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Numerical modelling of the dynamic behaviour of a pipe containing inner non-
homogeneous flows of a boiling fluid has been carried out. Inasmuch as the efforts to solve
this problem analytically are confronted by considerable difficulties connected with varying
system mass, geometry and discontinuity of equation coefficients, computational
techniques for simulating pipe dynamics have been developed based on using of numerical
time integration methods and transfer matrix methods together with orthogonalization
procedures relating to the space variables. The system vibrations at different values of the
parameters of the flow non-homogeneity and its velocity are observed. The possibility of
forming stable and unstable flows depending on the character of the non-homogeneity and
the velocity of fluid clots has been found.

# 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

The tubes of a heat exchanger containing non-homogeneous mobile masses of a boiling
fluid, vapour and their mixture is an important feature of modern heat and nuclear power
plants. The heat exchanger sections possessing an initial curvature or taking a curvilinear
shape due to dynamic bending, generate centrifugal inertia forces playing the role of active
forces and acting in the osculating plane. They are proportional to the pipe curvature, the
mass of the moving fluid element and the square of its velocity [1]. In the case of non-
steady processes of boiling these forces change in time and lead to pipe-line vibration.

As experimental studies carried out in connection with the analysis of boiling fluid
motions in glass tubes heated externally testify, so-called slug flows appear at certain
thermodynamical states and values of the geometrical and mechanical system parameters.
They reside in the fact that in heat exchanger tubes, fluid boiling regimes are possible when
the vapour–water mixture is not homogeneous but consists of fluid and vapour segments
alternating and moving at high velocities. As the mixture flows, the process of boiling
continues, thus the lengths of the tube segments filled with a fluid (called fluid clots)
decrease and the lengths of cavities filled with a vapour (gas slugs) increase. In this case,
their velocities considerably increase.

The observations carried out on heated glass tubes show that the lengths of fluid clots
change approximately from 10 internal diameters of the pipe on their formation to zero on
complete evaporation, and the volume of a fluid, as it evaporates, increases tenfold. On
boiling, the volume of gas cavities can change from zero to 50 diameters of the pipe and
then, as a result of clot evaporation, mix.

The motion of a liquid clot inside a curvilinear channel is accompanied by the action of
a centrifugal inertial force on its walls in the direction opposite to the orientation of a
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principal normal. In addition, as each element of the fluid is also influenced by the slewing
motion together with tube vibrations, additional gyroscopic forces of interaction between
the fluid and pipe walls are generated. If the stiffness of the curved pipe is relatively small,
its interaction with the moving fluid clot can cause noticeable dynamical effects. There are
some cases, for example, when the effects of these vibrations erode the walls of the tubes,
where they are in contact with the supporting structures. As a result, the whole heat
exchanger unit can fail and radioactive heat-transfer agents released.

As the relationship between the lengths of the fluid clots and vapour slugs has changes,
the functioning of mechanical systems can be accompanied by complex dynamical effects
attributed to the possibility of the system bodies participating in several forms of these
motions together with gyroscopic interaction between them. For example, there is the
possibility of static (divergent) loss of stationary motion stability, the appearance of
unstable oscillatory motions (of a flutter-type) and parametric resonances [1, 2]. These
stability losses depend on the relationships between the geometrical and inertial
parameters of the system, the clot velocity as well as the presence or absence of an
initial curvature, so, if a pipe is curved the fluid motion can result from forced resonances
and ordinary resonances. If the initial curvature is absent, self-sustained vibrations
associated with parametric resonances can be excited. These vibrations are attributed to
the fact that as a non-homogeneous fluid flows inside the pipe, the internal characteristics
of the system vary continuously and so might be an additional cause of vibration
excitation.

The development of the solution to this problem was first stimulated by the need to
eliminate considerable vibrations of the Trans-Arabic oil pipe line [3]. By considering a
simplified circuit design, the authors [4, 5] developed equations for straight pipe-line
dynamics and showed the possibility of loss of stability on attaining critical flow velocities.

In subsequent papers general questions of the stability of pipe systems conveying fluid
were studied [6, 7], together with the dependancy of the peculiarities of pipe vibrations on
boundary conditions [8,9]; the publishing of records of continuously changing fluid
pressure and flow velocity [10, 11]; the development of more accurate theory of beams
[12, 13]; the influence of tension, damping and attached mass at the lower end of a vertical
pipe [14, 15] the effect of an elastic support in an intermediate cross-section [16, 17] and the
evaluation of elastic foundations [18], torsional stiffness of clamping [19] and other factors
[20–22].

This paper studies the influence of an initial curvature of a pipe, the size of fluid clots
and vapour cavities and the velocity of their flow on the character of dynamic loss of a
pipe system stability.

2. STATEMENT OF THE PROBLEM

Consider the problem concerning transverse vibrations of an elastic pipe having an
initial curvature. A non-homogeneous fluid flows inside the pipe. Let us assume that its
non-homogeneity might be caused, for example, by the change of its modular state
associated with heating, boiling and conversion into vapour–water mixture. If typical
dimensions of liquid clots and vapour cavities dividing them exceed typical dimensions of
the pipe line, for example, the diameter of its channel (see Figure 1), one must consider
discontinuities in the parameters of density and inner flow velocity. In this case as the pipe
line vibrates, the fluid particles have an accelerated flow both along, and transversly to the
pipe axis, thus forming a dynamical load on the pipe. To calculate inertial forces acting on
the pipe elements one assigns the formulae governing fluid-clot flow and motion of the
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Figure 1. The diagram of fluid clot flows and change in internal flow velocity.
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vapour-filled cavities in a tube by applying the condition of overall vapour–water mixture
flow mass rate conservation from inlet to outlet. The model of changing the flow
parameters of motion can be formed by assuming that the clots of length a0 enter the
channel at a velocity of V0. At the inlet, the gap between two neighbouring clots is zero.
The motion caused by boiling varies the clot length as a1 ¼ a0e

�kt and decreases at the rate
of ’aa ¼ da1=dt ¼ �k a0e

�kt. As a result, the lengths of the spaces (cavities) between clots
increase at the rate of ’bb ¼ db1=dt ¼ c k a0e

�kt. The volume of vapour in a space is
considered to be c times as much as that of a fluid from which it was formed, therefore the
relation rf ¼ crv is applied between the densities of the fluid and the vapour.

As the volume of a cavity increases, the velocity Viþ1 of the (i þ 1)th clot increases
relative to the previous one as Viþ1 ¼ Viðc � 1Þ ’aa: The velocity of vapour in the cavity
between clots is assumed to be distributed linearly (see Figure 1). The influence of the
initial pipe curvature on the character of excited vibrations and their stability is
investigated.

In studying the dynamical interaction between an elastic pipe and an inner flow,
Benjamin [6] showed that viscous friction forces occurring during flow appeared to be
relatively small. As these forces are directed along the axis of a pipe, they may be neglected
in the investigation of its transverse vibration. Thus, the fluid can be considered to be
perfect and while investigating its influence on the dynamics of the tube, only its inertial
properties will be considered. Therefore, solution of the problem of vibrations of a pipe
with an inner non-homogeneous flow, can be undertaken by consideration of the motion
of a fluid element along the vibrating and dynamically bending pipe line, calculation of its
acceleration in the direction perpendicular to the pipe axis and determination of those
inertial force acting on the fluid element transferring to the pipe walls.

Let a fluid element of mass m move along the vibrating pipe at a predetermined
velocity VðxÞ (see Figure 1). Considering its motion in the transverse direction,
md2yf = dt2 � N ¼ 0. Here yf is the displacement of the fluid element together with the
pipe in the direction of the Oy-axis, N the force with which the pipe acts upon the element.
In this equation, the function yf ðtÞ, determining the fluid element co-ordinate, must be
transposed to the deflection function yðx; tÞ þ y0ðxÞ of the pipe with an initial curvature
y0 ðxÞ at point x; the location of the element. To do so, one should consider that the fluid
element takes a new position in the pipe at each instant of time, therefore, its velocity in a
vertical direction is determined not only by the velocity of the pipe point in which the
element is located, but also by the fact that the element moves to a neighbouring point in
the pipe with another co-ordinate y and velocity ’yy:

dyf =dt ¼ @y=@t þ ð@y0=@x þ @y=@xÞ@x=@t ¼ ’yy þ ðy0
0 þ y0Þ V : ð1Þ

Differentiating once more both members of equation (1) with respect to t; one finds the
vertical component of absolute acceleration of the fluid element in the vibrating pipe with
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an initial curvature

d2yf =dt2 ¼ .yy þ 2 ’yy0V þ Vy0V 0 þ y00V 2 þ y00
0V2 þ y0 ’VV þ y0

0
’VV þ Vy00V 0: ð2Þ

This formula can be correlated with the formula of the Coriolis theorem [23] for absolute
acceleration of a particle, where .yy is the bulk acceleration, 2 ’yy0V is the Coriolis
acceleration, y00V 2 the centripetal acceleration, ’yy0 the angular velocity of the pipe element
and V the relative velocity of the fluid element.

When constructing the equation of transverse vibration of a tubular rod with an inner
flow of a non-homogeneous fluid, one models it as an Euler–Bernoulli beam, neglecting
the internal friction forces and the beam friction on interaction with the environment. The
resulting equation of plane transverse vibrations of the pipe can be presented as

EJyIV þ rtat þ rf af ¼ 0: ð3Þ

Here EJ is the pipe bending stiffness, rt the tube linear density, rf the linear density of
the inner flow and at; af are the accelerations along the Oy-axis of the tube and fluid
elements respectively.

Using formulas at ¼ d2y=dt2; af ¼ d2yf =dt2 and taking into account equation (2) and
(3), the equation of pipe vibrations in the sections containing the fluid can be written as

EJyIV þ rf V2y00 þ ðrt þ rf Þ .yy þ 2Vrf ’yy
0 þ rf

’VVy0 ¼ �rf y00
0V 2 � rf y0

0
’VV : ð4Þ

In the sections containing the vapour spaces, r ¼ r v and equation (4) takes the form

EJyIV þ rvV
2y00 þ ðrt þ rvÞ .yy þ 2Vrv ’yy

0 þ rv
’VVy0 þ rvVV 0y0

¼ �rvy00
0V2 � rvy

0
0
’VV � rvy0

0VV 0: ð5Þ

The distinguishing feature of the assigned problem described by equations (4) and (5)
resides in the fact that when the fluid clots flow, either equation (4) or (5) is alternately
used for one and the same points of the pipe. Thus, the chosen mechanical system belongs
to the systems with variable parameters (with approximately periodical coefficients and
right member). Due to this fact on varying the velocity V ; both ordinary and parametrical
resonance vibrations, typical of such systems, can be excited as the result of the dynamical
loss of stability. For the case considered, the problem of studying parametric vibrations is
complicated by the presence in equation (4) of the component 2rf ’yy

0V describing the
internal force resulting from the gyroscopic effect. Their presence considerably
complicates the mode of the pipe motion because its elements start vibrating at different
phases.

The second peculiarity of the process studied is that, because of the changes of inertial
properties of the pipe as fluid clots travel in it, there is no frequency spectrum and modes
of free vibrations do not exist, and natural frequencies in the vicinity where resonances
could be realized are lost. Therefore, it is difficult to predict a dynamical loss of stability in
such systems. Finally, the difficulty of studying such a dynamical system increases whilst
the discrete character of the clot flow is lost resulting in the coefficients of the united set of
equations (4) and (5) becoming discontinuous.

The above peculiarities illustrate the difficulties in using analytical methods for studying
the dynamic instability of pipes with inner flows, based on the Liapunov and Floquet
approaches [24]. Thus this investigation uses direct numerical modelling methods of the
system motion at chosen initial disturbances and the assigned velocity V of the flow.
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3. INVESTIGATION PROCEDURE

Let one consider two problems, namely that of motion of a non-homogeneous flow in a
straight pipe and that of flow in a pipe with an initial curvature. By imparting the system
with some small initial perturbation in the form of a preset deflection, it is possible to
analyze the possibility of self-excitation of the straight pipe-line vibrations with non-
homogeneous inner fluid flow, though performing numerical modelling of its dynamical
behaviour at various clot lengths and differing velocities, V0; at the inlet. If the vibrations
of the perturbed pipe-line decay, then its initial state is considered to be stable. When the
amplitude of vibrations and divergent deflections increase indefinitely, the system is
considered to be dynamically unstable. The fluid velocity V0, at which periodic motion is
established in the system, is thought to be critical.

In order to investigate the dynamics of the tube with initial curvature, it is not necessary
to introduce the additional perturbations into the system, in that the constitutive
equations are non-homogeneous in advance.

When boundary conditions are being preset, one of the considerations is that the pipe
line be represented as a multispan beam with equal span lengths and hinged supports. The
system vibrations are modelled by the least power-intensive modes having skew symmetry
relative to the support cross-sections. It is then assumed that the vibrations of
neighbouring sections of the pipe have opposite phases and in studying them one
arbitrarily separates one span of the pipe applying boundary zero conditions to deflections
and bending moments at its support points:

yð0Þ ¼ yðLÞ ¼ 0; y00ð0Þ ¼ y00ðLÞ ¼ 0: ð6Þ

If the tube is assumed to have preliminary curvature y0ðxÞ; the initial conditions are
chosen in the form yðx; 0Þ ¼ 0; ’yyðx; 0Þ ¼ 0: If the tube is initially straight, the initial
conditions are chosen as the initial static perturbation yðx; 0Þ ¼ w0 sin px=L; ’yyðx; 0Þ ¼ 0:
Here the coefficient w0 is considered to be very small.

For numerical integration of the equations with preset boundary conditions (6) and
initial perturbations, one uses the Houbolt implicit finite difference method characterized
by the approximation of pinpoint accuracy and stability [25]. In this case for the time t, the
time derivatives in equations (4) and (5) are substituted by finite differences in the form of

’yyðx; tÞ ¼ ’yyjt ¼ ½11ytðxÞ � 18yt�1ðxÞ þ 9yt�2ðxÞ � 2yt�3ðxÞ	=6Dt:

.yyðx; tÞ ¼ .yyjt ¼ ½2ytðxÞ � 5yt�1ðxÞ þ 4yt�2ðxÞ � yt�3ðxÞ	=Dt2: ð7Þ

Here ytðxÞ ¼ yðx; tÞ; yt�1ðxÞ ¼ yðx; t � DtÞ; yt�2ðxÞ ¼ yðx; t � 2DtÞ; yt�3ðxÞ ¼
yðx; t � 3DtÞ;Dt is the numerical time integration step.

By considering the above relationships, equations (4) and (5) can be written as

EJ
d4y

dx4

�
�
�
�
t

þrf V 2
f

d2y

dx2

�
�
�
�
t

þ
2ðrt þ rf Þ

Dt2
yjt þ

11rf Vf

3Dt

dy

dx

�
�
�
�
t

¼
5ðrt þ rf Þ

Dt2
yjt�Dt �

4ðrt þ rf Þ
Dt2

yjt�2Dt þ
ðrt þ rf Þ

Dt2
yjt�3Dt þ

6rf Vf

Dt

dy

dx

�
�
�
�
t�Dt

�
3rf Vf

Dt

dy

dx

�
�
�
�
t�2Dt

þ
2rf Vf

3Dt

dy

dx

�
�
�
�
t�3Dt

�rf V 2
f y00

0 jt � rf y0
0
’VV f jt;
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EJ
d4y
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t

þrvV2
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t
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Dt2

yjt þ
11rvVv

3Dt
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þrvVV 0dy

dx

�
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t

¼ 5ðrt þ rvÞ
Dt2
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4ðrt þ rvÞ
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Dt2
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6rvVv

Dt
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�
�
�
�
t�Dt
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þ2rvVv
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�
�
�
�
t�3Dt

�rvV 2
v y00

0jt � rvy0
0
’VV vjt � rvy0

0VvV
0
vjt: ð8Þ

By knowing the states yt�1ðxÞ; yt�2ðxÞ; yt�3ðxÞ of the system at times t � Dt; t � 2Dt;
t � 3Dt one can find the state ytðxÞ of the system at time t using (8) with appropriate
boundary conditions and then extend this to determination of the system states at times
t þ Dt; t þ 2Dt; etc. Inasmuch as equations (8) represent the four-layer difference scheme
but one has only two initial conditions, the first step of the calculational processes is
performed by using the three-layer Newmark difference scheme.

Equations (8) with boundary conditions (6) are solved using the transfer matrix method.
To do this, the fourth order equations (8) were transformed to first order equations. For
the first equation (8),

dy1=dx ¼ y2; dy2=dx ¼ y3; dy3=dx ¼ y4;

EJ
dy4

dx

�
�
�
�
t

¼ � rf
’VVf y2;t � rf V 2

f y3;t �
2ðrt þ rf Þ

Dt
y1;t �

11rf Vf

3Dt
y2;t

þ
5ðrt þ rf Þ

Dt
y1;t�1 �

4ðrt þ rf Þ
Dt2

y1;t�2 þ
ðrt þ rf Þ

Dt2
y1;t�3 þ

6rf Vf

Dt
y2;t�1

�
3rf Vf

Dt
y2;t�2 þ

2rf Vf

3Dt
y2;t�3 � rf V 2

f y00
0 jt � rf y0

0
’VV f jt: ð9Þ

This system can be written in a general form

d~yy=dx ¼ AðxÞ~yy þ ~ff ðxÞ: ð10Þ

Here ~yy ¼ ~yyðsÞ is the four-dimensional vector of the unknown functions, x the
independent variable changing within the limits of 04x4L; AðxÞ the known
discontinuous matrix function of the independent variable x and ~ff ðxÞ the preset vector
of right members determined by the known solution functions at previous steps in time.

The solution to equation (9) must be subset to boundary conditions (6) in the interval
bounds, which are predetermined at the beginning x ¼ 0 and at the end x ¼ L of the
integration interval.

One represents them in the general form as

B~yyð0Þ ¼ 0; D~yyðLÞ ¼ 0; ð11Þ

where matrices B and D measure 2
 4:
To construct the solution ~yyðxÞ; choose two components yjðxÞ among yiðxÞði ¼ 1; 4Þ

components, such that any values yjð0Þ of do not violate the first equation (11) at zero
values of the other components. After renumbering the unknown values yiðxÞði ¼ 1; 4Þ in
such a way that the index j could take on the values j ¼ 1; 2; the solution to problems (10)
and (11) can be given as ~yyðxÞ ¼ YðxÞ~CC þ~yy0; where ~yy0 is the solution to the Cauchy
problem for system (10) at zero initial conditions, YðxÞ is the 4
 2 matrix of particular
solutions ~yyijðxÞ to the homogeneous matrix differential equation

dY=dx ¼ AðxÞY; ð12Þ
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with initial conditions yijð0Þ ¼ d j
i ði ¼ 1; 4; j ¼ 1; 2Þ for the independently modified

variables, and with initial conditions chosen from the first equation of system (11) for
the other variables yijð0Þð j ¼ 3; 4Þ: Here d j

i is the Kronecker symbol.
As YðxÞ is the solution to the homogeneous equation (12), then on choosing initial

conditions for the predetermined vectors, special attention is paid to their linear
independence. This is achieved by assuming the matrix of initial conditions Yð0Þ to have
the unit elements y11ð0Þ ¼ 1; y22ð0Þ ¼ 1: In doing so, any pair of vectors yijð0Þ are
mutually orthogonal so providing their linear independence.

The vector of the constants ~CC ¼ ðC1;C2ÞT is so chosen that the equality DYðLÞ~CC þ
D~yy0ðLÞ ¼ 0; following from the second conditions of system (11) is satisfied.

The construction of the matrix function YðxÞ and the vector function ~yy0ðxÞ is made by
integrating equations (10) and (12) by the fourth order Runge–Kutta method. The
peculiarity of using such an approach is that due to the presence of large factors in the
coefficients of system (8), it is rigid and there are rapidly growing functions among its
particular solutions. Therefore, in constructing the matrix of its fundamental solutions, the
method of discrete orthogonalization by Godunov is additionally used making it possible
to obtain a stable computational process by orthogonalizing the vector solutions to the
Cauchy problems in the finite number of argument change interval points. Its essence
is in the fact that the integration interval is divided into sections, and the numerical
integration of the initial differential equation is carried out on each of these sections in
as with the method of transfer matrix. The lengths of the sections are such that the
particular solutions to a homogeneous equation within the limits of one section remain
linearly independent. When passing from one section to another, the matrix of the
solutions is subject to linear transformation so that the vectors of particular solutions of
the homogeneous and non-homogeneous equations become orthogonal. Thus, it is
possible to preserve the linear independence of the equation solutions in the whole interval
of integration. To avoid excessive increase of the numerical values of the non-
homogeneous equation solutions, the normalization factor is introduced at the section
boundaries.

4. RESULTS AND DISCUSSIONS

The calculation algorithms and computer programs for carrying out numeric modelling
pipe vibrations at various values of their geometrical parameters were developed on the
basis of the described procedure.

To study the influence of the initial curvature on the character of vibrations of a pipe
system, the cases, when in the initial state the pipe was straight ðy0ðxÞ � 0Þ and when its
centreline was curved according to the law y0ðxÞ ¼ ðL=400Þ sin ðpx=LÞ were considered.
For the first problem non-trivial solutions may appear as a result of either divergent or
flutter bifurcations. The results of the calculations for the above cases are given in Table 1,
where L is the length of the pipe, h the thickness of its wall, a0 the clot length at the
inlet and k the parameter determining the velocity of fluid evaporation. It was assumed
or all the pipes that E ¼ 2
 1011 Pa, rt ¼ ððRÞ2 � ðR � hÞ2Þr; r ¼ 7800 kg=m3; rf ¼
pðR � hÞ2rw; rw ¼ 1000 kg=m3; R ¼ 0�015m, and c ¼ 10:

Using suitable parameters, eight problems were solved (see Table 1) with differing
lengths of the clots at the inlet a0 and the value k determining the velocity of evaporation
of the boiling fluid. Here the value of a0 were L=8 and L=4; and the values of k were
chosen so that during the flow in the pipe channel a fluid clot decreases in length by
15–40%.



Table 1

Velocities values and periods of forced vibrations of a straight-line pipe

No. L (m) h (m) a0 k (s�1) Dynamical parameter values

1 5 0�003 L=8 0�1 V0 (m/s) 1�1 1�2 (V0;cr) 20 40 87�5
Tv (s) 0�244 0�245 0�262 0�289 1�301
Tc (s) 0�568 0�52 0�031 0�016 0�007

2 5 0�003 L=8 0�5 V0 (m/s) 1�8 1�9 (V0;cr) 20 40 80
Tv (s) 0�24 0�242 0�26 0�292 0�783
Tc (s) 0�347 0�329 0�031 0�016 0�008

3 5 0�003 L=4 0�5 V0 (m/s) 5 5�1 (V0;cr) 10 20 40
Tv (s) 0�246 0�247 0�25 0�262 0�298
Tc (s) 0�25 0�245 0�125 0�063 0�031

4 5 0�003 L=4 1 V0 (m/s) 6�9 7 (V0;cr) 10 20 40
Tv (s) 0�245 0�245 0�25 0�262 0�297
Tc (s) 0�18 0�179 0�125 0�063 0�031

5 8 0�001 L=8 0�1 V0 (m/s) 0�5 0�6 (V0;cr) 4 10 25
Tv (s) 0�623 0�63 0�7 0�783 1�518
Tc (s) 0�2 1�66 0�25 0�1 0�04

6 8 0�001 L=8 0�5 V0 (m/s) 1�2 1�3 (V0;cr) 4 10 20
Tv (s) 0�61 0�613 0�66 0�763 1�325
Tc (s) 0�833 0�77 0�25 0�1 0�05

7 8 0�001 L=4 0�5 V0 (m/s) 3 4�4 4�5 (V0;cr) 10 20
Tv (s) 0�66 0�675 0�69 0�768 1�253
Tc (s) 0�667 0�454 0�444 0�2 0�1

8 8 0�001 L=4 1 V0 (m/s) 3 4 6�1 6�2 (V0;cr) 10
Tv (s) 0�643 0�655 0�668 0�703 0�758
Tc (s) 0�667 0�5 0�328 0�323 0�1
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For each problem, at a fixed value of V0; the dynamics of the pipe at a time interval
equal the time of arrival of at least 300 was studied. It was assumed that the pipe was given
some initial excitation in the form of a low initial velocity. If then the vibrations were
decaying, the initial state was considered to be stable, but if the amplitude of vibrations
increased, the initial state was unstable. To find resonance flows, the velocity V0 was varied
and modelling the flow was repeated at a new value of V0: The least value of V0 at which
the amplitude of vibrations began to increase without limit was considered to be critical.
The step DV0 of variation V0 was DV0 ¼ 0�2 m=s: In the vicinity of a critical state, the
calculations were made specific with the step DV0 ¼ 0�1 m=s:

The predetermined velocity values (Tc) of the arrival of clots in the pipe (see Table 1)
were calculated to correspond with the values of the time Tv between two neighbouring
maximum values of the pipe middle point displacement along Oy-axis .

Note that for problems 3 (V0 ¼ 5 m=s; V0 ¼ 5�1 m=s), 7 (V0 ¼ 3 m=s) and 8
(V0 ¼ 3 m=s) value Tv is equal to period Tc but for problems 3 (V0 ¼ 10 m=s;
V0 ¼ 20m=s), 4 (V0 ¼ 10m=s), 8 (V0 ¼ 6�1 m=s) value Tv is approximately a multiple of Tc:

The results of the investigation of the dynamics of pipes with an initial curvature (see
Table 2) show that the interaction of forced and parametric vibrations does not lead to the



Table 2

Velocities values and periods of forced vibrations of a pipe with curvature

No. L (m) h (m) a0 k (s�1) Dynamical parameter values

1 5 0�003 L=8 0�1 V0 (m/s) 1�1 1�2 (V0;cr) 20 40 87�5
Tv (s) 0�24 0�245 0�261 0�287 1�32
Tc (s) 0�568 0�52 0�031 0�016 0�007

2 5 0�003 L=8 0�5 V0 (m/s) 1�8 1�9 (V0;cr) 20 40 80
Tv (s) 0�245 0�247 0�26 0�293 0�785
Tc (s) 0�347 0�329 0�031 0�016 0�008

3 5 0�003 L=4 0�5 V0 (m/s) 5 5�1 (V0;cr) 10 20 40
Tv (s) 0�244 0�246 0�25 0�258 0�29
Tc (s) 0�25 0�245 0�125 0�063 0�031

4 5 0�003 L=4 1 V0 (m/s) 6�9 7 (V0;cr) 10 20 40
Tv (s) 0�246 0�247 0�25 0�258 0�297
Tc (s) 0�18 0�179 0�125 0�063 0�031

5 8 0�001 L=8 0�1 V0 (m/s) 0�5 0�6 (V0;cr) 4 10 25
Tv (s) 0�624 0�63 0�73 0�783 1�532
Tc (s) 0�2 1�66 0�25 0�1 0�04

6 8 0�001 L=8 0�5 V0 (m/s) 1�2 1�3 (V0;cr) 4 10 20
Tv (s) 0�615 0�614 0�66 0�768 1�326
Tc (s) 0�833 0�77 0�25 0�1 0�05

7 8 0�001 L=4 0�5 V0 (m/s) 3 4�4 4�5 (V0;cr) 10 20
Tv (s) 0�665 0�68 0�683 0�765 1�268
Tc (s) 0�667 0�454 0�444 0�2 0�1

8 8 0�001 L=4 1 V0 (m/s) 3 4 6�1 6�2 (V0;cr) 10
Tv (s) 0�63 0�63 0�665 0�69 0�75
Tc (s) 0�667 0�5 0�328 0�323 0�1
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displacement of critical velocities values. Values Tv of the curved pipe have not been
changed practically. These peculiarities for values Tv of straight pipe vibrations are also
characteristic for the pipe with an initial curvature. Figure 2 gives vibration graphs for the
point x ¼ L=2 of the pipe centreline along the Oy-axis for problem 8 (see Table 2). The
associated states of a flow (the arrangement of clots and their velocities) for the instant of
time, when a clot arriving at the channel at the velocity of V0 reaches its full length a0 and
starts separating from its main flow at the point x ¼ 0; are shown in Figure 3.

One notices that at V0 ¼ 3�3 m=s (see Figure 2) the vibrations decay with additional
beats. With further increase in the velocity to V0 ¼ 6�0 m=s; the pipe vibrations are stable
in nature and assume a beating mode. In the critical case V0;cr ¼ 6�2 m=s; the pipe loses its
stability by modal flutter, but not according to the linear law and with additional
vibrations. In the postcritical state (V0 > V0;cr) the elastic system remains unstable and in
doing so begins to vibrate with less frequency. Figure 4 illustrates the modes of the curved
tube plane vibrations which occur for problem 8 during time Tv: The pipe was found to
vibrate according to the combination of the first and the second modes of natural
vibrations of a pipe without a fluid flow.
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Figure 2. The forms of vibrations in time of a central cross-section of a pipe with mobile ‘‘boiling-away’’ clots
(L ¼ 8�0m; a ¼ L=4): (a) V0 ¼ 3�3 m=s; (b) V0 ¼ 6�0m=s; (c) V0 ¼ 6�2m=s; (d) V0 ¼ 10�0m=s:
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In conclusion, one notes a peculiarity, characteristic of the dynamical process under
discussion. The case is that when vibrational motions of a pipe are excited by inner mobile
clots, a joint action of two affecting mechanisms is shown, each of them having its own
nature. First, one observes here only the dynamical action of inertial centrifugal forces on
an elastic pipe, which in this case play the role of active forces. The action of these forces
determines the presence of the right member in the constitutive equations and their non-
homogeneity. Second, the characteristic effects of a parametric vibration excitation
mechanism appear here.

Indeed, as the dynamic system carries mobile masses, its inertial parameters periodically
change, and this may cause an additional source of excitation of vibrations. The dynamical
action of parametric effects is shown up by the appearance of time dependent coefficients
in the constitutive equations.

It is known [2] that the resonance vibrations (i.e., ordinary and parametric resonances)
excited by these two factors develop and proceed with time in different ways. If in the first
case, the amplitudes of vibrations increase with time according to the linear law, then in
the second case, they increase according to the square law. As seen from the calculations
obtained (Figure 2(a); V0 ¼ 6�2 m=s; (b) V0 ¼ 10 m=s) the amplitudes of vibrations with
the resonance of the system under study are built up non-linearily. Thus, it can be
concluded that the manifestation of the parametric vibration excitation is predominant
here.
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5. CONCLUSIONS

The purpose of this paper is to carry out the numerical modelling of self-excited
vibrations of tubes containing inner flows of non-homogeneous boiling fluid. Straight
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tubes and curved tubes have been considered. Dynamic flow model is suggested with
allowance made for the discontinuous character of its density and the fluid-clot flow mode
in the process of their heating and evaporations. The action of inertial forces of positional
and gyroscopical effects is taken into account. The analysis of the results obtained makes it
possible to conclude:

(1) Unstable equilibrium states accompanied by self-excitation of vibrations and
flutter type loss of stability can arise in a pipe from the action of inertial forces of
non-homogeneous non-stationary inner flows on the pipe walls. In a number of
cases the divergent conditions of losing the straight-line stability were realized in
supercritical states.

(2) The mechanism of distorting the normal shape of a pipe results from the action of
centrifugal and Coriolis’ inner flow inertial forces which can be classified as
positional and gyroscopical ones.

(3) The non-homogeneity of an inner fluid flow manifests itself both in the non-
homogeneity of centrifugal inertial forces acting on a pipe in the transverse
direction and in the change with time of the general system mass geometry. In
this connection purely dynamical and parametrical excitations of vibrations take
place.

(4) Gyroscopic inertial forces caused by the interaction between the slewing movement
of pipe elements and linear flows of fluid masses have a marked influence on the
dynamic process character. They lead to the system loss of a general motion phase
and to essential complication of the modes of the pipe transverse vibrations.

(5) The calculations testify that in the general case the transverse motions of a pipe
constitute non-stationary vibrations in which one can distinguish a conventional
period Tv: As a rule this period does not appear to be comparable to the period of
fluid clots arriving in the pipe channel although in some cases these values were
almost equal or multiple.
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