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Non-linear oscillations of a beam subjected to a periodic force at a combination
resonance are considered. Using the Galerkin method, a partial differential equation of
oscillations is reduced to a system of ordinary differential equations with a small
parameter. A system of three autonomous differential equations is derived, the multiple
scales method being used. Qualitative properties of trajectories are analyzed. The
Naimark–Sacker bifurcations at the combination resonance are analyzed by the center
manifold method. Almost-periodic oscillations of a beam arise due to these bifurcations.
These oscillations are investigated qualitatively and numerically.
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1. INTRODUCTION

Many engineering structures can be modelled as beam-like continuous systems. For finite
motions, the linear equations show poor approximation of the system’s response.
Therefore, the study of the non-linear dynamics of beams is an important problem. Many
efforts have been made to analyze this problem. Researchers considered the oscillations in
a plane or in a non-plane. Various problems of free plane oscillations caused interests for
researchers. The influence of midplane stretching on free vibrations was analyzed by
Woinowsky-Krieger [1] and by Langley [2]. Wagner [3] considered coupled longitudinal
and transverse free oscillations of beam. In this paper the non-linear relation for curvature
was used. Many-mode approximation of free oscillations is considered by McDonald and
Raleigh [4]. Evensen [5] applied the perturbation techniques to solve the partial differential
equation of free oscillations. A beam with geometric and physical properties that vary
along the length was considered by Nayfeh [6]. He took into account the transverse shear
and the rotary inertia.

Many papers considered beam oscillations subjected to longitudinal and lateral forces.
A one-mode approximation of oscillations subjected to lateral forces was studied by many
researches. Tseng and Dugundj [7, 8] analyzed beam oscillations excited by base motions.
Note that vibrations were considered as the product of a generalized coordinate and the
first buckling mode. Taking into account a longitudinal inertia, Luongo, et al. [9] obtained
an ordinary differential equation of beam vibrations. Lou and Sikarskie [10] considered
oscillations as the product of a generalized coordinate and the spatial variable function.
We stress that this function was not the flexural mode. Beam oscillations subjected to the
longitudinal and lateral periodic forces were considered by Fung [11]. He took into
account longitudinal inertia. Dong et al. [12] pointed to one application of non-linear
beam theory. They analyzed the vortex-induced oscillations of leg platform tethers.
0022-460X/02/$35.00 # 2002 Elsevier Science Ltd. All rights reserved.
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Many-mode approximations of beams oscillations have been considered by many
scientists. Bennet and Eisley [13, 14] analyzed two-mode approximations of beam
oscillations. Series were used to analyze vibrations in reference [15]. The obtained
equations were solved by the multiple scales method. Tang and Dowell [16] studied a beam
subjected to a periodic force. This beam was arranged between two magnets. A book [17]
contains the non-linear theory for beams.

The attention of scientists was drawn to plane oscillations of beams subjected to
periodic longitudinal forces. Taking into account the longitudinal inertia, column
dynamics was studied by Evensen and Evan-Iwanowsky [18]. Rotary inertia and beam
longitudinal oscillations were considered by Eisinger and Merchant [19]. Parametric
oscillations of a beam with the disk were analyzed by Sato et al. [20]. Oscillations of a
viscoelasticity beam were studied by Kovalov and Rozovski [21]. Hoang-Van-Da [22]
studied beam oscillations taking into account the stress–deformation nonlinear ratio.
Parametric oscillations theory is considered in a book [23].

Non-planar oscillations of a beam appear due to the unstability of plane motions.
Crespo da Silva [24, 25] considered free non-planar oscillations. He took into account a
longitudinal inertia. Luongo et al. [26] analyzed beam motions when the bending and
torsional natural frequencies were commensurable. Unstable plane motions were
investigated by Haight and King [27]. In the case of these motions, non-planar oscillations
are stable. Forced non-planar oscillations were studied in references [28–30].

Planar oscillations of a beam subjected to a lateral force are considered in the present
paper. It is known that combination resonances are dangerous [17]. Therefore, the
investigations of non-linear beam oscillations under the conditions of combination
resonances are an actual problem, which is considered in this paper. Many-mode
approximation of oscillations is used. The Naimark–Sacker bifurcations leading to
almost-periodic oscillations are discovered. We stress that these motions have significant
amplitudes. The center manifold method is used to study the above-mentioned
bifurcations.

2. THE PROBLEM FORMULATION

A beam with fixed ends experiences a midplane stretching when deflected. The influence
of this stretching on the response increases with the motion amplitude. This situation can
be described by non-linear strain–displacement equations and a linear stress–strain law
which give the nonlinear beam equation. Consider a hinged–hinged beam as shown in
Figure 1. For such a beam the partial differential equation of plane motion has the form
[15, 31]:

rAWtt þ bWt þ EJWxxxx ¼ EA

2l
Wxx

Z l

0

W 2
x dx þ Fðx; tÞ;

W jx¼0 ¼ W jx¼l ¼ Wxxjx¼0 ¼ Wxxjx¼l ¼ 0;

ð1Þ

where Fðx; tÞ ¼ F0dðx � l=3Þ cosðO1tÞ is the periodic force; dð Þ is the delta function; W is
the beam deflection; ðEA=2lÞ

R l

0 W 2
xdx is the tension due to midplane stretching; r is the

beam material density; E is Young’s modulus; A; J are an area and second moment of area
of a cross-section. Now introduce the dimensionless parameters and variables:

ffiffi
e

p
W n ¼W

r
; xn ¼ x

l
; tn ¼

ffiffiffiffiffiffiffiffiffiffi
EJ

rAl4

s
t;

bl2

Ar
ffiffiffiffiffiffiffi
Er

p ¼ 2me;



Figure 1. The physical system.
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ffiffi
e

p
f0 ¼

l3F0

EJr
; d xn � 1

3

� �
¼ ld x � l

3

� �
; ð2Þ

where e51; r is a cross-section of radius gyration. Now present equation (1) with
respect to the dimensionless variables and parameters herewith dropping the asterisk in the
notation:

Wtt þ Wxxxx ¼ e
1

2
Wxx

Z 1

0

W 2
x dx � 2mWt

� �
þ f ðx; tÞ; ð3Þ

where f ðx; tÞ ¼ f0dðx � 1
3
Þ cosðOtÞ: A many-mode approximation

W ¼
ffiffiffi
2

p X
n

ZnðtÞ sinðnpxÞ

is used to analyze the oscillations. Using the Galerkin method, the ordinary differential
equations are obtained

.ZZk þ o2
kZk ¼ e �p4

2
k2Zk

X1
i¼1

i2Z2
i � 2m’ZZk

 !
þ 2hk cosðOtÞ;

ok ¼ k2p2; hk ¼ f0ffiffiffi
2

p sin
kp
3

� �
; k ¼ 1; 2; . . . : ð4Þ

Combination resonance requires the relation 2O ¼ 5p2 þ es: Some other resonances
(primary, subharmonic and superharmonic) are analyzed in reference [17]. The
multiple scales method [32, 33] is applied to solve equations (4). The change of the
variables:

Zk ¼ ak cosðk2p2t þ bkÞ þ 2Lk cosðOtÞ þ OðeÞ;

Lk ¼ 4hk

p4ð4k4 � 25Þ
ð5Þ
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is used to obtain the modulation equations:

a0
1 þ ma1 þ 4Fa2 sinðsT1 � b1 � b2Þ ¼ 0;

�a1b
0
1 þ

3

16
p2a3

1 þ H1a1 þ
p2

2
a1 a2

2 þ
9

4
a2
3

� �
þ 4Fa2 cosðsT1 � b1 � b2Þ ¼ 0;

a0
2 þ ma2 þ Fa1 sinðsT1 � b1 � b2Þ þ

9p2

2
L2L3a3 sinðb3 � b2 � sT1Þ ¼ 0;

�a2b
0
2 þ

3

4
p2a3

2 þ H2a2 þ
p2

8
a2ða2

1 þ 9a2
3Þ þ Fa1 cosðsT1 � b1 � b2Þ

þ9p2

2
L2L3a3 cosðb3 � b2 � sT1Þ ¼ 0;

a0
3 þ ma3 � 2p2L2L3a2 sinðb3 � b2 � sT1Þ ¼ 0;

�a3b
0
3 þ

27

16
p2a3

3 þ H3a3 þ p2 a3

8
a2
1 þ 4a2

2


 �
þ 2p2L2L3a2 cosðb3 � b2 � sT1Þ ¼ 0;

a0
k þ mak ¼ 0; k ¼ 4; 5; :::;

ð6Þ

where T1 ¼ et; ð Þ0 ¼ dð Þ
dT1

;F ¼ ðp2=2ÞL1L2;

H1 ¼
3

2
p2L2

1 þ
p2

2

X1
n¼2

n2L2
n ;

H2 ¼ 6p2L2
2 þ

p2

2

X
n=2

n2L2
n ;

H3 ¼
27

2
p2L2

3 þ
p2

2

X
n=3

n2L2
n : ð7Þ

From equations (6), we derive that ak ¼ 0; k ¼ 4; 5; . . . ; : Using equations (4), (6) and (7),
system (6) is transformed into the following equations:

g0 � sþ 5

16
p2a2

1 þ
5

4
p2a2

2 þ
6f 2

0 w
p6

� f 2
0 w1

p6

4a2

a1
þ a1

a2

� �
cosðgÞ ¼ 0;

a0
1 þ ma1 � 4

f 2
0

p6
w1a2sinðgÞ ¼ 0;

a0
2 þ ma2 �

f 2
0

p6
w1a1sinðgÞ ¼ 0;

ð8Þ

where g ¼ sT1 � b1 � b2; w1 ¼ 3
7 � 10�3;

w ¼ 3285

670761
þ
X1
m¼0

ð3m þ 1Þ2

ð4ð3m þ 1Þ4 � 25Þ2
þ
X1
m¼0

ð3m þ 2Þ2

ð4ð3m þ 2Þ4 � 25Þ2
¼ 9
82 � 10�3: ð9Þ

Series (9) are convergent and their sums were calculated approximately. Equations (8)
have the form:

x0 ¼ �mx � s� 6f 2
0 w
p6

� �
y þ 5

16
p2 z2 þ 4x2 þ 4y2

 �

y � 4
f 2
0 w1

p6

xy

z
;

y0 ¼ s� 6f 2
0 w
p6

� �
x � my þ f 2

0 w1

p6
z � 5

16
p2ðz2 þ 4x2 þ 4y2Þx þ 4

f 2
0 w1

p6

x2

z
;

z0 ¼ �mz þ 4
f 2
0 w1

p6
y;

ð10Þ
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where ðx; y; zÞ ¼ ða2 cos g; a2 sin g; a1Þ: Note that the non-autonomous differential
equations (4) are transformed into a the system of three autonomous equations.

Limit cycles, homoclinic orbits and chaos are observed in three-dimensional dynamical
systems [34–37]. We stress that these trajectories were discovered in the modulation
equations of different mechanical systems [38–40]. Therefore, it is natural to assume, that
these phenomena may take place in system (10).

Note that the divergence of the vector field (10) has the form:

@x0

@x
þ @y0

@y
þ @z0

@z
¼ �3m� 4

f 2
0 w1

p6

y

z
: ð11Þ

It is stressed that it depends on the state variables. If orbits come up on the plane z ¼ 0; the
values of the divergence tend to �1:

Using equations (5) and (6), beam oscillations are derived in the form

W ¼
ffiffiffi
2

p
a1 cosðp2t þ b1Þ sinðpxÞ þ

ffiffiffi
2

p
a2 cosð4p2t þ b2Þ sinð2pxÞ þ cðx; tÞ þ OðeÞ;

cðx; tÞ ¼ 4
ffiffiffi
3

p
f0

p4

X1
m¼0

ð�1Þm sin½ð3m þ 1Þpx�
4ð3m þ 1Þ4 � 25

þ
X1
m¼0

ð�1Þm sin½ð3m þ 2Þpx�
4ð3m þ 2Þ4 � 25

( )
cosðOtÞ: ð12Þ

Note that the steady and transient beam oscillations correspond to the same solutions of
system (10).

3. PHASE SPACE QUALITATIVE PROPERTIES

Let us study the flow ftðx; y; zÞ of system (10). Note that equations (8) and (10) are
invariant with respect to transformations

ða1; a2Þ ! ð�a1;�a2Þ; ðx; y; zÞ ! ð�x;�y;�zÞ: ð13Þ
System (10) is symmetrical. The theory of symmetrical dynamical systems is expounded in
reference [41]. Let us prove the theorem.

Theorem 1. If x or y is not infinitesimal, flow ftðx; y; zÞ does not intersect the plane

z ¼ 0:

Proof. Let us consider the orbits from the first octant ðz > 0; x > 0; y > 0Þ: Using
equation (10), the following limits are obtained:

lim
z!0

z0 ¼ 4
f 2
0 w1

p6
y; lim

z!0
y0 ¼ 1; lim

z!0
x0 ¼ �1: ð14; 15Þ

It follows from equation (14), that such values of t exist that the orbits approaching the
plane z ¼ 0 begin to move away from it. Therefore, these trajectories do not intersect the
plane z ¼ 0: Now consider the motions meeting the relations: x50; y > 0; z > 0: Then
equation (14) and limits are true:

lim
z!0

x0 ¼ 1; lim
z!0

y0 ¼ 1: ð16Þ

As inequality z0 > 0 is true, the conclusion for the first octant is correct. Let us analyze the
trajectories when x > 0; y > 0; z50: Then formula (14) and limits are true:

lim
z!�0

x0 ¼ 1; lim
z!�0

y0 ¼ �1: ð17Þ

As inequality z > 0 is met, the trajectories approach the plane z ¼ 0: However, the variable
y becomes negative due to equation (17) and the fulfilment of inequality z050 follows
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from (14). Therefore, such values of t exist that the trajectories start to move away from
plane z ¼ 0: Lastly consider the trajectories from the sixth octant: y > 0; x50; z50: Then,
formula (14) and limits are fulfilled:

lim
z!�0

x0 ¼ �1; lim
z!�0

y0 ¼ �1: ð18Þ

Meeting equations (14) and (18), the trajectories approach the plane z ¼ 0 while y > 0:
However, variable y becomes negative and the trajectories move away from the plane
z ¼ 0: It follows from equation (13) that motions occur in just the same way in the others
octants. QED.

Note that system (10) has a fixed point x ¼ y ¼ z ¼ 0: Let us prove the theorem on this
point.

Theorem 2. Only one asymptotically stable fixed point x ¼ y ¼ z ¼ 0 is observed in

dynamical system (10) at f05p3 ffiffiffi
m

p
=
ffiffiffiffiffiffiffi
2w1

p
: There are no other steady states.

Proof. Consider the Liapunov function:

V ¼ x2 þ y2 þ ðr þ
ffiffiffiffiffiffiffiffiffiffiffiffi
r2 � 4

p
Þ2

16
z2; ð19Þ

where r ¼ p6m=f 2
0 w1: The function ’VV has the form:

’VV

m
¼ �2x2 � 2 y � r þ

ffiffiffiffiffiffiffiffiffiffiffiffi
r2 � 4

p

4
z

 !2

50: ð20Þ

It follows from the theorem on global stability [42] that fixed the point x ¼ y ¼ z ¼ 0 is
globally asymptotically stable at r2 > 4: The theorem inequality follows from the last
relation.

Thus, if f05p3 ffiffiffi
m

p
=
ffiffiffiffiffiffiffi
2w1

p
; only one steady motion of a beam is observed. This motion

meets formula (12) at a1 ¼ a2 ¼ 0:

Definition. Trajectories are called ‘‘approaching the origin’’ and ‘‘moving away from the
origin’’, if the following inequalities are met:

ðx; y; zÞ 
 ð ’xx; ’yy; ’zzÞ ¼ x ’xx þ y ’yy þ z’zz50 ð21Þ

and

ðx; y; zÞ 
 ð ’xx; ’yy; ’zzÞ > 0 ð22Þ

respectively. Let us choose the sphere ðx2 þ y2 þ z2 ¼ R2Þ in the phase space to explain
this definition. If trajectories enter this sphere, they approach the origin. Now let us prove
the following theorem.

Theorem 3. If inequality 5f 2
0 w1=2p

6 > m is met, the trajectories move away from the origin in

the domain

Kþ ¼ ðx; y; zÞ 2 R3 n �mx2 � my2 � mz2 þ 5
f 2
0 w1

p6
yz > 0

� �
ð23Þ

and the trajectories approach the origin in the domain

K� ¼ ðx; y; zÞ 2 R3 n �mx2 � my2 � mz2 þ 5
f 2
0 w1

p6
yz50

� �
: ð24Þ



Figure 2. The boundary of two regions.
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Proof. System (10) meets the relation

ðx; y; zÞ 
 ð ’xx; ’yy; ’zzÞ ¼ �mx2 � my2 � mz2 þ 5
f 2
0 w1

p6
yz: ð25Þ

Inequalities (23) and (24) are obtained from equation (25) and inequalities (21,22).
Let us denote the boundary between domains Kþ and K� by D:

D ¼ ðx; y; zÞ 2 R3 n �mx2 � my2 � mz2 þ 5
f 2
0 w1

p6
yz ¼ 0

� �
: ð26Þ

Figure 2 shows this boundary. Note that D does not depend on s:

Theorem 4. If a limit cycle, a chaotic attractor or a homoclinic orbit are observed in

dynamical system (10), then such orbits pass through domains Kþ and K�:

Proof. Let us give the proof for limit cycles, as the proofs are similar for the others kinds
of trajectories. The cycle does not approach the origin and does not move away from it if it
lies on the sphere x2 þ y2 þ z2 ¼ R2: As system (10) meets the relation: ðd=dtÞðx2 þ y2 þ
z2Þ=0; the cycles do not lie on a sphere. This means that limit cycles approach the origin
and move away from it. Thus we conclude that these cycles pass through domains Kþ and
K�:

4. DYNAMICAL SYSTEM FIXED POINTS

4.1. ANALYSIS OF LINEAR APPROXIMATION

System (8) has a fixed point ða1; a2Þ ¼ ð0; 0Þ: Other fixed points of this system satisfy the
equations:

a1 ¼ 2a2;

4m2 þ 6f 2
0 w
p6

� sþ 5

8
p2a2

1

� �2

¼ 16
f 4
0 w

2
1

p12
:

ð27Þ

The solutions of these equations are

a
ðA;BÞ
1 ¼ 2

ffiffiffi
2

pffiffiffi
5

p
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s� 6f 2

0 w
p6

� p

s
; ð28Þ



Figure 3. (a) The amplitude surface of beam oscillations; (b) the bifurcation diagram.

K. V. AVRAMOV344
where p2 ¼ 16f 4
0 w

2
1=p

12 � 4m2: Let us denote two fixed points of equation (28) by rA ¼
ðxA; yA; zAÞ; rB ¼ ðxB; yB; zBÞ: The following formulae are derived:

x
A;B

¼ � p5p

2
ffiffiffiffiffi
10

p
f 2
0 w1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s� 6f 2

0 w
p6

� p

r
; y

A;B
¼ p5mffiffiffiffiffi

10
p

f 2
0 w1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s� 6f 2

0 w
p6

� p

r
;

z
A;B

¼ 4ffiffiffiffiffi
10

p
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s� 6f 2

0 w
p6

� p

r
:

ð29Þ

Theorem 5. Fixed points r
A

and r
B

lie on surface D:

Proof. If formulae (29) are substituted into equation (26), the latest is true.

A response surface is a suitable geometric characteristic to present fixed points. A
response surface was used to analyze the Duffing oscillator in reference [43]. Let us use this
surface to analyze the fixed points of system (8). In this case, the response surface (Figure 3)
shows the fixed points– s� f 2

0 =p
6 relation. Note that the section of this surface is a

frequency response. The surface consists of sheets A, B, C. Sheet C corresponds to the
fixed point a1 ¼ a2 ¼ 0: Sheets A and B show the fixed points denoted by the same letters.
The sheets of the stable and unstable fixed points are denoted by S and U respectively. We
stress that if the system parameters meet the inequality

f0 > p3

ffiffiffiffiffiffiffi
m

2w1

r
; ð30Þ

the significant amplitudes appear. Note that if Theorem 2 condition is violated, fixed
points rA and rB appear.

Let us calculate the eigenvalues and eigenvectors of the Jacobi matrix to study the
fixed points stability and to determine the linearized invariant manifolds [42].
The eigenvalues and eigenvectors of the fixed points rA and rB � l

ðAÞ

i ;V
ðAÞ

i and l
ðBÞ

i ;V
ðBÞ

i
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have the form:

l
ðA;BÞ

1 ¼ �2m; l
ðAÞ

2;3 ¼ �m� R1; l
ðBÞ

2;3 ¼ �m� R2;

V
ðA;BÞ

1 ¼

� p

2

�m

4f 2
0 w1

p6

0
BBBB@

1
CCCCA; V

ðA;BÞ

2 ¼

�p

2
� 2m

p
ðm� R1;2Þ

R1;2

4f 2
0 w1

p6

0
BBBBB@

1
CCCCCA;

V
ðA;BÞ

3 ¼

�p

2
� 2m

p
ðmþ R1;2Þ

�R1;2

4f 2
0 w1

p6

0
BBBBB@

1
CCCCCA;

ð31Þ

where R1;2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � 5

8
p2a2

1p
q

: If the fixed point rA has complex conjugate eigenvalues l
ðAÞ

2;3;
the eigenvectors V

ðAÞ
2;3 are

V
ðAÞ

2 ¼

p

2

�m

4f 2
0 w1

p6

0
BBBB@

1
CCCCA; V

ðAÞ

3 ¼

�m
r

p

2
þ 5

4
p2a2

1

� �
r

�4mf 2
0 w1

p6r

0
BBBBB@

1
CCCCCA; ð32Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5
8
p2a2

1p � m2

q
: The linearized invariant manifolds have the form [44]:

Es ¼ span½V ðAÞ

1 ;V
ðAÞ

2 ;V
ðAÞ

3 �; Es ¼ span½V ðBÞ

1 ;V
ðBÞ

3 �; Eu ¼ span½V ðBÞ

2 �; ð33Þ

where Es;Eu are the stable and unstable subspaces of the linearized system. As follows
from formulae (29) and (31), the following inequalities are met:

rB 
V
ðBÞ

i > 0;

i ¼ 1; 3:
ð34Þ

As follows from equation (34), the manifolds WðrBÞ of the fixed point rB meet Theorem 3.
If R1 is real, the eigenvectors of the fixed point rA satisfy the inequality: rA 
V

ðAÞ

i > 0:

For complex conjugate lðAÞ
2;3 ; the linearized invariant manifold is the plane span½V ðAÞ

2 ;V
ðAÞ
3 �:

Figure 4 shows this manifold. Note that the trajectories of this manifold meet
Theorem 3.

Let us consider the fixed point a1 ¼ a2 ¼ 0: Eigenvalues li of this point are

l1 ¼ �2m; l2;3 ¼ �m�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

f 4
0 w

2
1

p12
� 1

4
s� 6f 2

0 w
p6

� �2
s

: ð35Þ



Figure 4. The linearized invariant manifolds of fixed point A.
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If l2;3 are real, the vectors U1;U2;U3 have the form:

U1 ¼
1

0

0

0
B@

1
CA; U2 ¼

�1

2
s� 6f 2

0 w
p6

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

f 2
0 w1

p6

� �2

�1

4
s� 6f 2

0 w
p6

� �2
s

4f 2
0 w1

p6

0
BBBBBBBB@

1
CCCCCCCCA
;

U3 ¼

�1

2
s� 6f 2

0 w
p6

� �

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

f 2
0 w1

p6

� �2

�1

4
s� 6f 2

0 w
p6

� �2
s

4f 2
0 w1

p6

0
BBBBBBBB@

1
CCCCCCCCA
:

ð36Þ

If l2;3 are complex conjugate, U2 and U3 are

U2 ¼ 0;�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
s� 6f 2

0 w
p6

� �2

�4
f 2
0 w1

p6

� �2
s

; 0

0
@

1
A

T

; U3 ¼ �1

2
s� 6f 2

0 w
p6

� �
; 0;

4f 2
0 w1

p6

� �T

: ð37Þ

The linearized invariant manifolds have the form:

l250; Es ¼ span½U1;U2;U3�;
l2 ¼ 0; Ec ¼ span½U2�; Es ¼ span½U1;U3�;
l2 > 0; Eu ¼ span½U2�; Es ¼ span½U1;U3�;

ð38Þ

where Ec is the central subspace of the linearized system. Note that the Poincare–
Andronov–Hopf bifurcation does not appear in system (10).

The non-hyperbolic fixed points of sheet C meet equation l2 ¼ 0: This equation has the
form

s� 6f 2
0 w
p6

� �2

¼ 16
f 4
0 w

2
1

p12
� 4m2: ð39Þ
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Let us introduce coordinate axis ðsð1Þ; f
ð1Þ2
0 =p6Þ obtained by the rotation of axis s; f 2

0

p6

� �
on

angle a ¼ �6w (Figure 3(a)). Then equation (39) takes the form

�sð1Þ
2

4m2
þ f

ð1Þ2
0

p6

 !2

4w2
1

m2
¼ 1: ð40Þ

This formula is the equation of the hyperbola, which separates the stable fixed points
from the unstable fixed points. Curves ðGC1Þ and ðC1FÞ show the supercritical and
subcritical symmetric pitchfork bifurcations respectively. Co-dimension two bifurcation
point C1 separates the supercritical bifurcation curve from the subcritical bifurcation
curve.

As follows from equation (35), eigenvalues l2;3 are real in the region bounded by
lines ðG1OÞ; ðFOÞ and curve L (Figure 3(a)). The eigenvalues are complex outside this
region.

Theorem 6. If eigenvalues l2;3 of fixed point a1 ¼ a2 ¼ 0 are real, the following statements

are correct.

(1) Linearized invariant manifold U2 is stable, if it is situated in domain K� and this
manifold is unstable, if it is situated in Kþ:

(2) Nonhyperbolic fixed point a1 ¼ a2 ¼ 0 has U2 2 D:
(3) Linearized invariant manifolds U1;U3 are situated in K�:

Proof. The region of unstable fixed point a1 ¼ a2 ¼ 0 (see Figure 3(a)) meets the
inequality:

s� 6f 2
0 w
p6

� �2

516
f 4
0 w

2
1

p12
� 4m2: ð41Þ

If the components of vector U2 (see equation (36)) are substituted into inequality (24),
relation (41) is obtained. The first statement is proved. If the components of vector U2

are substituted into equation (26), formula (39) is obtained. This proves the second
statement. If the components of vectors U1;U3 are substituted into equation (24),
the inequalities meeting at any values of s; f0; m are obtained. The third statement is
proved too.

Let us consider the orbits close to the stable fixed point a1 ¼ a2 ¼ 0 with complex l2;3:
In this case, it is easily shown that the condition span½U2;U3� 2 K� is met. Therefore, the
trajectories on linearized manifold span½U2;U3� meet Theorem 3.

The response surface contains saddle-node bifurcation curve L1: Sheets A and B are
joined along this curve. Eigenvalues li; i ¼ %1; 31; 3 of the curve L fixed points are l1 ¼ l2 ¼
�2m; l3 ¼ 0: We stress that at f0 ¼ p3

ffiffiffiffiffiffiffiffiffiffiffiffi
m=2w1

p
; the frequency response contains co-

dimension two bifurcation point C1 and bifurcation curve L1:

4.2. CENTER MANIFOLDS APPLICATION FOR THE BIFURCATIONS ANALYSIS

Center manifolds method [42, 44] is used to analyze the dynamics close to co-dimension
two bifurcation point C1: This method reduces a system dimension. Note that local
bifurcations take place on center manifolds. Changing parameter d ¼ s� 6f 2

0 w=p
6; system

(10) bifurcations are considered. To analyze the trajectories close to point x ¼ y ¼ z ¼ 0
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we derive equations (10) in the new form:

x0

y0

z0

0
B@

1
CA ¼

�2m 0 0

0 �m nw1 þ
m
2

0 4w1nþ 2m �m

0
BB@

1
CCA

x

y

z

0
B@

1
CA

þ

�d
4

2y þ m
2w1nþ m

� �
z þ 5p2

16
ðz2 þ 4x2 þ 4y2Þy

� d2z

8ð2w1nþ mÞ �
5p2

16
ðz2 þ 4x2 þ 4y2Þx

0;

0
BBBBBB@

1
CCCCCCA
;

ð42Þ

where n ¼ f 2
0 =p

6 � m=2w1: Bifurcation point C1 is observed at n ¼ d ¼ 0: Therefore
parameters n and d are assumed small. System (42) is derived in eigenbasis ðu; v;wÞ ¼
ðx; y þ z=2; z=2 � yÞ:

u0 ¼ �2mu þ r1ðu; v;w; dÞ;
v0 ¼ 2w1nv þ r2ðu; v;w; dÞ;

w0 ¼ �2ðmþ w1nÞw � r2ðu; v;w; dÞ:
ð43Þ

Appendix A contains functions r1ðu; v;w; dÞ and r2ðu; v;w; dÞ: The center manifold has the
form of the power series:

u ¼ � vd
4ð2w1nþ mÞ þ

5p2v3

32ð3w1nþ mÞ þ Oð4Þ;

w ¼ vd2

16ðmþ 2w1nÞ
2
þ Oð4Þ;

ð44Þ

where symbol Oð4Þ denotes the terms of order v4; dv3; d2v2; d3v; d4: The restriction of vector
field (10) on the center manifold is

v0 ¼ a1v þ a2v3 þ a3v5 þ Oðv7Þ; ð45Þ

where

a1 ¼ 2w1n�
d2

8m
þ Oðd4Þ; a2 ¼

5p2d
32m

1 þ d2

8m2
þ Oðd4Þ

� �
; a3 ¼ �25p4

256m
1 þ 3d2

8m2
þ Oðd4Þ

� �
:

Note that equation (45) meets the symmetrical property v ! �v; which is the Ruelle
theorem consequence [41]. System (45) describes the bifurcations close to point C1: If
16mw1n > d2; fixed point v ¼ 0 is unstable. This point describes sheet C. System (45)
bifurcation curve meets equation 16mw1n ¼ d2: This equation approximates curve L close
to C1: Equation (45) on curve L has the following form:

v0 ¼ 5p2d
32m

v3 þ Oðv5Þ: ð46Þ

Note that at d50 the manifold is stable and it is unstable at d > 0: The fixed points of
equation (45) have the form

vn1;2 ¼
8

5p2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d� 4

ffiffiffiffiffiffiffiffiffiffi
w1nm

pq
: ð47Þ
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Fixed points vn1 and vn2 describe sheets A and B respectively. Equation (45) on point C1 is
derived in the form

v0 ¼ �25p4

256m
v5 þ Oðv7Þ: ð48Þ

Therefore, point C1 is stable.
Let us consider the saddle-node bifurcation L1 (Figure 3(a)) close to bifurcation point

C1: We introduce the new variables

x1 ¼ x; y1 ¼ y � 2
ffiffiffiffiffi
d1

p
; z1 ¼ z � 4

ffiffiffiffiffi
d1

p
; ð49Þ

where 10p2d1 ¼ d: Then system (10) has the form:

x0
1

y0
1

z01

0
B@

1
CA ¼

�2m d
d
2

0 �m
m
2

0 2m �m

0
BBBB@

1
CCCCA

x1

y1

z1

0
B@

1
CAþ

f1

f2

f3

0
B@

1
CA: ð50Þ

Appendix A contains the functions f1; f2; f3: System (50) is written in the eigenbasis
ðu; v;wÞ ¼ ðx1 � ðd=2mÞy1 � ðd=4mÞz1; ðd=4mÞð2y1 þ z1Þ; z1=2 � y1Þ :

u0 ¼ �2mu þ F1; v0 ¼ F2;w0 ¼ �2mw þ F3: ð51Þ
Appendix A contains functions F1;F2;F3: The center manifold is u ¼ a1v2 þ b1vnþ c1n2 þ
Oð3Þ;w ¼ a2v2 þ b2vnþ c2n2 þ Oð3Þ; where Oð3Þ denotes the terms of order v3; v2n; vn2; n3:
Parameters a1; b1; c1; a2; b2; c2 are defined according to the center manifold method [42].
The vector field (10) restriction on the center manifold has the form

v0 ¼ �v3 5p2m
2d

þ 5dp2

8m

� �
� p

ffiffiffiffiffiffiffiffi
10d

p

4
v2 þ 2w1nv þ 4w1nd

3
2ffiffiffiffiffi

10
p

mp
þ Oðv4Þ: ð52Þ

Equation (52) describes the saddle-node bifurcation in system (10). Fixed points v1;2 ¼
�ð2=pÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2w1dn=5m

p
þ OðnÞ define two branches of bifurcation diagram. The stability of

these points is defined by l1;2 ¼ �2d
ffiffiffiffiffiffiffiffiffiffiffiffi
w1n=m

p
þ OðnÞ: The saddle-node bifurcation curve is

n ¼ 0: The trajectories close to point C1 are shown on bifurcation diagram (Figure 3(b)).
Fixed points C and B correspond to the sheets with the same notations (Figure 3(a)). Note
that the phase space contains the heteroclinic orbits. Heteroclinic orbits ðBAÞ; ðBCÞ;
ðB0CÞ; ðB0A0Þ are structurally stable in region ðFC1L1Þ (see Figure 3b). Two structurally
stable heteroclinic orbits ðCAÞ and ðCA0Þ take place in region ðGLC1FÞ:

Note that similar dynamics is discovered in two-degree-of-freedom mechanical system
[45].

Recall that all fixed points lie on the surface D. Let us analyze the heteroclinic orbits
close to C1 from this point of view. As follows from Theorem 6, if the system parameters
are found in the region ðGLC1FÞ (Figure 3(b)), heteroclinic orbits ðCAÞ and ðCA0Þ lie in
Kþ: If the system parameters are found in the region ðFC1L1Þ; heteroclinic orbits ðBCÞ and
ðB0CÞ lie in K�:

5. MODULATION EQUATION NUMERICAL ANALYSIS

Calculations were carried out in two stages. At the first stage we sought steady states
different from the fixed points. Let us take the parameter m ¼ 0
05: We fix the parameters
s and f0 to explain the approach. Let us fill uniformly phase space domain A0

1 ¼
½ðx; y; zÞ 2 R3 n �55x55;�55y55; 1 � 10�45z55� with the points. The number of
these points was equal to 64. Every point was taken as initial conditions to solve
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numerically system (10). If the motion reached a steady state (the fixed point, a limit cycle
or a chaotic attractor), the integration was stopped and the next initial conditions were
chosen and the integration was repeated. Such calculations were developed for all points.
Afterwards the value of s or f0 was changed and the calculations were repeated. The
region A00

2 ¼ ½ðs; f0Þ 2 R2 n �1004s4100; 4004f049000� was filled with 280 points and
every point was analyzed. As the result of the calculations we come to the conclusion that
in the whole region A00

2 all motions are attracted to the stable fixed points.
Invariant manifolds of the fixed points were analyzed at the second stage of the

calculations. The algorithm from reference [46] was used. Equation (10) has the singularity
at z ¼ 0: Therefore, this algorithm was changed a little in the following way. If the
linearized invariant manifold of fixed point x ¼ y ¼ z ¼ 0 belongs to plane ðxoyÞ;
equations (42) are solved at the first step of the numerical integration. Afterwards
equations (10) are solved. The calculations were developed at the different values of
m; s; f0: These parameters were changed according to the following procedure. We fixed the
parameter m: The domain of s and f0 variation was A0 ¼ ½ðs; f0Þ 2 R2n
smin5s5smax; f min

0 5f05f max
0 �: We set this variation in the form: si ¼ smin þ ih

ðiÞ
s ; f0;k ¼

f min
0 þ kh

ðkÞ
f ; 14i4imax; 14k4kmax: Thus region A0 was filled with points. The number of

these points was Np ¼ imaxkmax: The invariant manifolds were calculated for every point.
The amount of the calculations is presented in Table 1. The values of m are presented in the
first column. Domain A0 and the values of Np are indicated in the second and third
columns, respectively. Figure 5 shows the invariant manifolds of the fixed point a1 ¼
Table 1

The calculation description

m A0 Np

2 05s5180; 512
85f051400 54
0
6 05s51500; 2905f054270 105
0
05 05s51500; 1005f054600 45
0
001 05s51500; 705f053800 51
0
0001 05s51500; 155f053700 18

Figure 5. The invariant manifolds.
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a2 ¼ 0 at m ¼ 0
05; s ¼ 0:6; f0 ¼ 100: The second manifold with tangent vector U2 is
unstable. Therefore to obtain this manifold the integration in forward time was carried
out. This manifold corresponds to motion ðCAÞ in region ðGLC1FÞ (see Figure 3(b)). The
third manifold is stable. It has the tangent vector U3: To obtain this manifold, the
integration in reverse time was carried out. As the result of the calculations we come to the
conclusion that the invariant manifolds behavior is topologically equivalent to the pattern
shown in Figure 3(b).

6. BEAM OSCILLATIONS QUALITATIVE PROPERTIES

The two previous sections were devoted to the modulation equations. Now these results
are used to analyze qualitative properties of beam oscillations. The steady oscillations are

w ¼
ffiffiffi
2

p
a1 cosðn1t � C

*
Þ sinðpxÞ þ a1ffiffiffi

2
p cosðn2t þ C

*
� g0Þ sinð2pxÞ

þ cðx; tÞ þ OðeÞ; ð53Þ

where g0 ¼ arcsinðmp6=2f 2
0 w1Þ is the variable of the fixed point of equation (8). Frequencies

n1 and n2 have the form:

nj ¼ j2p2 þ eOj þ Oðe2Þ;

Oj ¼
3

16
p2a2

1 þ
6f 2

0

p6
rj þ

p2

2
a2
2 þ 2F cosðgÞ; j ¼ 1; 2;

ð54Þ

where r1 þ r2 ¼ w; r1 ¼ 4
73 
 10�3; r2 ¼ 5
09 � 10�3: Using equations (8), we obtain the
relation

n1 þ n2 ¼ 2Oþ Oðe2Þ: ð55Þ

Note that oscillations (53) have two frequencies n1 and n2 and their combination O: The
oscillations are almost-periodic, if nn1 þ mn2=0; where m; n are positive integer numbers.
It is known, that if frequencies n1 and n2 are changed a little, almost-periodic oscillations
may be transformed into periodic. Let us prove the theorem.

Theorem 7. Beam oscillations (53) are always almost-periodic.

Proof. On the assumption that oscillations (53) are periodic:

n1 ¼
m

n
n2: ð56Þ

If equations (54) are substituted into equation (56), two relations are obtained:

m

n
¼ 1

4
;

5

16
p2a2

1 �
p

2
þ 8f 2

0 r1

p6
¼ 2f 2

0 r2

p6
: ð57Þ

Now the proof is developed separately for sheets A and B (see Figure 3(a)). Let us consider
sheet A. If formula (28) is substituted into equation (57), the following equation is
obtained:

s ¼ 10
f 2
0

p6
ðr2 � r1Þ: ð58Þ



Figure 6. The stable almost-periodic beam oscillations.
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The curve (58) does not intersect the sheet A. Therefore, the oscillations are almost-
periodic. Let us consider sheet B. The periodic oscillations curve has the form:

s ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16

f 4
0 w

2
1

p12
� 4m2

s
þ 10

f 2
0

p6
ðr2 � r1Þ: ð59Þ

This curve does not pass through sheet B. Therefore, the oscillations are almost-periodic.

The qualitative properties of the fixed points and the beam oscillations connect in the
following way.

(1) Stable (unstable) trivial solution x ¼ y ¼ z ¼ 0 of equations (10) corresponds to the
beam stable (unstable) periodic oscillations with period T ¼ 2p=O:

(2) The stable (unstable) nontrivial fixed points of equations (10) correspond to the stable
(unstable) almost-periodic oscillations of a beam.

(3) The pitchfork bifurcations correspond to the appearance of the beam almost-periodic
oscillations. These oscillations arise from the periodic vibrations.

(4) The system’s (10) saddle-node bifurcation corresponds to the junction of two almost-
periodic motions.

The stable almost-periodic oscillations of beam point x ¼ 1
3
at ðs; f0Þ ¼ ð65; 512
8Þ are

shown in Figure 6. The beam deflections at instants p=5O; 2p=5O; 3p=5O; 4p=5O; p=O;
6p=5O are shown in Figure 7.

7. NUMERICAL SIMULATIONS OF BEAM OSCILLATIONS

It is known that results of the perturbation methods differ from data of numerical
simulations [47, 48]. For example, numerical integration of the weak non-linear oscillator
with periodic force exhibits chaos. On the other hand, chaos can not be predicted by the
perturbation techniques in this system. It is known, that solutions of the perturbation
methods are correct at 05e5e

*
ðe

*
51Þ [48]. The value of e

*
is not known previously. We

stress that if the system parameters approach to bifurcation points, the value of e
*

is
decreased quickly. Therefore, in this paper the analytical results are supplemented by
numerical simulations.



Figure 7. The beam deflections at instants p=5O; 2p=5O; 3p=5O; 4p=5O; p=O; 6p=5O:
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System (4) is reduced to two differential equations. Using equation (4), we obtain
Z3n ¼ 0; n ¼ 1; 2; ::: Assuming Z1=0; Z2=0; and Z3n�2 ¼ Z3n�1 ¼ 0; n ¼ 2; 3:::; system (4)
has the form:

.ZZ1 þ p4Z1 ¼ e �p4

2
Z1ðZ2

1 þ 4Z2
2Þ � 2m’ZZ1

� �
þ

ffiffiffiffiffiffi
1
5

p
f0cosðOtÞ;

.ZZ2 þ 16p4Z2 ¼ eð�2p4Z2ðZ2
1 þ 4Z2

2Þ � 2m’ZZ2Þ þ
ffiffiffiffiffiffi
1
5

p
f0cosðOtÞ:

ð60Þ



Figure 8. The bifurcation diagram, where force frequency O is shown against the oscillations swing.
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Note that system (60) has the symmetric solutions:

Z1ðtÞ ¼ �Z1 t þ T

2

� �
; Z2ðtÞ ¼ �Z2 t þ T

2

� �
: ð61Þ

The aim of the calculations is to analyze bifurcations of dynamical system (60). The
bifurcation behavior is presented qualitative on the bifurcation diagram (Figure 8), which
shows frequency O versus the swing of oscillations. The stable and unstable states are
denoted by the solid and dotted curves respectively. To obtain this diagram, system (60)
was integrated numerically using the fourth order Runge–Kutta method with a constant
step size. Motions were considered transient at 05t56 � 104p=O: The steady motions
were analyzed at 6 � 104p=O5t59 � 104p=O by means of the Poincare map. To obtain
the Poincare map, variables Z1ðtÞ; ’ZZ1ðtÞ at tj ¼ j2p=O; 30 0005j545 000 were plotted on
the plane. We take the following parameters f0 ¼ 1000; m ¼ 0
5; e ¼ 1 � 10�2: We stress
that this bifurcation diagram is similar to the frequency response obtained by the
perturbation methods. Diagram section ðOLÞ shows the periodic oscillations. The
Naimark–Sacker bifurcation takes place in point LðOL ¼ 24
9Þ: In this case the stable
periodic motions are transformed into the unstable oscillations and the stable almost-
periodic orbits arise. Note that the value of OL is equal to the value obtained by the
perturbation methods. Diagram part ðLL2Þ shows the almost-periodic oscillations. As an
example, Figure 9(a) shows the Poincare sections of the almost-periodic oscillations at
O ¼ 29
6 and Figure 10(a) shows Z1ðtÞ: We stress that stable almost-periodic solutions
SAPS1 and unstable almost-periodic solutions UAPS are merged. Now the almost-
periodic motions close to point L2 is considered when O is increased. In this case, the
dynamical system approaches to point L2 on branch SAPS1: In L2 the oscillations
breakdown are observed, i.e. if O is increased, the motions are attracted to branch SAPS2:
Figure 9(b) shows the Poincare sections of these oscillations at O ¼ 29
95 and Figure 10(b)
shows Z1ðtÞ: Section (CF) (Figure 8) describes the periodic oscillations. The Naimark–
Sacker bifurcation takes place at point FðOF ¼ 25
04Þ: If O is decreased, the stable
periodic oscillations are transformed into the unstable motions and the unstable almost-
periodic oscillations are arisen. Point FðOF ¼ 25
06Þ is predicted by the perturbation
methods.



Figure 9. The Poincare sections of the almost-periodic oscillations: (a) O ¼ 29
6; (b)-O ¼ 29
95:
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8. CONCLUSION

The beam plane oscillations at the combination resonance are considered in this paper.
The non-linear membrane stiffness is taken into account in the beam model. To analyze
the combination resonance, the many-mode approximation of oscillations is considered.
Using the Galerkin method, the system of the ordinary differential equations is obtained.
Three autonomous differential equations are derived by the multiple scales method. This
dynamical system’s qualitative properties are expressed in six theorems. The steady states
of this system are analyzed numerically. It is shown analytically, that two Naimark–Sacker
bifurcations at the combination resonance are observed. These bifurcations are analyzed
by the center manifold method.
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Figure 10. The almost-periodic oscillations: (a) O ¼ 29
6; (b) O ¼ 29
95:
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APPENDIX A
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