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A dual approach based on both structural tailoring and piezoelectric strain actuation,
aimed at controlling the free vibration and stability of a spinning circular shaft subjected to
axial forces is presented. Due to the involvement in these structural systems of gyroscopic
forces and, consequently, of the possible occurrence of divergence and flutter instabilities,
the dual control methodology shows a high degree of efficiency toward postponement of
the occurrence of these instabilities. The structural model of the shaft as considered in this
paper is based on an advanced thin-walled beam that includes the effects of transverse
shear, anisotropy of constituent materials, rotatory inertias, etc. The displayed results
reveal the synergistic implications of the application of this dual technology toward the
enhancement of the dynamic response characteristics and expansion of the domain of
stability of these systems.

# 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

The rotating flexible shaft is one of the most important structural elements employed for
power transmission in aeropropulsion systems, helicopter drive applications, industrial
machines such as steam and gas turbines, turbogenerators and precision manufacturing.
In each of these cases, the reliability of the machinery depends on the stability of the
rotating shaft elements. Moreover, in order to enhance the vibrational behavior of the
flexible shaft and reduce its weight, advanced structural models are required.
To this end, the integration of composite material systems is likely to contribute to the

increase in performance of these devices. In addition to their superior strength/weight and
stiffness/weight ratios as compared to their metallic counterparts, the directionality
property featured by fiber composite material systems can be used to tailor the stiffness
properties of the flexible shaft. In such a way, new exotic elastic couplings, not featured by
the standard metallic shaft counterpart, having beneficial implications upon their response
0022-460X/02/$35.00 # 2002 Elsevier Science Ltd. All rights reserved.
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can be generated. However, the tailoring technique is passive in its nature, in the sense that
once implemented, the structure is not able to respond in a way that avoids the occurrence
of resonance and of any instability that can jeopardize its operational life.
As a complementary option, the control via the implementation of the adaptive material

technology can be applied.
In a structure with adaptive capabilities its dynamic response characteristics can be

controlled in a known and predictable manner and, as a result, one can avoid the
occurrence of the structural resonance and of any static and dynamic instability.
The adaptive capability can be achieved through both the converse and direct

piezoelectric effects. In this sense, the capability generated by the former effect,
referred to as the actuating one, consists of the generation of localized strains in
response to an applied voltage, whereas the sensing capability, obtained via the direct
piezoelectric effect, consists of the generation of a charge/voltage as a result of the
application of a force.
In this paper, a study of the enhancement of the vibrational response and of stability of

spinning flexible shaft via the implementation of both techniques, namely, of the adaptive

capability and of the structural tailoring will be carried out.
Implementation of a control law relating the applied electric field with one of the

kinematical response quantities of the host structure according to a prescribed functional
relationship, results in a dynamic boundary-value problem. Its solution yields the closed-

loop dynamic response characteristics.
Although belonging to the class of conservative systems, due to the involvement of

gyroscopic forces, the rotating shaft can feature, in some conditions, both the divergence
and flutter instabilities. Having in view that the flutter instability is a catastrophic failure,
the postponement of its occurrence constitutes a problem of a vital importance toward a
prolonged and safe use of these devices.
In the present paper, the flexible rotating shaft is modelled as a thin-walled composite

beam of circular cross-section, incorporating smart materials technology, and in this sense,
the piezoelectric materials that can play the role of sensors and actuators will be used.
In spite of the great importance of this topic, to the best of the authors’ knowledge, the

literature devoted to the modelling, and stability of spinning shaft considered as a thin-
walled beam is very scanty. The reader is referred to references [1, 2] where ample
references to the pertinent literature addressing these issues are supplied.
Moreover, an appraisal of the performance of the structural model used in this paper,

in the context of the available experimental and analytical results was provided in
reference [3].

2. CO-ORDINATE SYSTEMS, BASIC ASSUMPTIONS

The case of a straight untwisted flexible thin-walled beam of length L spinning along its
longitudinal z-axis at a constant rate O and subjected to a longitudinal compressive dead
force P is considered (see Figure 1). Two sets of co-ordinates, an inertial one OXYZ; and a
body attached rotating frame of reference Oxyz with the common origin O; located in the
geometric center (coinciding with the elastic center of the beam), are considered. It is
supposed that at t ¼ 0; the axes of the two systems coincide while, in the undeformed
configuration, the body-fixed and inertial co-ordinates Oz and OZ coincide at any time t:
Associated with the rotating and absolute co-ordinate systems ðx; y; zÞ and ðX ;Y ;ZÞ; one
define the unit vectors ði; j; kÞ and ðI; J;KÞ respectively. In addition to the previously
defined co-ordinate systems, a local one, ðn; s; zÞ; is considered. In the light of the



Figure 1. Geometry of composite thin-walled beam of circular cross-section featuring CUS configuration;
(a) global view; (b) cross-section view.

Figure 2. Piezoactuator and piezosensor patch distributions.
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stipulated assumptions one can represent the spin rate vector as X ¼ Ok ð� OKÞ with
’OO ¼ 0:
In this context, the case of a single-cell thin-walled beam of circular cross-sectional

shape is considered. Toward its modelling the following assumptions are adopted: (1) the
original cross-section of the beam is preserved, (2) transverse shear effects are
incorporated, (3) the constituent material of the structure features anisotropic properties,
and, in this context, a special lay-up inducing flapping–lagging coupling is implemented,
and finally, (4) the piezoactuators are spread over the entire beam span on the top and
bottom faces and on the left- and right-hand sides of the master structure as indicated in
Figure 2, and are activated out of phase.

3. KINEMATICS

In light of the previously mentioned assumptions and in order to reduce the 3-D
elasticity problem to an equivalent 1-D one, the components of the displacement vector
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are represented as (see, e.g., references [1, 4, 5])

uðx; y; z; tÞ ¼ u0ðz; tÞ � yfðz; tÞ; vðx; y; z; tÞ ¼ v0ðz; tÞ þ xfðz; tÞ;

wðx; y; z; tÞ ¼w0ðz; tÞ þ yxðz; tÞ yðsÞ � n
dx

ds

� �

þ yyðz; tÞ xðsÞ þ n
dy

ds

� �
� f0ðz; tÞ½FoðsÞ þ naðsÞ	: ð1a2cÞ

In these equations u0ðz; tÞ; v0ðz; tÞ; w0ðz; tÞ denote the rigid-body translations along the
x-, y- and z-axis, while fðz; tÞ; yxðz; tÞ and yyðz; tÞ denote the twist about the z-axis and
rotations about the x- and y-axis, respectively. The expressions of yx and yy as well as of
the geometric quantity aðsÞ are

yxðz; tÞ ¼ gyzðz; tÞ � v00ðz; tÞ; yyðz; tÞ ¼ gxzðz; tÞ � u0
0ðz; tÞ; ð2a2cÞ

aðsÞ ¼ �yðsÞdy

ds
� xðsÞdx

ds
:

In equations (1), FoðsÞ and naðsÞ play the role of primary and secondary warping
functions respectively. For their definition see e.g., references [1, 4]. However, for thin-
walled beams of circular cross-sections, having in view that

x ¼ �R sinðs=RÞ; y ¼ R cosðs=RÞ and rnðsÞ ¼ R; ð2d2fÞ

where R is the beam radius of the mid-line cross-section, it can readily be proven that both
warping quantities exactly vanish, i.e.,

FoðsÞ ¼ 0 and aðsÞ ¼ 0: ð2g; hÞ

It is also seen that in the absence of transverse shear effects,

yxðz; tÞ ¼ �v00ðz; tÞ; yyðz; tÞ ¼ �u0
0ðz; tÞ: ð3Þ

In these equations, as well as in the forthcoming ones, the primes denote differentiation
with respect to the longitudinal z-co-ordinate. The position vector of a generic point
Mðx; y; zÞ belonging to the deformed structure is

Rðx; y; z; tÞ ¼ ðx þ uÞiþ ðy þ vÞjþ ðz þ wÞk; ð4Þ

where x; y and z are the Cartesian co-ordinates of the points of the continuum in its
undeformed state. Recalling that the spin rate was assumed to be constant, and using the
expressions for the time derivatives of unit vectors, the velocity and acceleration of a
generic point are

’RR ¼ ½ ’uu � Oðy þ vÞ	iþ ½’vv þ Oðx þ uÞ	jþ ’wwk; ð5a; bÞ

.RR ¼ ½ .uu � 2O’vv � ðx þ uÞO2	iþ ½.vv þ 2O ’uu � ðy þ vÞO2	jþ .wwk:

In these equations the superposed dots denote derivatives with respect to the time t:

4. GOVERNING SYSTEM

Toward the goal of deriving the equations of motion of spinning beams and the
associated boundary conditions, Hamilton’s principle was used. In addition, in order to
induce the elastic couplings between flapwise bending and chordwise bending, a special
ply-angle distribution resulting in a circumferentially uniform stiffness (CUS) configuration
is implemented (see references [6, 7]). This configuration is achieved by skewing angle plies



COMPOSITE ROTATING SHAFT 507
with respect to the longitudinal beam axis according to the law yðyÞ ¼ yð�yÞ; and yðxÞ ¼
yð�xÞ; where y denotes the ply-angle measured from the positive s-axis toward the positive
z-co-ordinate.
In this case, Hamilton’s principle provides the equations of motion and the boundary

conditions involving this type of coupling and incorporating transverse shear effects.
Representation of the equations of motion in terms of displacement quantities results in
the following governing system:

du0: a43y00x þ a44ðu00
0 þ y0yÞ � Pu00

0 ¼ b1 .uu0 � 2b1O ’vv0 � b1u0O2;

dv0: a52y00y þ a55ðv000 þ y0xÞ � Pv000 ¼ b1 .vv0 þ 2b1O ’uu0 � b1v0O2;

dyy: a22y00y þ a25ðv000 þ y0xÞ � a44ðu0
0 þ yyÞ � a43y0x ¼ ðb5 þ b15Þ.yyy;

dyx: a33y00x þ a34ðu00
0 þ y0yÞ � a55ðv00 þ yxÞ � a52y0y ¼ ðb4 þ b14Þ.yyx:

ð6Þ

For cantilevered beams, the boundary conditions at the beam root are entirely kinematic
and at the tip, entirely static.
As a result, at z ¼ 0 these are

u0 ¼
*
u0; v0 ¼

*
v0; yy ¼

*
yy and yx ¼

*
yx; ð7aÞ

while at z ¼ L; these are

du0 :Qx ¼
*
Qx; dv0 :Qy ¼

*
Qy; dyy :My ¼

*
My; dyx: Mx ¼

*
Mx: ð7bÞ

Herein Qxðz; tÞ and Qyðz; tÞ denote the shear forces in the x and y directions, Mxðz; tÞ and
Myðz; tÞ denote the moments about the x- and y-axis, respectively, P is the constant axial
force, positive in compression, whereas the terms underscored by the interrupted and solid
lines are associated with Coriolis and rotatory inertia effects, respectively. In the case
of the piezoactuators spread over the entire span of the beam, symmetrically located (see
Figure 2) and activated out of phase, the piezoelectrically induced bending moments #MMx

and #MMy are generated at the beam tip (see, e.g., references [8, 9]). These bending moments
appear in the boundary conditions at the beam tip and as a result, the control is
accomplished via the piezoelectrically induced boundary bending moments.
Using the constitutive equations for the shear forces and moments (see references

[1, 3, 4]), the static version of boundary conditions at the beam tip in terms of displacement
quantities is

du0: a43y0x þ a44ðu0
0 þ yyÞ � Pu0

0 ¼ 0;
dv0: a52y0y þ a55ðv00 þ yxÞ � Pv00 ¼ 0;
dyy: a22y0y þ a25ðv00 þ yxÞ þ #MMy ¼ 0;
dyx: a33y0x þ a34ðu0

0 þ yyÞ þ #MMx ¼ 0: ð8Þ

The coefficients aij ¼ aji and bi appearing in these equations denote stiffness and reduced
mass terms, respectively. Their expressions are supplied in Appendix A. Equations (6) and
(8) reveal that in the context of the above considered ply-angle configuration, in addition
to the already mentioned elastic couplings that are materialized by the stiffnesses
a25 ð¼ a52Þ and a34 ð¼ a43Þ; the flapwise transverse shear is also coupled with chordwise
bending and the chordwise transverse shear is coupled with flapwise bending. Moreover,
the Coriolis acceleration terms induce a supplementary coupling between the flapwise and
chordwise bendings.
Separately of the above-mentioned couplings, the extension–twist coupling is induced

by the same ply-angle configuration. This type of coupling is important and implemented
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as such, e.g., in helicopter blades and tilt rotor aircraft. However, the present study is
confined to the problem involving the flapwise–chordwise bending coupling only, and, as a
result, the equations involving extension–twist coupling are not displayed here.

5. SPECIAL CASE: UNSHEARABLE BEAM MODEL

For this case, elimination from equations (6) and (8) of the quantities a44ðu00
0 þ y0yÞ and

a55ðv000 þ y0xÞ; the operation followed by consideration of equation (3) stating the absence of
transverse shear results in the governing equations

du0: a22u
0000
0 þ Pu00

0 þ b1 .uu0 � ðb5 þ b15Þ .uu00
0 � 2b1O’vv0 � b1u0O2 ¼ 0; ð9aÞ

dv0: a33v
0000
0 þ Pv000 þ b1 .vv0 � ðb4 þ b14Þ.vv000 � 2b1O ’uu0 � b1v0O2 ¼ 0 ð9bÞ

and the boundary conditions. Their homogeneous counterpart is
at z ¼ 0:

u0 ¼ v0 ¼ u0
0 ¼ v00 ¼ 0 ð10a2cÞ

and at z ¼ L:

du0: a22u
000
0 þ Pu0

0 � ðb5 þ b15Þ .uu0
0 ¼ 0; ð11aÞ

dv0: a33v
000
0 þ Pv00 � ðb4 þ b14Þ.vv00 ¼ 0; ð11bÞ

du0
0: a22u

00
0 ¼ #MMy; dv00: a33v

00
0 ¼ #MMx: ð11c; dÞ

It should be remarked that the governing equations of shearable thin-walled beams
(equations (6) and (8)), and their non-shear deformable counterparts, equations (9)–(11),
exhibit the same order, namely eight, and as such, in both cases, four boundary conditions
have to be prescribed at each end, z ¼ 0; L; of the beam. Equations (9) reveal that in this
special case, the coupling arises only via Coriolis acceleration effect. In its absence, both
equations would be decoupled. It is also seen that in the case of the non-shearable beams,
and in contrast to their shearable counterparts, the rotatory inertia terms appear also in
the boundary conditions.

6. PIEZOACTUATORS AND THE CONTROL LAW

It is assumed that the master structure is composed of r layers while the actuator is
composed of p piezoelectric layers. We stipulate that the actuators are distributed over the
entire span of the beam, whereas along the circumferential and transverse directions, i.e.,
along the s and n directions, they are distributed according to the law

SðkÞðnÞ ¼ H n � nðk�Þ
� �

�H n � nðkþÞ
� �

; SðkÞðsÞ ¼ H s � sðk�Þ
� �

�H s � sðkþÞ
� �

: ð12a; bÞ

Herein H denotes Heaviside’s distribution, S is a spatial function that defines the
distribution of actuators in the n and the s directions, and the subscript k identifies the
affiliation of the respective quantity with the kth layer.
Assuming that the electric field vector Ei is represented by its component E3 in the n

direction coinciding with the direction of polarization (referred to as thickness
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polarization), the boundary bending moment controls are expressed as

#MMx ¼
I Xp

k¼1
E
ðkÞ
3 nðkþÞ � nðk�Þ
� �

e
ðkÞ
31 SðkÞðsÞ y 1�

#AA12
#AA11

 !
þ dx

ds

#BB12
#AA11

" #
ds

� 1

2

I
dx

ds

Xp

k¼1
E
ðkÞ
3 n2ðkþÞ � n2ðk�Þ

� �
e
ðkÞ
31 SðkÞðsÞ

" #
ds; ð13aÞ

#MMy ¼
I Xp

k¼1
E
ðkÞ
3 nðkþÞ � nðk�Þ
� �

e
ðkÞ
31 SðkÞðsÞ x 1�

#AA12
#AA11

 !
þ dy

ds

#BB12
#AA11

" #
ds

þ 1

2

I
dy

ds

Xp

k¼1
E
ðkÞ
3 n2ðkþÞ � n2ðk�Þ

� �
e
ðkÞ
31 SðkÞðsÞ

" #
ds: ð13bÞ

Herein e31 is the piezoelectric constant; #AAij and #BBij are the standard local-stiffness
quantities associated with the piezoactuators, while

H
ð 
 Þ ds denotes the integral around

the circumference of the mid-line cross-section of the beam.
For E3 constant throughout the piezoactuator thickness, this implying E

ðkÞ
3 � E3;

equations (13) can be expressed in condensed form as

#MMx ¼ E3Mx; #MMy ¼ E3My; ð14a; bÞ
where the meaning of Mx and My becomes evident by comparing equations (14) with
equations (13).
Equations (13) and (14) reveal that the piezoelectrically induced bending moments are

proportional to the applied electric field E3: Now, assuming that the piezoelectric elements
are employed for the sensing operation, the electric displacement is

D3 ¼ e31Szz ð15Þ
and the sensor output voltage is expressed in the form

VsðtÞ ¼
qsðtÞ
Cp

; ð16Þ

where the electric charge qsðtÞ is

qsðtÞ ¼
Z

A2

D3 dAs ¼
Z

As

e31Szz dAs: ð17Þ

In these equations Cp and As denote the sensor’s capacitance and piezoelectric patch area,
respectively, while Szz denotes the axial strain component. Assuming the sensor patches
being located symmetrically on the opposite walls, i.e., on y ¼ �R and x ¼ �R; the
expression of Szz; Vx

s ðtÞ and V y
s ðtÞ are expressible as

Vx
s ðtÞ ¼ Cs

xyxðL; tÞ; V y
s ðtÞ ¼ Cs

yyyðL; tÞ; ð18a; bÞ

where the expressions of Cs
y and Cs

x are not displayed here.
The feedback control law to be used here is referred to as the proportional feedback

control law.
Within this control law, one postulates [10], that the actuating electric field is

proportional to the sensor output voltage, which implies

Ex
3ðtÞ ¼ KpV x

s ðtÞ=ha; E
y
3ðtÞ ¼ KpVy

s ðtÞ=ha; ð19a; bÞ
where ha is the thickness of the piezopatch, and Kp is the proportional feedback gain.
As a result, replacement of equations (19) considered in conjunction with substituting

equations (18) into equations (14), yields the piezoelectrically induced bending moments
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expressed as

#MMyðL; tÞ ¼
KpCMa

y

ha

½Cs
yyyðL; tÞ	 ¼ KpC11yyðL; tÞ; ð20aÞ

#MMxðL; tÞ ¼
KpCMa

x

ha

½Cs
xyxðL; tÞ	 ¼ KpC22yxðL; tÞ: ð20bÞ

The results yielding the piezoelectrically induced bending moments, equations (20), reveal
that these are obtained through the combination of both sensing and actuation functions.
Herein,

CMa
y
¼
Xr

k¼1
e
ðkÞ
31 1�

#AA11
#AA12

 !
ðnðkþÞ � nðk�ÞÞ þ ðn2ðkþÞ � n2ðk�ÞÞ

"

� 2
#BB12
#AA11

ðnðkþÞ � nðk�ÞÞ
�

p2; ð21aÞ

CMa
x
¼
Xr

k¼1
e
ðkÞ
31 1�

#AA11
#AA12

 !
ðnðkþÞ � nðk�ÞÞ þ ðn2ðkþÞ � n2ðk�ÞÞ

"

� 2
#BB12
#AA11

ðnðkþÞ � nðk�ÞÞ
�

p1; ð21bÞ

where p1 and p2 denote the lengths of the piezoactuators along the circumferential
direction (see Figure 2), while r stands for the number of piezoactuator layers.
Concerning the proportional feedback gain, Kp; this will be used in dimensionless form

as

%KKp ¼ KpL

#aa33hp

; ð22Þ

where #aa33 is the transverse bending stiffness corresponding to the ply-angle y ¼ 0:
The eigenvalue problem involving the coupled governing equation (6) considered in

conjunction with the boundary conditions (7) and (8), and the control law (20), yields the
closed-loop eigenvalue problem related to the problem of spinning thin-walled beams.

7. THE DISCRETIZED GOVERNING EQUATIONS

In order to find an approximate solution to this intricate eigenproblem, assuming
synchronous motions, the generalized displacements are represented in the form

ðu0ðz; tÞ; v0ðz; tÞ; yxðz; tÞ; yyðz; tÞÞ ¼ ðUðzÞ;VðzÞ;XðzÞ;YðzÞÞeiot; ð23aÞ

where o is the complex eigenfrequency, while the spatial parts are represented as

ðUðzÞ;VðzÞ;XðzÞ;YðzÞÞ ¼
XN

j¼1
ðajujðzÞ; bjvjðzÞ; cjxjðzÞ; djyjðzÞÞ; ð23bÞ

where ujðzÞ; vjðzÞ; xjðzÞ and yjðzÞ are trial functions which have to fulfill all the kinematic
boundary conditions.
In the spirit of the extended Galerkin method [11] representations (23) are replaced in

Hamilton’s variational functional, where the indicated variations and the required
integrations with respect to the spanwise z-co-ordinate and time t are carried out. In this
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way, the system of governing equations is cast in matrix form as

dBT½�o2MN þ ioGN þ KN 	B ¼ 0; ð24aÞ

where

BT ¼ ½a1; a2; . . . ; aN ; b1; b2; . . . ; bN ; c1; c2; . . . ; cN ; d1; d2; . . . ; dN 	 ð24bÞ

is a constant vector. Herein MN ;GN and KN are ð2N � 2NÞ matrices, MN being the
symmetric positive definite, GN the skew symmetric and KN the symmetric. GN is due
entirely to the gyroscopic effects. In the absence of the Coriolis effect, GN would be
immaterial. Since contributions from the external compressive load, centrifugal forces and
piezoelectric control are included in KN ; its positive definiteness, positive semidefiniteness
or negative definiteness cannot be postulated a priori.
Equation (24a) provides the characteristic equation

DNðo;P;O2; %KKpÞ ¼ det½�o2MN þ ioGN þ KN 	 ¼ 0; ð25Þ

where from o can be obtained. If KN is positive definite, and GN=0; the characteristic
polynomial resulting from the expansion of determinant (25) will be a function of o2: The
system remains stable as long as all o2k are real and positive.
For a fixed compressive load, the minimum spin rate at which the whirl frequency oj

becomes zero valued, corresponds to the critical spinning speed, denoted as Ocr:
Conversely, for a fixed spin rate, the minimum compressive load for which one of the
roots oj becomes zero, corresponds to the critical compressive load Pcr: The instability
described above is of the divergence type. In general, the condition of divergence is
obtained by taking o ¼ 0 in equation (25), which yields the equation

DNðP;O2; %KKpÞ ¼ 0: ð26Þ

Equation (26) supplies the divergence boundary of instability in the presence of the
piezoelectric actuation. It is clearly seen that the divergence instability, being a static
phenomenon, is the same for both the gyroscopic and non-gyroscopic systems. On the
other hand, combinations of compressive load and spin rate yielding two eigenfrequencies
to coalesce, constitutes a flutter condition. Increase of either of these two parameters
beyond the value of the load or spin rate corresponding to the flutter boundary, results in
complex conjugate eigenvalues, and correspondingly, to bending oscillations with
exponentially increasing amplitudes. This clearly reveals that the occurrence of the flutter
instability results in the catastrophic failure of the system. In the numerical simulations the
loss of stability by divergence and flutter will be analyzed. It clearly appears that the
piezoelectric actuation measured in terms of the feedback gain, affects the characteristic
equation (25), and as a results its roots, and implicitly the stability boundaries.

8. NUMERICAL SIMULATIONS AND DISCUSSION

The numerical simulations are performed by considering the beam geometrical
characteristics as R ¼ 5 in ð0
127 mÞ; L ¼ 80 in ð2
032 mÞ and h ¼ 0
4 in ð1
016�
10�2 mÞ: The material of the beam is considered to be graphite-epoxy whose
on-axis elastic characteristics are as follows: E1 ¼ 30� 106 psi ð20
68� 1010 N=m2Þ;
E2 ¼ E3 ¼ 0
75� 106 psi ð5
17� 109 N=m2Þ; G12 ¼ 0
45� 106 psi ð3
10� 109 N=m2Þ;
G23 ¼ G13 ¼ 0
37� 106 psi ð2
55� 109 N=m2Þ; n21 ¼ n31 ¼ 0
00625; n32 ¼ 0
25; r ¼
0
000143 lb s2=in4 ð15
28 kg=m3Þ; whereas those of piezoactuators/sensors manufactured
of PZT-4 piezoceramic are supplied in reference [9]. The extensions pa and ps in the
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circumference direction of piezoactuators and piezosensors are pR=4 and pR=32
respectively.
In Figures 3–5 for ply-angle y ¼ 0; 608 and 908; respectively, pictorial representations

of the variation of the fundamental natural frequency %oo1ð� o1= #ooÞ versus the spin speed
%OOð� O= #ooÞ; for various feedback control gains, and for the case of the unloaded beam
ðP ¼ 0Þ are displayed. The normalized factor #oo ¼ 138:85 rad=s is the fundamental
frequency of the non-spinning and unactivated beam counterpart ð %KKp ¼ 0Þ; characterized
by y ¼ 08 and P ¼ 0:
For %OO ¼ 0; i.e., in the absence of gyroscopic effects, it is seen that the system is

characterized, for each y; by a single fundamental frequency. With the increase of the ply-
angle y; an increase of the non-rotating natural frequencies is obtained. This trend is
attributed to the increase of bending stiffnesses a22 ¼ a33ð� AÞ that is associated with the
increase of the ply-angle y [5]. As soon as the rotation starts, a fact which is accompanied
by the generation of gyroscopic forces, a bifurcation of natural frequencies is experienced.
In other words, due the effect of the gyroscopic Coriolis force, two distinct frequency
branches of free bending vibration, namely the upper and lower frequency branches are
produced. The minimum spin rate at which the lowest rotating natural frequency becomes
zero valued, is called the critical spinning speed, denoted as %OOcr; that corresponds to the
divergence instability. Throughout these results it becomes apparent that at each ply-angle
there is a specific critical spinning speed and that, the minimum and maximum ones occur
at y ¼ 0 and 908 respectively. From these figures it is readily seen that while the frequencies
of the upper branch increase with the increase of the whirl, the frequencies of the lower
branch decrease with the increase of %OO: The minimum spin rate at which the lowest
rotating natural frequency becomes zero valued is referred to as the critical spinning speed,
and corresponds to the divergence instability.
The results emerging from Figures 3–5 reveal that the piezoelectric strain actuation

plays a non-negligible role towards increasing the eigenfrequencies of the non-spinning
beam and postponing the occurrence of the divergence whirl instability.
Figure 3. First natural frequencies versus spinning speed for selected values of the proportional feedback gain
ðy ¼ 08; %PP ¼ 0Þ; }}, lower branch; - - - - -, upper branch.



Figure 4. The counterpart of Figure 3 for the ply-angle y ¼ 608:

Figure 5. The counterpart of Figure 3 for the ply-angle y ¼ 908:
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At the same time it becomes apparent that the increase of the ply-angle which induces an
increase of the bending stiffness [5] yields a diminision of efficiency of the control via
piezoelectric strain actuation.
In Figures 6–11 there are depictions of the variation of the first and second natural

frequencies, of the unloaded shaft ðP ¼ 0Þ; as function of the feedback gain and for
selected values of the spinning speed %OO: Figures 6–11 are generated for various ply-angles,



Figure 6. Upper and lower branches of the first natural frequency versus the proportional feedback gain for
selected values of the spinning speed ðy ¼ 08; %PP ¼ 0Þ; }}, lower branch; � � � � �; upper branch;*; %OO ¼
0; &; %OO ¼ 0
2; ^; %OO ¼ 0
4; m; %OO ¼ 0
6:

Figure 7. The counterpart of Figure 6 for y ¼ 608; %PP ¼ 0:
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in the succession: y ¼ 0; 60 and 908: The results reveal again that for %OO ¼ 0; there is a
single bending frequency, common to flapping and lagging motions, while for %OO=0; both
the upper and lower frequency branches increase with the increase of the proportional
feedback control gain. However, irrespective of the considered ply-angle, the second mode



Figure 8. The counterpart of Figure 6 for y ¼ 908; %PP ¼ 0:

Figure 9. The counterpart of Figure 6 for the second natural frequency: }}, lower branch; � � � � �;
upper branch; *; %OO ¼ 0; &; %OO ¼ 0
2; ^; %OO ¼ 0
4; m; %OO ¼ 0
6:
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natural frequency features, for both the upper and lower branches, a higher increase with
%KKp as compared to the first mode frequencies. As concerns the whirl speed, its increase
exerts on the upper and lower frequency branches a similar influence to that previously
emphasized in connection with the results of Figures 3–5.



Figure 10. The counterpart of Figure 7 for the second natural frequency.

Figure 11. The counterpart of Figure 8 for the second natural frequency.
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Concerning the influence of the ply-angle, its increase appears to be extremely beneficial,
in the sense that in addition to the increase of non-rotating natural frequencies, it yields
also an increase of frequencies belonging to both the upper and lower branches.
In Figures 12–15 there are supplied the influence of the normalized compressive axial

load %PP and of the ply-angle on the open/closed loop first and second mode frequencies of



Figure 12. First non-rotating ð %OO ¼ 0Þ natural frequency as a function of the feedback gain, for selected values
of the compressive load %PP; y ¼ 08:

Figure 13. The counterpart of Figure 12 for y ¼ 758:
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the non-rotating shaft. Herein, the dimensionless compressive force is defined as %PP ¼
PL= #aa33; where #aa33 ¼ 1
1787� 108 lb in2 is the bending normalizing stiffness correspond-
ing to the ply-angle y ¼ 08:
The results reveal that: (1) the compressive load yields a decay of eigenfrequencies, (2)

the piezoelectric actuation plays a substantial role towards increasing the frequencies,



Figure 14. The counterpart of Figure 12 for the second non-rotating natural frequency.

Figure 15. The counterpart of Figure 14 for y ¼ 758:
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specially those of the first mode, and finally that (3) the increase of the ply-angle is
accompanied by both a notable increase of natural frequencies and by a decay of the
efficiency of the piezoelectric actuation, as well.
In Figures 16 and 17 there is depicted the variation of the first natural bending

frequency of the non-rotating shaft as a function of the compressive axial load, for selected



Figure 16. Variation of the first non-rotating ð %OO ¼ 0Þ natural frequency versus the dimensionless compressive
load, for selected values of the feedback gain ðy ¼ 08Þ:}}, %KKp ¼ 0;
�
�
�; %KKp ¼ 0
5; 
 
 
 
 
 
; %KKp ¼ 1; � � � �;
%KKp ¼ 1
5; . . . ; %KKp ¼ 2:

Figure 17. Counterpart of Figure 16 for y ¼ 758:
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values of the feedback gain. These figures correspond in succession to the ply-angles y ¼ 0
and 758 respectively. The results reveal that: (1) the increase of the compressive load yields
a decrease of the natural frequency. The value of P at which the frequencies become zero
valued, referred to as the buckling load, corresponds to the loss of stability by divergence;
(2) the feedback actuation plays a significant role in counteracting the detrimental effect of
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the compressive load by increasing both the eigenfrequencies and the buckling load; (3) the
increase of the ply-angle exerts a dramatic influence on both the increase of the
fundamental eigenfrequency, and of the buckling load. On the other hand, the increase of
the ply-angle, that is accompanied by a increase of the bending stiffness, renders more
difficult the control via piezoelectric strain actuation.
In Figures 18 and 19 there are depicted the variations of the upper and lower frequency

branches versus the axial compressive load, for selected values of the feedback gains and a
fixed value of the spinning speed. The results of these plots reveal that for fixed values of
the ply-angle and feedback gain, the divergence instability occurs at a buckling load Pcr for
which the frequency of the lower branch becomes a zero-valued quantity.
A careful inspection of the region where the divergence occurs, reveals that in its close

proximity, the increase of the compressive load yields the frequencies of the upper and
lower branches to become complex conjugate. As a result, this slight increase of the
compressive load, indiscernible on the plots, generates a shift of the instability from
divergence to flutter. For the non-adaptive case a similar trend was reported also in
reference [12], where the study was accomplished via finite element method, and very
recently in reference [2].
The same plots also reveal that the increase of the ply-angle and of the feedback gain

results in tremendous increases of the critical axial load. However, the same plots show
that with the increase of the ply-angle, that implies an increase of the bending stiffnesses,
the buckling load becomes less and less sensitive to the increase of %OO and of the ply-angle.
Finally, in Figures 20 and 21, stability plots of the spinning system in the %OO– %PP plane for

the ply-angles y ¼ 0 and 458; respectively, are displayed. In these plots S and F denote the
region of stability, and flutter instability, respectively, while D denotes the divergence
boundary. For %OO and %PP equal to zero, %oo2i are real and positive and the system is stable.
With the increase of %OO and/or %PP; instabilities by divergence or flutter may occur. Due to
Figure 18. Variation of the upper and lower frequency branches versus the dimensionless compressive load,
for selected values of the feedback gain ð %OO ¼ 0
4; y ¼ 08 first natural frequency):}}, %KKp ¼ 0;
�
�
�; %KKp ¼ 0
5;

 
 
 
 
 
 ; %KKp ¼ 1; � � � �; %KKp ¼ 1
5; . . . ; %KKp ¼ 2:



Figure 19. Counterpart of Figure 18 for y ¼ 758:

Figure 20. Stability plot in the %OO– %PP plane displaying the domains of stability, divergence, and flutter instability
boundaries for ply-angle y ¼ 08 and selected values of the feedback gain:}}, %KKp ¼ 0;
�
�
�; %KKp ¼ 0
5; 
 
 
 
 
 
 ;
%KKp ¼ 1; � � � �; %KKp ¼ 1
5; . . . ; %KKp ¼ 2:
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the fact that the system is conservative, the initial instability will always be of divergence
type, characterized by %oo2i ¼ 0: The locus of such points in the plane %OO– %PP defines the
divergence instability boundary. The plots reveal that in the plane %OO– %PP this instability
boundary separates two stable regions, or in other words, the divergence occurs only on



Figure 21. Counterpart of Figure 20 for y ¼ 458:
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this boundary, without the existence of regions of divergence instability. Physically, this
corresponds to the beam buckling in both x and y directions simultaneously, which is due
to the same bending stiffness in flap and lag directions. In all these plots, the results reveal
that the increase of the ply-angle yields a considerable increase of the stability domains.
Similar conclusions can be formulated in connection with the implications of the
piezoelectric feedback actuation. The domain of stability adjacent to the divergence
instability boundary and on the right-hand side of it, reveals that the gyroscopic effects,
increasing with %OO; contribute to the increase of the stability domain. On the same plots is
depicted the flutter boundary corresponding to conditions involving %OO and %PP yielding
coalescence of the upper and lower frequency pairs. The results reveal that for specified
ply-angle, the flutter boundary consists of slightly curved lines emerging at values of %PP

slightly lower than %PPdiv; and at spin rates %OO > 0; where %PPdiv is the buckling load obtained at
%OO ¼ 0: This result is consistent with that obtained in reference [13]. The flutter instability
domain lies at the right of the curved line %PP ¼ %PPflutter and for any %OO > 0: The results
supplied in Figures 20 and 21 reveal again that the increase of ply-angle and of the
feedback gain contribute to a dramatic increase of the stability domains, and to the shift of
the divergence and flutter instability boundaries towards larger compressive loads.
However, as is clearly seen from these plots, an increase of the ply-angle yields an
unavoidable diminision of the efficiency of the piezoelectric feedback actuation.
It should be noticed that within this study the effect of material damping was not

addressed. Its implications, considered in conjunction with those related to the
piezoelectrically induced damping generated when the velocity feedback control is
implemented, can add an additional dimension to the study carried out in this paper. This
issue can be addressed by following the procedure developed in references [10, 14].
In order to have a better view of the occurrence of the instabilities, Table 1 supplies

detailed information about the combined implications of the spinning speed, compressive
load, ply-angle, and piezoelectric-induced actuation on both the instability by divergence
and flutter of the rotating shaft, and on the domains of stability.



Table 1

Stability and instability domains as influenced by the spinning speed, compressive load,

ply-angle and piezoelectric-induced actuation ð04 %PPstable5 %PPdiv; %PPdiv5 %PPstable5 %PPflutterÞ
%OO %KKp ¼ 0 %KKp ¼ 0
5 %KKp ¼ 1 %KKp ¼ 1
5 %KKp ¼ 2

%PPdiv
%PPflutter

%PPdiv
%PPflutter

%PPdiv
%PPflutter

%PPdiv
%PPflutter

%PPdiv
%PPflutter

y=08
0 3
1969 } 6
3516 } 8
0243 } 9
0114 } 9
649 }
0
4 2
726 3
1922 5
78 6
347 7
39 8
0197 8
342 9
0068 8
96 9
6444
0
8 1
23 3
1779 3
98 6
3329 5
43 8
0058 6
28 8
9929 6
84 9
6306
1
2 } 3
154 0
75 6
3095 1
952 7
9826 2
67 8
9699 3
14 9
6078
1
6 } 3
1206 } 6
2767 } 7
9502 } 8
9376 } 9
5756
2 } 3
0777 } 6
2345 } 7
9084 } 8
8962 } 9
5343

y=308
0 3
57225 } 6
838 } 8
6737 } 9
798 } 10
5417 }
0
4 3
102 3
56748 6
273 6
8334 8
05 8
669 9
14 9
7934 9
86 10
5371
0
8 1
62 3
55311 4
511 6
8192 6
13 8
655 7
12 9
7795 7
77 10
5232
1
2 } 3
5293 1
37 6
7957 2
74 8
6317 3
58 9
7563 4
15 10
5001
1
6 } 3
4958 } 6
7627 } 8
599 } 9
7237 } 10
4676
2 } 3
4527 } 6
7203 } 8
5569 } 9
6819 } 10
4261

y=458
0 4
8668 } 8
3573 } 10
603 } 12
1158 } 13
1833 }
0
4 4
4 4
862 7
816 8
3526 10
011 10
5983 11
49 12
1111 12
533 13
1787
0
8 2
94 4
8478 6
1422 8
3386 8
191 10
5844 9
571 12
0973 10
55 13
165
1
2 0
33 4
824 3
2 8
3151 5
01 10
5612 6
24 12
0744 7
12 13
142
1
6 } 4
7907 } 8
2824 0
29 10
5288 1
33 12
0421 2
08 13
11
2 } 4
7479 } 8
2402 } 10
487 } 12
0006 } 13
0687

y=608
0 9
3139 } 13
0324 } 15
932 } 18
2177 } 20
0433 }
0
5 8
58 9
3068 12
241 13
0253 15
094 15
925 17
342 18
2109 19
14 20
0365
1 6
311 9
2853 9
801 13
0043 12
52 15
9043 14
651 18
1905 16
36 20
0162
1
5 2
3 9
2495 5
51 12
9691 8 15
8697 9
96 18
1562 11
53 19
9824
2 } 9
1993 } 12
9199 1
25 15
8212 3 18
1084 4
4 19
9351
2
5 } 9
1347 } 12
8564 } 15
7589 } 18
0469 } 19
8743

y=758
0 26
3832 } 29
8243 } 32
9377 } 35
7577 } 38
3153 }
0
5 25
646 26
377 29
072 29
8183 32
172 32
9319 34
98 35
752 37
53 38
3097
1 23
41 26
3585 26
79 29
8002 29
85 32
9141 32
62 35
7346 35
14 38
2925
1
5 19
57 26
3276 22
88 29
7701 25
87 32
8846 28
58 35
7056 31
04 38
2641
2 13
97 26
2845 17
18 29
7279 20
08 32
8432 22
7 35
6649 25
1 38
2242
2
5 6
4 26
229 9
48 29
6735 12
26 32
79 14
8 35
6128 17
08 38
173
3 } 26
1611 } 29
607 2
2 32
7249 4
58 35
549 6
76 38
1103
3
5 } 26
0808 } 29
5286 } 32
6479 } 35
4735 } 38
0362

y=908
0 74
2698 } 76
8045 } 79
2299 } 81
5525 } 83
7782 }
1 71
33 74
2521 73
832 76
7871 76
23 79
213 78
53 81
5359 80
724 83
7618
2 61
9 74
1989 64
31 76
7351 66
62 79
162 68
825 81
4859 70
95 83
7128
3 44
143 74
1103 46
4 76
6484 48
53 79
077 50
565 81
4026 52
51 83
6311
4 15
21 73
9861 17
2 76
5268 19
1 78
958 20
9 81
2859 22
6 83
5167
5 } 73
8263 } 76
3704 } 78
8047 } 81
1357 } 83
3694
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9. CONCLUDING REMARKS

A study devoted to the vibrational and stability feedback control of spinning circular
shafts modelled as thin-walled composite beams was presented. The structural model of
the shaft incorporates a number of non-classical features that are essential for a reliable
prediction of the vibrational response of such structural systems. Among others, the
structural model includes transverse shear, rotatory inertia, anisotropy of constituent
materials of the host structure, and the feedback control capability. In addition, a
powerful and robust solution methodology was used to determine both the open- and
closed-loop free vibrational response and stability characteristics. The strong and
synergistic effects played by the directionality property of advanced composite materials
and of piezoelectric actuation on vibrational response and stability boundaries of spinning
shafts have been highlighted.
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APPENDIX A: STIFFNESS AND REDUCED MASS TERMS

Expressions of stiffness quantities aijð¼ ajiÞ and reduced mass terms for cross-section
circular shaft:

a22 ¼ a33 ¼ pR2 K11 þ
2

R
K14 þ K44

� �
� A;

a44 ¼ a55 ¼ p½K22 þ A44	 � B;

a25 ¼ �a34 ¼ �p½RK12 � K24	 � S;

b4 þ b14 ¼ b5 þ b15 ¼ p½m0R2 þ m2	 � C:

Herein,

K11 ¼ A22 � A212=A11; K14 ¼ B22 �
A12B12

A11
;

K12 ¼ A26 � A12A16=A11 ¼ K21; K44 ¼ D22 ¼ A66 � A216=A11;

K22 ¼ A66 � A216=A11; K24 ¼ B26 � A16B12=A11 ¼ K42;

where Aij; Bij and Cij denote the local stretching, coupling, and bending stiffness
components respectively.
In addition, the mass terms m0 and m2 are expressed as

ðm0;m2Þ ¼
XN

k¼1

Z hðkÞ

hðk�1Þ
rðkÞð1; n2Þ dn:
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