/a

S, S* dimensional and non-dimensional surfaces [0,a]x[0,b] and [0,1]x[0,1]
respectively

H thickness of the plate
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fully clamped rectangular plate, or fully clamped rectangular plates, depending on
the context.

point co-ordinates.

transverse displacement at point (x, y) on the plate

in-plane displacements in the x and y directions respectively

the star exponent indicates non-dimensional parameters

basic function obtained as product of the ith clamped—clamped beam function in
the x direction, with the jth clamped-clamped beam function in the y direction.
generalized co-ordinate ¢;(t) = a; sin(wt)

hierarchical finite element method

First FCRP non-linear mode shape

w,w*
{A}
(&)
k;j, m;;, and

ijkl
(K], [M],[B]
[K1.[M].,[B]
k¥, m¥, and, by,
SS mode

oF
BFB

MFB

[(’_111531 ~-~§55]T

Wi (X%, y*, dy)

frequency and non-dimensional frequency parameter respectively (first non-linear
mode shape)

column matrix of basic function contributions to the first non-linear mode shape,
corresponding to the BFB

column matrix of modal function contributions to the first non-linear mode shape,
corresponding to the MFB

general term of the rigidity tensor, the mass tensor and the non-linearity

tensor respectively

rigidity, mass and non-linearity matrix, respectively, for the first non-linear mode
shape

rigidity, mass and non-linearity matrix, expressed in modal functions basis,
respectively, for the first non-linear mode shape

general term of the non-dimensional rigidity tensor, mass tensor and non-linearity
tensor, respectively, in the MFB for the first non-linear mode shape

a mode shape of the FCRP considered which is symmetric in both the x and
y directions

the ith linear SS mode shape of the FCRP

beam functions basis for the first SS mode. This basis is made of FCRP functions
which are obtained as products of symmetric clamped-clamped beam functions, in
both the x and y directions.

BFB = {Wfla W>1k3a W>1k53 W%la W§3a W%Sa W?la W)SkSa W)sks}

modal functions basis for the first SS mode, made of the first nine SSFCRF linear
mode shapes. The components of the modal functions in the BFB are given in
Appendix B

MFB = {¢f, ¢3., ¢3, o1, o%, %, ¢34, oF, ¢35}

column matrix of the modal function contribution coefficients to the first
non-linear SSFCRP mode shape

the first SSFCRP non-linear mode shape for a given assigned value a, of the first
SS modal function contribution

Second FCRP non-linear mode shape

o', o*

{A}

{4}
[K'L.IM'],[B]
[K'1.[M1[B]
k¥, m¥, and, b,
AS mode

o

frequency and non-dimensional frequency parameter respectively (second
non-linear mode shape)

column matrix of basic function contributions to the second non-linear mode
shape, corresponding to the BFB’

column matrix of modal function contributions to the second non-linear mode
shape, corresponding to the MFB’

rigidity, mass and non-linearity matrix, respectively, for the second non-linear
mode shape

rigidity, mass and non-linearity matrix, expressed in the modal functions basis,
respectively, for the second non-linear mode shape

general terms of the non-dimensional rigidity tensor, mass tensor and non-linearity
tensor, respectively, in the MFB’ for the second non-linear mode shape

a mode shape of the FCRP considered which is antisymmetric in the x direction
and symmetric in the y direction

the ith linear AS mode shape of the FCRP
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beam functions basis for the first AS mode. This basis is made of FCRP functions
which are obtained as products of antisymmetric clamped-clamped beam
functions, in the x direction, with symmetric clamped—clamped beam functions in
the y direction.

BFB' = {W>2k1; wis, wis, wii, wis, wis, wii, wis, Wzs}

modal functions basis for the first AS mode, made of the first nine ASFCRP linear
mode shapes. The components of the modal functions in the BFB’ are given in
Appendix B

MFB' = ($F, 6%, ¢¥, ¥, OF, $F, 0¥, ¢¥, 95}

column matrix of the modal function contribution coefficients to the second
non-linear ASFCRP mode shape

the first ASFCRP non-linear mode shape for a given assigned value a, of the first
AS modal function contribution
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