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Analytical solutions are presented for the calculation of the acoustic insulation provided
by an in"nite single panel wall when subjected to a spatially sinusoidal harmonic line load or
a point pressure load (modelled as a superposition of spatially sinusoidal harmonic line
loads). The method used does not entail limiting the thickness of the layer, as the Kirchho!
or Mindlin theory requires, and fully takes into account the coupling between the #uid (air)
and the solid panel. All calculations are performed in the frequency domain. Time signatures
are obtained by means of inverse Fourier transforms. Special attention is given to the
limitations of the simpli"ed models, which are not able to predict dips of insulation such as
that due to the coincidence e!ect. It has been shown that, although time results may appear
complicated, the arrival of various pulses at the receivers can be understood in terms of the
travelling body pulses and guided waves. Simulated results have been computed for ceramic,
concrete and glass walls of di!erent thickness, when subjected to plane, linear and spherical
waves. The insulation computed was found to be highly dependent on receiver position,
given the interaction between the incident wave "eld and the directed re#ected "eld on the
wall, when the wall is struck by a cylindrical or a spherical pulse wave.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

The transmission of sound energy through a separation element proceeds by the vibration
of the element, with the mass and sound frequency being relevant variables. As the mass of
the element increases, so does insulation, due to increasing forces of inertia. When the
frequency of sound incident on an element that maintains the same mass is increased, the
vibration power of the element decreases and greater dissipation of sound energy is
observed, leading to a rise in acoustic insulation.
Besides these two variables, there are others that may a!ect the acoustic insulation of

a separation element. These include the angle of incidence of the waves, the existence of
weak points in the insulation, rigidity, damping of the element and, in the case of multiple
elements, the number of panels and their individual characteristics and separation. In a real
situation, the transmission of sound between two contiguous rooms depends not only on
the separation elements and the connections between the surrounding elements, but also on
the way in which propagation proceeds inside the emitting and receptor rooms. In this
process, the vibration eigenmodes of the rooms excited determine the manner of
propagation.
The mathematical description of the phenomena involved in acoustic insulation is thus

very complex. Studies are usually conducted with variations in only a limited number of the
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.
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variables in question [1, 2]. This results in a set of simpli"ed predictive insulation models
such as the Law of Theoretic Mass.
Other simpli"ed methods have been proposed for predicting the sound insulation

conferred by a single panel above, below, and in the vicinity of the coincidence e!ect [3}5].
A combination of the prediction methods presented by Sewell [3], Sharp [4] and Cremer
[5] was used by Callister et al. [6] to evaluate the sound transmission loss of a single-layer
panel. Novikov [7] proposed a method for expressing the sound insulation of "nite plates at
low excitation frequencies as the mass law plus a correction coe$cient.
Osipov et al. [8] used three simpli"ed theoretical models to predict the airborne sound

transmission of single partitions at low frequencies, namely an in"nite plate model, a ba%ed
plate model and a room}plate}room model. In their models, the walls are assumed to be
thin compared with the bending wavelength, and harmonic pure bending wave motion is
adopted according to Kirchho!'s theory. The results reveal that sound insulation at low
frequencies depends both on the properties of the separating wall and on the geometry and
the dimensions of the room}wall}room system.
The sound transmission between adjacent rooms has also been addressed, using di!erent

numerical techniques such as the statistical energy analysis method (SEA), the "nite element
method (FEM) and the boundary element method (BEM).
The SEA is particularly suitable for studying the sound transmission through large and

complex structures, where more accurate models would not be practical. This method
divides the acoustic system into diverse subsystems. It is assumed that the response of
a subsystem is determined by its resonant modes. However, the SEA model is unreliable at
low frequencies due to the statistical uncertainties that occur where there are few resonant
modes in each of the subsystems. The "nite element model is not a!ected by this limitation
at low frequencies. Steel and Craik [9] used both the SEA and the FEM to compute the
sound transmission between walls, and compare these results with measured data.
Comparison of the results showed that the FEM can be used for determining the coupling
between subsystems. The SEA model was later used by HynnaK et al. [10] to predict the
structure}borne sound transmission in large welded ship's structures. In the numerical
technique developed, the pre-processing programs used in the context of the FEM were
applied to reduce the modelling work. Recently, Craik and Smith [11] used a SEAmodel to
compute the sound transmission through double-leaf lightweight partitions. At low
frequencies the wall is modelled as a single subsystem, while at higher frequencies the SEA
model makes use of a number of interconnected subsystems.
The "nite element methods have not been used very often to compute sound insulation,

because of the high computation cost entailed. They have failed because the domain being
analyzed has to be fully discretized, and very "ne meshes are needed to solve excitations at
high frequencies. The FEM has been used to study the e!ect of room dimension on the
sound insulation of a separating wall at low frequencies [12]. Maluski and Gibbs used the
FEM to predict the sound insulation between adjacent rooms at low frequency, and
compared the results with experimental data [13]. Results showed that the sound insulation
provided by a separating wall at low frequencies is strongly dependent on the modal
characteristics of the sound "eld of both rooms of the partition.
Sgard et al. [14] computed the low-frequency di!use "eld transmission loss through

double-wall sound barriers with elastic porous linings (composed of a porous-elastic
decoupling material sandwiched between an elastic skin and a septum), using a "nite
element model for the di!erent layers of the sound barrier coupled to a variational
boundary element method to account for #uid loading. The di!use "eld is assumed to be
a combination of uncorrelated freely propagating plane waves with equal amplitude, no two
of which are travelling in the same direction. Recently, the BEM has been used by Tinnsten
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et al. [15] to compute the pressure and intensity amplitude for structures vibrating in open
domains, analyzing a vibrating sphere and an engine transmission cover.
The present work describes analytical solutions for calculating the acoustic insulation

provided by a single panel wall when subjected to a spatially sinusoidal harmonic line load
or a point pressure load (modelled as a superposition of spatially sinusoidal harmonic line
loads). The method used does not entail limiting the thickness of the layer, as the Kirchho!
or Mindlin theory requires, and fully takes into account the coupling between the #uid
(air) and the solid panel. It adapts the analytical equations developed by the authors
for the steady state response of a homogeneous three-dimensional half-space and layered
acoustic and elastic formations subjected to spatially sinusoidal harmonic line loads
[16, 17].
This paper "rst describes the simpli"ed model predicting insulation in single elements,

known as the Law of Theoretic Mass, or the Law of Theoretical Frequency. There follows
a description of the procedure for computing the analytical acoustic insulation provided by
a single panel when subjected to a sinusoidal line pressure load. The full set of expressions is
compared with those provided by the BEM, for which a full discretization of the boundary
interfaces is required. Finally, a number of applications are presented to illustrate how the
analytical solutions presented compare with those provided by the simpli"ed analytical
model.

2. SIMPLIFIED MODEL PREDICTING INSULATION IN SINGLE ELEMENTS

If an in"nite simple separation element is held to behave like a group of juxtaposed
masses, having independent displacement, and null damping forces, the sound reduction
index (R) for plane wave incidence follows a law, known as the Law of Theoretic Mass, or
the Law of Theoretical Frequency [18],

R"10 log �1#�
� fM cos �

�
�
�
�
�

�

� dB, (1)

where f is the frequency (Hz),M is the mass per unit area of the panel (kg/m�), � is the angle
of incidence, �

�
is the density of the air (+1)22 kg/m�), and �

�
is the speed of sound in air

(for ¹"203C, �
�
�340m/s). This equation predicts an increase in the sound reduction

index of about 6 dB for each doubling of the mass per unit area or frequency, but it does not
take into account the existence of a di!use "eld. Di!erent models have been proposed for
random distribution of angles of incidence, but again they all lead to an increase in the
sound reduction index of about 6 dB for each doubling of the mass per unit area and
frequency. The simpli"ed model given by equation (1) is used throughout this work, for
comparison with the computed results. The element's rigidity and damping a!ect its
dynamic behavior, which is not taken into account by the models described above, leading
to local dips in sound insulation. These can be predicted for frequencies relative to the
normal transversal vibration modes through #exion and due to the propagation of plane
waves throughout the panel.
The propagation of plane waves along a panel is frequently analyzed, assuming the

existence of an in"nitely long thin plate, not taking the presence of #uid on the two faces of
the panel into account. The mathematical development of these assumptions leads to the
dispersion relation [19]

c
�
"(D��/�h )���� � (2)
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where c
�
is the phase velocity of the propagating plane waves along the plate, � is the

density of the material (kg/m�), h is the thickness of the panel (m), �"2�f,
D"h�E/[12(1!��)] with E and �, being Young's modulus and the Poisson ratio
respectively. It should be noted that this equation predicts unbounded wave velocity for
very short wavelength, high-frequency conditions, as a consequence of an imperfect
mathematical model in which e!ects of shear and rotary inertia have been ignored. It is
frequently accepted in practical applied acoustics that when the wavelength of sound air
projected on a plate equals the wavelength of these bending waves, the movement of the
panel increases, leading to a low sound insulation. This happens when

�"(�
�
/sin� )� ��h/D (3)

where � is the incidence angle of the sound relative to a direction perpendicular to the
element. This assumption does not introduce signi"cant misinterpretations in the insulation
predictions because the sound waves travel at a much lower velocity than the body wave
velocities in the plate.
The critical frequency ( f

�
) is taken as being that which corresponds to �"903,

f
�
"

��
�

1)8138h�
� (1!��)

E
. (4)

3. ANALYTICAL ACOUSTIC INSULATION PROVIDED BY A SINGLE PANEL

This section brie#y describes how the acoustic insulation provided by an elastic solid
medium bounded by two acoustic #at #uid media, when subjected to a spatially sinusoidal
harmonic pressure load, is analytically evaluated (see Figure 1(b)).
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Figure 1. De"nition of the problem: (a) spatially harmonic varying line load in an unbounded medium;
(b) spatially sinusoidal harmonic line pressure load applied in the top #uid medium of a single panel structure
bounded by two #uid parallel media; (c) geometry of the model.
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The solution uses the authors' previous work on deriving analytical solutions for the
steady state response of a homogeneous three-dimensional half-space and layered acoustic
and elastic formations subjected to spatially sinusoidal harmonic line loads [16, 17]. The
technique requires knowing the solid displacement potentials and #uid pressure potentials.
The solid displacement potentials used to de"ne the present Green functions are those
de"ned in the method used by the authors [20] to evaluate the Green functions for
a harmonic (steady state) line load with a sinusoidally varying amplitude in the third
dimension, in an unbounded medium. These are in complete agreement with the solution
for moving loads given earlier by Pedersen et al. [21] and Papageorgiou et al. [22].
A similar technique is employed for the #uid pressure potential. The displacement and
pressure potentials are then written as a superposition of plane waves, following the
approach used "rst by Lamb [23] for the two-dimensional case, and then by Bouchon [24]
and Kim et al. [25] to calculate the three-space dimension "eld by means of a discrete
wavenumber representation. The transformation of these integrals into a summation can be
achieved if an in"nite number of such sources are distributed along the x direction, at equal
intervals ¸

�
(see Appendix A).

This procedure yields the following expressions for the pressure "eld in the two #uid
media, when a spatially sinusoidal harmonic pressure load is applied in the top layer of the
#uid (see Figures 1(b) and 1(c)), at point (x

�
, y

�
), in the vicinity of a solid layer of thickness h:
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 is the direct incident pressure "eld

(computed as in unbounded space). The coe$cients D�
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y"0 and at y"h), so that the "eld produced simultaneously by the source and surface
terms should produce the continuity of normal displacements and stresses, and null
tangential stresses at the interface between the solid and the #uid media. The imposition of
these boundary conditions, for each value of n yields a system of eight equations in the eight
unknown constants (see Appendix B). Finally, the acoustic insulation is given by the
di!erence between ����}��� and ����}������, which can in turn be approximated by a "nite sum
of equations (N).

4. NUMERICAL APPLICATIONS

The expressions described above were used to compute the acoustic insulation provided
by a single in"nite wall subjected to plane loads, spatially sinusoidal harmonic line loads or
point loads. The plane load is simulated ascribing single values of n and k

�
in equations (5),

while the spatially sinusoidal harmonic line load is computed performing the full
summation in k

�
, again for a single value of k

�
, using the same equations. The point load is



TABLE 1

Material properties

Material

Shear
modulus
(GPa)

Modulus
of

elasticity
(GPa)

The
Poisson
ratio

Density
(kg/m�) �(m/s) 
(m/s) Wall thickness (cm)

Concrete 12)6 28)98 0)15 2500 3498)6 2245 5 10 15 20
Ceramic
brick 2)5 6)0 0)20 1400 2182)2 1336)3 5 10 15 20
Glass 29)508 72 0)22 2500 5734)1 3435)6 0)4 0)8 1)2 1)6
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synthesized by performing an inverse spatial Fourier transform in the z direction, which is
discretized, assuming the existence of an in"nite number of equally spaced virtual sources.
The calculations are "rst performed in the frequency domain, which allows the insulation

to be determined. Time responses are computed by means of inverse Fourier transforms.
The source is assumed to be a Ricker wavelet function de"ned in the frequency domain by

; (�)"A[2��t
�
e!i�t

�]��e!�� (6)

where A is the amplitude, �"�t
�
/2, t

�
is the time when the maximum occurs, while �t

�
is

the characteristic (dominant) period of the wavelet.
Thus, the Fourier transformations are achieved by discrete summations over

wavenumbers and frequencies, which is mathematically the same as adding periodic sources
at spatial intervals ¸"2�/�k

�
(in the z-axis), and ¸

�
"2�/�k

�
(in the x-axis), and temporal

intervals ¹"2�/��, with �k
�
, �k

�
, being the wavenumbers and �� the frequency steps

[26]. The spatial separations ¸ and ¸
�
must be large enough so that the periodic sources do

not contaminate the response. Thus, the contribution to the response by the "ctitious
sources must occur at times later than ¹. This process is greatly helped if the frequency axis
is shifted slightly downward, by considering complex frequencies with a small imaginary
part of the form �

�
"�!i� (with �"0)7��). The periodic sources are thus practically

eliminated. In the time domain, this shift is later taken into account by applying an
exponential window e�� to the response [27].
In our examples, di!erent materials and thickness (h) were ascribed to the wall, as listed in

Table 1. The host acoustic medium is kept constant, allowing a pressure wave speed of
340 m/s and a density of 1)22 kg/m� . The source is placed 2)0m away from the wall, while
a grid of receivers is placed on both sides of the wall, as shown in Figure 2.
The computations are performed in the frequency range (2, 8192 Hz), with a frequency

increment of 2 Hz, which determines the total time duration (¹"0)5s) for the analysis
in the time domain. The spatial distance between the virtual point sources has been set
to 4�¹.
A selection of results is given below, to illustrate the main "ndings. First, a ceramic brick

wall is used to illustrate how the acoustic insulation changes when subjected to plane waves
with di!erent incidence angles. Then, the time responses and insulation features are
described, again using a ceramic brick wall subjected to the incidence of cylindrical waves
(k

�
"0). Insulation curves for di!erent wall materials and thickness are also included. The

ceramic wall is used to show how the acoustic insulation varies when a panel is subjected to
the incidence of cylindrical waves with di!erent spatial sinusoidal variation along one
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Figure 3. Sound transmission loss provided by a 10)0 cm thick ceramic brick wall when subjected to plane waves
(�, Mass law; �, v"340)0 m/s; �, v"400)0m/s; �, v"500)0 m/s; £"1000)0m/s; �, v"Rm/s).
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direction (k
�
O0). The last example provides the insulation response of a ceramic brick wall

subjected to a point source.

4.1. INCIDENCE OF PLANE WAVES

Figure 3 illustrates the sound transmission loss provided by a ceramic brick wall, 10)0 cm
thick, in a dB scale, when subjected to plane waves with di!ering incidence angles, given by
di!erent apparent wave velocities, namely v"R, 1000)0, 500)0, 400)0, and 340)0 m/s. These
computations have been performed ascribing k

�
"0 in equations (5), and de"ning N in

these equations in such away as to model the di!erent plane waves. Thus, v"R m/s
(N"0) corresponds to waves that are normally incident, while v"340)0 m/s corresponds
to waves that travel parallel to the ceramic wall. The waves travelling along the plate with
apparent wave speeds of v"1000)0, 500)0 and 400)0 m/s correspond to plane waves
reaching the surface with inclinations of 19)93, 42)83 and 58)23, respectively, in relation to the
normal direction of the wall.
An additional curve, representing the mass law, given by equation (1), is also plotted in

Figure 3. The comparison of the analytical curves with the mass law curve reveals that the
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analytical results di!er from those provided by the mass law, unless the plane wave is
normal to the wall (v"R m/s and k

�
"0). In this case there is agreement, except for high

frequencies. The other curves have dips at speci"c frequencies. When the apparent speed is
taken to be equal to the sound speed in the air (340)0 m/s) the dip appears near to the critical
frequency of the wall ( f

�
"301)6 Hz), given by equation (4). However, the di!erences

between the results computed by equation (3), for the frequencies associated with the plane
waves travelling along the plate at speeds of v"400)0, 500)0 and 1000)0 m/s, ( f"417)5,
f"652)3 and 2609)4Hz), and those of the insulation dips provided by our model, grows as
the inclination of the waves decreases. Furthermore, as the apparent wave speed decreases,
the insulation provided by the wall is observed to increase for high frequencies, whereas it
decreases for low frequencies.

4.2. INCIDENCE OF CYLINDRICAL WAVES

Next, the wall is assumed to be subjected to the incidence of cylindrical waves of k
�
"0.

This corresponds to waves arriving at the receivers with a 903 inclination in relation to the
z-axis, which can be understood as a pure two-dimensional problem where the source is
linear.

4.2.1. ¹ime responses

Synthetic waveforms have been computed to simulate the wave propagation in the
vicinity of a ceramic brick wall, 10)0 cm thick. The response is computed at receivers placed
0)5 m away from the wall surface, on both sides of the wall.
Figure 4 displays the pressure time responses, modelling the result of the incidence of

a cylindrical dilatational Ricker pulse source with a characteristic frequency 3000 Hz on the
wall. Figure 4(a) illustrates the response obtained in the #uid medium containing the source.
Two pulses are clearly visible, the direct incident pulse, labelled I in the plot, and a pulse
that arrives at the receivers after being re#ected on the surface wall, labelled PP . However,
the responses contain additional pulses, produced by refractions and mode conversions at
the wall interface, labelled PPP and PSP waves. The PPP wave begins as a dilatational
wave in the #uid; it is critically refracted onto the wall as a P wave and then refracted back
into the #uid as a dilatational wave. The so-calledPSPwave begins as a dilatational wave in
the #uid, it is critically refracted into the wall as an S wave, and is refracted into the #uid as
a dilatational wave. After the PSP wave arrives, the response is marked by a dense pack of
pulses originating in the guided waves that travel along the wall. The scaling of the plots
shown in Figure 4(a) does not allow easy observation of the PPP and PSP body waves.
Since the scale of the plots precludes identi"cation of the PPP and PSP body waves, we
have ampli"ed the graph so as to show these arrivals at the receiver placed at x"28)0 m
(see Figure 4(b)).
Figure 4(c) shows the synthetic signals computed in the #uid medium on the other side of

the wall. As expected, the response amplitudes are much lower than the ones calculated for
the side where the source is, due to the insulation provided by the wall. As before, a pack of
high-frequency pulses is visible after the arrival of the dilatational waves that are caused by
the incident waves critically refracting into the wall as S waves, followed by a ring of
low-frequency waves, up to the arrival of the later P body pulses. Analysis of the results
shows that the receiver, placed at the same abscissa as the source (x"0)0 m), does not
record the presence of the guided waves. The guided waves are dispersive and originate at
some distance from the source.
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Figure 4. Synthetic waveforms at receivers placed 0)5m away from a 10)0 cm thick ceramic brick wall, subjected
to a cylindrical dilatational Ricker pulse source with a characteristic frequency 3000Hz (k

�
"0): (a) in the #uid

medium containing the source. (b) in the #uid medium containing the source at x"28)0m; (c) in the #uid medium
not containing the source.
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To illustrate the behavior of the propagation at low frequencies, Figure 5 includes the
responses obtained when the source excites a pulse with a frequency of 500 Hz, which
exhibits longer time duration. Figure 5(a) displays the results computed in the #uid medium
containing the source. The arrival of the incident and the directed re#ected pulses coincides
with the corresponding arrival times obtained when the frequency excitation of the source
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was set to 3000 Hz. At receivers placed further away from the source, however, a single pulse
is detectable, caused by the incident pulse overlapping the directed re#ected pulses.
Figure 5(b) shows the time responses calculated in the #uid medium on the other side of

the source. The wave propagation features registered at Figure 4(c) are still visible.
However, the guided waves arrive at later times, owing to the absence of the high frequency
components, which exhibited faster velocities, as expected.

4.2.2. Insulation calculations

Next, a 10)0 cm thick ceramic wall is used to illustrate some basic insulation features and
show how the insulation is calculated. The insulation provided by the di!erent wall types is
then presented.
Figure 6 plots the amplitude of the responses, on a dB scale, on both sides of the ceramic

wall at receivers placed at x"28)0, 0)5m from the wall. The amplitude response on the side
of the source (labelled top layer), evinces pronounced dips that result from the interaction of
the incident wave "eld with the directly re#ected "eld, which happens when the di!erence in
travel paths �s is a multiple of the wavelength (0)5�

�
/�s"2386)4Hz and 1)5�

�
/�s"

7159)3Hz). The amplitude response at the receiver on the other side of the wall (labelled
&&bottom layer''), is smoother but it shows an ampli"cation at frequencies in the vicinity of



0

25

50

75

100

10 100 1000 2386.4 7159.3

Coincidence Effect

Frequency (Hz)

A
m

pl
itu

de
(d

B
)

Figure 6. Amplitude of the responses on both sides of a 10)0 cm thick ceramic wall at x"28)0, 0)5m, away from
the wall, and computed insulation curve when subjected to a cylindrical two-dimensional line source
(£, insulation; �, top layer; �, bottom layer).
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the coincidence e!ect. This "gure includes the insulation curve, provided by the di!erence
between the amplitudes of the previous curves. In this curve, the dips observed for the
receiver response placed in the side of the source are still evident, as is the coincidence e!ect
observed at the receiver placed in the other side of the wall.
Figure 7(a) displays the insulation curves computed from the responses at receivers

placed 0)5m away from the wall, and at x"0)0, 8)0, 16)0m and 24)0m. The dips of
insulation due to the interaction of the incident wave "eld with the directed re#ected "eld of
the di!erent curves occurs at well-de"ned frequencies, as explained before. The insulation
dip due to the coincidence e!ect is not observable at x"0)0 m . This was expected because
the guided waves do not exist on the vertical plane containing the source, x"0)0m . For
the other curves, the coincidence e!ect is clearly visible and occurs in the vicinity of
( f

�
"301)6 Hz), given by equation (4). Analysis of the results indicates that the insulation is

highly dependent on the position of the receivers. Additional calculations have been
performed to compute the average energy of the responses along the grid of receivers,
illustrated in Figure 2, on both sides of the wall, for each frequency of excitation. Figure 7(b)
shows the average insulation curve obtained by the di!erence between these two responses.
The resulting curve is smoother, with a pronounced dip due to the coincidence e!ect.
Next, the average insulation curves computed for the various walls, with di!erent

thickness and materials, as listed in Table 1, are displayed in Figure 8. In each plot the
insulation curve predicted by the mass law (equation (1)) for the thicker wall is also included,
to illustrate the di!erences between the analytical model and the simpli"ed model. The
simpli"ed curves for the other wall thickness are not plotted, to make it easier to interpret
the results, but they would appear as parallel, decreasing 6 dB for each half of mass.
Additional vertical lines have been positioned in the plots according to the critical
frequency obtained by equation (4) for each wall.
The simpli"ed model predicts an increase in sound insulation of about 6 dB for each

doubling of frequency, which does not occur with the analytical solution. The increase of
sound insulation with frequency is indeed less than predicted. At low frequencies the
simpli"ed model predicts insulation values lower than those obtained by the analytical
model. It can also be seen that the discrepancies between the simpli"ed insulation curves
and analytical curves increase as the mass of the wall diminishes, that is, as the thickness
decreases and with the change from the concrete to the ceramic wall and then to the glass
wall. The position of the critical frequencies, predicted by the simpli"ed model, equation (4),
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Figure 7. Computed insulation curves provided by a 10)0 cm thick ceramic wall when subjected to a cylindrical
line source (k

�
"0): (a) receivers placed 0)5m away from the wall, at x"0)0m (marked �), x"8)0m (marked �),

x"16)0m (marked £) and x"24)0m (marked �); (b) average insulation obtained for the full grid of receivers.
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is closer to the insulation dips calculated by the analytical model as we move from the
ceramic to concrete wall, and then from the concrete to the glass wall, that is, as the modulus
of elasticity of the material from which the wall is made increases.
A 10)0 cm thick ceramic wall is again used to illustrate how the acoustic insulation varies

when a panel is subjected to the incidence of cylindrical waves with di!erent spatial
sinusoidal variation along one direction.
This type of load simulates the propagation of a moving load along the z direction and

simulations are performed, following waves with di!erent apparent wave velocities along
the z-axis. This apparent wave velocity (v

�
) results from waves arriving at the z axis with

a path inclination given by arc cos (�
�
/v

�
), where �

�
is the true wave speed. Thus, in the

equations presented above, k
�
is taken to be �/v

�
. In the examples given, "ve apparent

speeds (v
�
) are chosen, namely v

�
"R, 1000, 500, 400 and 340 m/s. The apparent speed

v
�
"Rm/s corresponds to waves arriving at the receivers with a 903 inclination in relation

to the z-axis, k
�
"0. As the path inclination ranges from 903 to 03, there is a lower bound

value for v
�
, which corresponds to the slowest wave speeds, v

�
"340 m/s. Below this value,

there are inhomogeneous waves, which decay very quickly with decreasing values of v
�
.

The average insulation curves computed for the di!erent apparent wave velocities ( v
�
)

are displayed in Figure 9. The insulation curve predicted by the mass law (equation (1)) is
also included. The insulation provided by the wall when struck by a linear source
(v

�
"Rm/s), exhibits a well-de"ned dip in the vicinity of the critical frequency given by
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Figure 8. Computed average insulation curves provided by a wall subjected to a cylindrical line source (k
�
"0):

(a) concrete wall (�, Mass law; �, h"0)20m £, h"0)15m; �, h"0)10m; �, h"0)05m); (b) ceramic wall
(�, Mass law; �, h"0)20m; £, h"0)15m; �, h"0)10m; �, h"0)05m); (c) glass wall (�, Mass law; �,
h"0)016m; £, h"0)012m; �, h"0)008m; h"0)004m).
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equation (4). As the apparent velocity diminishes, the insulation results include the presence
of an additional dip, which appears at higher frequencies, caused by the di!erent incident
angles of the waves along the z direction. The location of this second dip in the frequency
domain coincides with that originated by plane waves illuminating the wall panel with an
identical incidence angle along the x-axis (see Figure 3). When the apparent wave velocity
reaches the sound wave speed (v

�
"340m/s) this second dip coincides with the critical

frequency.
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Figure 10. Average insulation curve computed when a 10)0 cm thick ceramic wall, is subjected to the incidence
of spherical wave.
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The insulation obtained for cylindrical waves with di!erent apparent wave speeds along
the z direction approaches the mass law prediction at low frequencies. In the vicinity of the
coincidence e!ect, the computed insulation appears well below that given by the mass law.
At high frequencies, lower insulation than that predicted by the mass law is calculated when
the apparent wave speed, v

�
, is high, while the computed insulation exceeds the prediction

provided by the mass law when the apparent speed, v
�
, is low.

4.3. INCIDENCE OF SPHERICAL WAVES (POINT LOAD)

The last example provides the insulation response of the 10)0 cm thick brick wall,
subjected to a point pressure source. The results have been computed, fully integrating the
response in the k

�
wavenumber domain. Figure 10 displays the calculated average

insulation results. Again, the dip of insulation related to the coincidence e!ect appears at the
same frequency location as that for cylindrical waves (k

�
"0). The level of computed

insulation is higher than before, particularly for high frequencies.
The time responses computed on both sides of the wall, when the source is modelled as

a Ricker wavelet with a characteristic frequency of 3000 Hz, manifest similar trends to the
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ones de"ned for a linear cylindrical source (k
�
"0). However, the amplitude of the signals

decays faster than before (k
�
"0) as the receiver is placed further away from the source. This

was anticipated, as the energy of a spherical wave decays faster with the distance to the
source than that of a linear source (not displayed).

5. CONCLUSIONS

Analytical solutions for the steady state response of a spatially sinusoidal harmonic line
load, illuminating a single panel wall, bounded by two #at #uid media, have been presented.
These solutions make it possible to compute both the time pressure responses and the
insulation provided by the solid wall, for plane, cylindrical and point pressure waves.
The synthetic signals computed in the #uid medium reveal the presence of a complicated

wave"eld, generated by both body waves and guided surface waves. The guided waves were
found to be very dispersive, and faster phase velocities were associated with higher
frequencies of excitation. At high frequencies of excitation, the arrival of the guided waves
exhibits a pack of a high-frequency pulses, followed by a ring of low-frequency waves. The
features of the time responses obtained when cylindrical waves are excited are similar to
those obtained when a spherical pulse is excited. However, the amplitude decay of the
response obtained when a spherical wave is excited is faster with the distance to the source
than that of a linear source.
The results obtained when the wall is illuminated by plane waves indicate that the dips of

insulation related to the coincidence e!ect occur in the vicinity of those computed using the
dispersion relation for thin plates. However, the di!erence between the frequency positions
of these dips, provided by the simpli"ed model, and those computed by our model, grows as
the incidence angle of the plane waves increases.
The computed insulation appears to be very dependent on receiver position, because of

the interaction between the incident wave "eld and the "eld directly re#ected on the wall,
when the wall is struck by a cylindrical pulse wave. The average insulation calculated for the
di!erent wall materials and thickness is less than predicted by the simpli"ed model, for
frequencies above the coincidence e!ect. The computed insulation and the simpli"ed results
show more pronounced di!erences as the mass of the wall diminishes. The simpli"ed
determination of the critical frequencies approximates the insulation dips calculated by the
analytical model more closely as the modulus of elasticity of the material wall increases.
The insulation results reveal the presence of an additional dip, which appears at higher

frequencies, when the line source is sinusoidal along the z direction. This second dip occurs
at the same frequency as that originated by plane waves illuminating the wall panel with an
identical incidence angle along the x-axis. When the wall is subject to a spherical pulse, the
dip in insulation related to the coincidence e!ect occurs at the same frequency position as
that for cylindrical waves (k

�
"0). The computed insulation is greater than for cylindrical

waves, particularly for high frequencies.
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APPENDIX A: THE GREEN FUNCTIONS FOR A TWO-AND-A-HALF-DIMENSIONAL
FULL SPACE

A.1. SOLID FORMATION

Consider an in"nite, homogeneous space subjected at point (x
�
, y

�
) to a spatially varying

line load of the form p (x, y, z, t)"� (x!x
�
)� (y!y

�
) ei	���k

��
 acting in one of the three
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co-ordinate directions. Here, � (x) and � (y) are Dirac-delta functions, � is the frequency of
the load and k

�
is the wavenumber in z (see Figure 1(a)). The response to this load can be

calculated by applying a spatial Fourier transform in the z direction to the Helmholtz
equations for a point load (see, e.g., reference [28]).
After some mathematical manipulations, a "nal set of the Green functions can be

expressed in terms of the compressional and rotational potentials. These functions can be
written as a summation if an in"nite number of virtual sources are distributed along the
x direction, at equal intervals ¸

�
. In the case of a sinusoidal harmonic line load along the

z direction, acting in the direction of the y-axis, a "nal set of the Green functions can be
expressed in terms of the compressional and rotational potentials, ��, ��

�
, ��

�
and ��

�
, from

which the following three components of displacement can be calculated (G
��
in direction

i due to a load applied in direction j )
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, �"�(�#2�)/� and 
"��/� are the speeds for P (pressure)

waves and S (shear) waves, respectively, � and � are the LameH constants, and � is the
mass density.
Readers can "nd the complete derivation of these equations in references [16, 20].

A.2. FLUID FORMATION

The Green functions for a sinusoidal pressure line load applied at the point (x
�
, y

�
), in

a #uid formation, can be obtained using a process similar to that described above, leading to
the expressions
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in which E
�
"e!ik

�
(x!x

�
), k

�
"(2�/¸

�
)n, ��

�
"�k�p

�
!k�

�
!k�

�
with (Im(��

�
))0), kp

�
"�/�

�
,

�
�
"��

�
/�

�
is the acoustic (dilatational) wave speed of the #uid, �

�
is the #uid LameH
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constant, �
�
is the mass density of the #uid, E

�
"e!i��

�
	y!y

�
	 , ��
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�
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�
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APPENDIX B: THE GREEN FUNCTIONS IN A SOLID LAYER FORMATION BOUNDED
BY TWO FLUID MEDIA

B.1. SPATIALLY SINUSOIDAL HARMONIC PRESSURE LOAD ACTING IN THE TOP LAYER OF

FLUID

The Green functions for a solid layer formation, with thickness h, bounded by two #uid
media, can be expressed as the sum of the source terms equal to those in the full-space and
the surface terms needed to satisfy the boundary conditions at the two #uid}solid interfaces
(continuity of normal displacements and stresses, and null tangential stresses). For this
speci"c problem, the top and bottom interfaces both generate surface terms, which can be
expressed in a form similar to that of the source term.
Imposing the eight stated boundary conditions for each value of n thus yields a system of

eight equations in the eight unknown constants. Although this procedure is quite
straightforward, the details are rather complex, and for this reason they are not given here.
The "nal system of equations is of the form

[a�
��
i"1, 8; j"1, 8] [c�

�
i"1, 8]"[b�

�
i"1, 8]. (B.1)
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Note that, if k
�
"0 is used, the system of equations derived above is reduced to six

unknowns, leading to the two-dimensional Green function for plane strain line loads.
The reader can "nd a detailed derivation of these equations in reference [17].
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