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The method of detection of location of crack in beams based on frequency measurements
is extended here to short beams, taking into account the effects of shear deformation and
rotational inertia through the Timoshenko beam theory and representing the crack by
a rotational spring. Methods for solving both forward (determination of frequencies of
beams knowing the crack parameters) and inverse (determination of crack location knowing
the natural frequencies) problems are included. A method to estimate crack extension from
a change in the first natural frequency is presented. Both numerical and experimental studies
are given to demonstrate the accuracy of the methods. The accuracy of the results is quite
encouraging.

© 2002 Elsevier Science Ltd. All rights reserved.

1. INTRODUCTION

Machines and structural components require continuous monitoring for the detection of
cracks and crack growth for ensuring an uninterrupted service. Non-destructive testing
methods like ultrasonic testing, X-ray, etc., are generally useful for the purpose. These
methods are costly and time consuming for long components, e.g., railway tracks, long
pipelines, etc. Vibration-based methods can offer advantages in such cases. This is because
measurement of vibration parameters like natural frequencies is easy. Further, this type of
data can be easily collected from a single point of the component. This factor lends some
advantages for components which are not fully accessible. This also helps to do away with
the collection of experimental data from a number of data points on a component, which is
involved in a prediction based on, for example, mode shapes.

Several approaches have been used for modelling a crack in a beam. In one method, the
crack is modelled by appropriately reducing the section modulus [1]. In another approach,
the crack is modelled by a local flexibility matrix. Dimarogonas and Papadopoulos [2]
have given a complete 6 x 6 compliance matrix, including off-diagonal terms for coupling of
various types (longitudinal, transverse, etc.) of vibration. In the case of pure bending
vibration of beams, only the bending compliance is important. The crack can then be
represented by a rotational spring [3, 4].

Some investigators have modified the Euler-Bernoulli beam equation to take into
account the effect of a crack. Christides and Barr [5] have developed a cracked
Euler-Bernoulli beam theory. They have considered an exponential decay in the stress field
due to the crack and incorporated the effect by introducing a parameter which is to be
evaluated by experiments. Chondros and Dimarogonas [6] have developed a continuous
cracked beam vibration theory. They consider that the crack introduces a continuous
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change in flexibility in its neighbourhood and model it by incorporating a displacement
field consistent with the singularity.

A finite element method (FEM) has also been used for study of the vibration of cracked
components. A quarter point element is utilized for modelling the region around the crack,
which correctly models the square-root singularity in the stress field [7]. Gounaris and
Dimarogonas [8] have developed a finite element for a cracked prismatic beam for
structural analysis based on the compliance matrix for the crack.

The vibration parameters of a beam change whenever its geometry changes due to
a crack. Some of these parameters have been used for the detection of crack location and
size, i.e., to address the inverse problem. Rizos et al. [4] have proposed a method based on
the flexural vibration of uniform beams by representing the crack section by a rotational
spring. The method needs measurement of amplitudes at any two locations along the beam.
Liang et al. [9] have given a method similar to the above, but it requires measurement of
three transverse natural frequencies of the beam. The method has been extended to stepped
beams [10], cantilever beams with inclined edge cracks and internal cracks [11],
geometrically segmented beams [12], etc. There is a need to see if this approach can be used
for short beams, where the effects of shear deformation and rotational inertia are not
negligible. An investigation has been reported by Tsai and Wang [13] accommodating
these effects. However, the basis for their crack detection is the mode shape rather than the
natural frequency. There is a very limited data concerning experimental observations too.
These have provided some motivation for the present study.

The vibration-based methods, irrespective of whether the basis is the mode shape or
frequency, have so far been intended for exploitation for detection of cracks. The issue of
detection of crack extension has not yet been looked into. If this can also be brought within
its scope, its practical utility will enhance considerably. Collection of fatigue crack growth
data via laboratory testing requires the measurement of crack extension frequently. This is
done using a three-point bend (TPB) specimen or a compact tension (CT) specimen.
Currently, electric potential technique and compliance method are employed for the
measurement of crack extension. Out of the two configurations, the TPB specimen, which
has the geometry of a short beam, is more suited for the application of the vibration method.
The possibility of using the vibration-based method is open to investigations. This has also
provided some motivation for the present study.

The objective of this paper is to extend the frequency-based methods of crack detection to
short beams by taking into account the effects of rotational inertia and shear deformation.
Methods for solving both the forward and inverse problems are presented. The forward
problem involves determination of natural frequencies from the knowledge of beam
geometry and crack parameters. The inverse problem concerns prediction of crack location
for a given beam geometry from the knowledge of its natural frequencies. A method to
estimate the crack extension from changes in natural frequency of the first mode of
vibration is also given. Case studies, both numerical and experimental, are presented to
demonstrate the effectiveness of the methods.

2. FORMULATION

A crack located at distance L; from the fixed end of a cantilever (Figure 1) is represented
by a rotational spring of stiffness K,, whose magnitude is given by [14]
EBW*
K, = - , 1)
727rj a(f(a/W))*da

0
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Figure 1. Short beam with a crack.
where f(a/W) is given by [12]
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The governing equations of flexural vibration are given by Timoshenko [15] as follows:

V(% >

EI“Y 4 k(2 y a6 — p122 =
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where y is the transverse deflection, s the angle of rotation due to bending moment, E the
modulus of elasticity, G the modulus of rigidity, A the area of cross-section, I the area
moment of inertia, p the density and k' the numerical shape factor for the cross-section.

Following Huang [16], the solutions for these equations can be written in the following
form:

Y = A, coshbpf + A, sinhbpfi + A3 cosbqf + A, sinbgp, (5)

¥ = A} sinhbpf + A, coshbpf + A% sinbgqff + A, cosbgp, (6)
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where Y is the amplitude function of y, and ¥ the amplitude function of y,

4 2
and
I R s oo 21/271)2
q}—ﬁ[‘f'(r +57) 4+ [ =577 +4/b7177] (10)
provided
[ — s%)% + 4/b*]V* > (r* + 57). (11)
If the above condition is not satisfied then
P'=] ﬁ [ + %) = [ — %) * + 4/b*]"2]"2 (12)
and the solutions are given by
Y = Ay cosbp'f + jA, sinbp'ff + A3 cosbqf + A, sinbqp, (13)
Y =jA) sinbp'f + A, cosbp'f + A sinbqf + A, cos bgp. (14)

A; and A; are arbitrary constants to be determined from the boundary conditions. Only four
of these constants are independent and the relations between them are given by

b p* + s*

A =7 Ay, (15)
;zgl’jsuz, (16)
Ay = —%q2_52A3, (17)
g:%qz_SZ/u. (18)

For a cracked beam (Figure 1), the two segments lying on either side of the crack can be
analyzed separately. The solutions for the two segments can be written as follows:

Y = C; coshbpf + C, sinhbpf + C5 cosbqfs + C, sinbqf, (19)

¥, = C}sinhbpf + C, coshbpf + Cs sinbgf + C, cosbqp, (20)
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Y, = Cscoshbpf + Cg sinhbpf + C, cosbqfp + Cg sinbgf, (21)

¥, = Cssinhbpff + Cs coshbpfi + C5 sinbgf + Cg cos bgfs. (22)

The condition given by (equation (11)) is always satisfied for the cases considered in the
present study. The relations between constants C; and C;, in the above equations for Y and
¥ are given by

b 2 2
=" Y fori=1256 (23)
L p
b 2_ 2
C= -1 7% ¢ fori=37, (24)
L ¢
b 2 2
c=29"% ¢ fori=43. (25)
L ¢

The boundary conditions for a cantilever beam fixed at the left end are as follows:

Yllﬂ:() - O a.nd qlllﬁ:() == 0, (26)
dqu 1dY2

=0 and — — Y,lp-1=0. 27
dp ;-1 L dp |-, 77! @7

The conditions for continuity of displacement, moment and shear force at the crack location
and the jump in the slope can be written, respectively, in the following form:

Y1:Y29 (28)

dv, dv¥,
1_2"Z 29
5§ G 29)

1dY 1dY
dYy, dy, (30)

rap T ra T

dy, Ld¥Y, dY
R (1)
dg K dp dp

where K = K,L/EI is the non-dimensional stiffness of the rotational spring representing the
crack.

Since there is continuity of the shear force at the crack site, the angle of shear ¢ on both
the sides will be the same. Therefore, the change in slope dY/dx will be equal to the
change in the slope ¥ due to bending only. So the jump condition can be written in terms
of ¥:

1dy,

‘P1+Ed—ﬁ—5!’2. (32)
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From the above four boundary conditions and four compatibility equations (equations
(28)-(31)), the following characteristic equation is obtained:

(p? + s*)cosh bpf*

2
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q

Kqsin bqf* — Kqcos bgf*

The alternative condition for jump in slope (equation (32)) can also be used instead of
equation (31) to get a characteristic equation. Both these equations are used later in the case
studies and found to give exactly the same results.

2.1. FORWARD PROBLEM

For the determination of the natural frequencies for a given crack location and size,
the rotational spring stiffness is given as input. The characteristic equation (33) is solved to
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get the frequency parameter b. In turn, the natural frequency o is determined using
equation (7).

2.2. INVERSE PROBLEM

The characteristic equation (33) for the Timoshenko beam with a crack can be rewritten
in the form

ER
= o (34)
|45]
where |4,| and |4, are given by
1 0 1 0
0 p?+s? 0 g% — s
p q
0 0 0 0
0 0 0 0
|4;] =
cosh bpp* sinh bpf* cos bqf* sin bqf*
(p? + s®)coshbpf*  (p? + s?)sinhbppf*  — (q> — s*)cosbgf*  — (q* — s?)sin bgp*
—s? — 52 — 52 52
sinh bpf* cosh bpp* sin bqi* — cos bqp*
q
b(p? + s*)coshbpB* b(p* + s?)sinhbpf* — b(q*> — s*)cosbqf* — b(q* — s?)sin bqp*
0 0 0 0
0 0 0 0
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sinh bp cosh bp sinbp —cosbp
K (35)
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and
1
0
0
0
|4, =
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(36)

The method of Nandwana and Maiti [11] is utilized to obtain the solution. For each
mode, the variation of the non-dimensional stiffness K with crack location f is obtained
through equation (34). Since the rotational spring stiffness representing the crack is
independent of the vibration mode, the point of intersection of three (minimum) curves gives
the location of the crack. For each mode, the zero setting [10] is a must.

2.3. CRACK EXTENSION MEASUREMENT

In this case, the objective is to estimate 4a = a, — ay, from the knowledge of w, and w,,
which correspond to crack lengths a, and a; respectively. The starting crack length a; is

specified.
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Figure 2. Finite element descritization.

For the starting crack length a,, the rotational spring stiffness can be calculated using
equation (1). The natural frequency @, can then be found out by solving the characteristic
equation (equation (33)). This frequency @, generally differs from w;. In order to get an
accurate estimate of the crack extension, or an estimate of a, corresponding to w,, these
two values must be the same. This is ensured as follows.

From the dimensionless parameters b and s (equations (7) and (9)), it is clear that s is
independent of material properties as E and G are related and b depends on p and E. If b is
to remain the same for two different values of frequency, w and @, there is a need for
adjusting either E or p. Choosing to adjust E, as has been done for the prediction of location
of crack [10], the corrected modulus E corresponding to @ is given by

pAL*w? _ pAL*(®)?
EI EI

E [w)?
(2 .
In order to find out the crack length a, corresponding to the frequency w,, the conversion
of w, into frequency parameter b, must be done through equation (7) using E given by

equation (38), instead of E. There is an improvement in the accuracy with this E correction.
This is demonstrated through case studies.

(37)

or

3. NUMERICAL STUDIES

3.1. FORWARD PROBLEM

The method has been tested considering various geometric combinations and two sets of
material properties. L/W ratios in the range 2-9 have been studied. The natural frequencies
obtained from the present model have been compared with frequencies computed by a
finite element programme [17]. The results obtained using the Euler-Bernoulli beam
model are also presented to demonstrate the effect of rotational inertia and shear
deformation.

The characteristic equation (33) is solved employing the Newton—-Raphson technique to
get the frequency parameter b, hence the natural frequency. The value of geometric shape
factor k' is taken as 0-833 [15]. For the finite-element analysis, the beam is discretized
mostly by eight-noded iso-parametric elements [18] (Figure 2). The crack tip is always
surrounded by 24 quarter point singularity elements. The natural frequencies for the



568 S. P. LELE AND S. K. MAITI
TABLE 1

Comparison of natural frequencies by the Timoshenko beam model with FEM predictions for
various L/W ratios’

Natural frequencies (Hz)

Timoshenko beam model FEM % Error
LW a/W on [op w3 on (o) w3 inw, inw, inw;
2 0-20 68365 243911 549940 68780 232960 551670 0-60 470 031

035 62969 211049 53539-8 62824 18690-3 52812:1 0-23 12:92 1-38
0-50 54039 181745 523480 52729 149163 482430 248 21-84 851
3 020 33306 143999 33827-8 33442 142333 342256 041 117 116
035 31320 126436 333724 31353 119667 334557 011 5:66 0-25
0-50 27825 108527 32938-:0 27624 96533 321050 073 12-42 2:59
4 0-20 19482 93929 22960-1 19542 93646 231812 031 0-30 0-95
0-35 1855-5 83877 22799-8 18584 81331 22909-1 016 313 0-48
0-50 16851 71638 22629-5 16812 67015 223863 023 6-90 1-09
5 020 12724 65587 165665 12755 6550-8 166915 025 0-12 0-75
0-35 12222 58796 165023 12241  5804-6 165784  0-16 1-29 0-46
050 11270 50712 164283 11264 48734 163438 006 4-06 0-52
6 0-20 8942 48147 124713 8963 48106 125450 0-24 0-09 0-59
0-35 864-1 43550 12443-6 8654 43218 124923  0-15 0-77 0-39
0-50 8058 37763 124084 8060 36819 12376:0  0-02 2-57 0-26
7 0-20 662:0 36727 96967 6632 36696 97402 0-18 0-09 0-45
0-35 642-6 33487 96827 6435 3331-4 97134 0-14 0-52 0-32
0-50 6044 29212 96645 6047 28715 96514 005 1-73 0-14
8 0-20 509-5 28878 77342 5103 28851 77606 0-16 0-10 0-34
0-35 496:3 26516 77267 4970 26414 77462 013 0-39 0-25
0-50 4699 23273 77167 4703 22990 77113 007 1-23 0-07
9 0-20 4041 23269 62996 4047 23244 63160 015 0-11 0-26
0-35 3947 21499 62953 3952 21432 63079 012 0-31 0-20
0-50 3758 18983 62894 3761 18810 62875 008 0-92 0-03

'W =25mm, B = 125 mm, E = 210 GPa, p = 7860 kg/m?, v = 0-3, * = 0'5.

Euler-Bernoulli model have been obtained by solving the appropriate characteristic
equation.

The following material properties are used in the case studies unless otherwise specified:
modulus of elasticity E = 210 GPa, density p = 7860 kg/m> and the Poisson ratio v = 0-3.
The geometric data considered are width (W)= 25mm and thickness (B) = 12-5 mm.
The crack is assumed to be located at the centre of the beam. Table 1 gives a comparison of the
first three natural frequencies by the present Timoshenko beam model with the results of
the FEM for various L/W ratios. Table 2 presents a comparison of the similar predictions
based on the Euler-Bernoulli beam model with FEM results for the same cases.

The results of the Timoshenko beam model are in good agreement with the FEM results
in the entire range of L/W ratio. For shorter beams (lower L/W ratios), the difference
between the results by the Euler-Bernoulli model and the FEM, as expected, increases. This
shows the effect of rotational inertia and shear deformation. The present model predicts the
first natural frequency with the highest accuracy when the FEM results are taken as the
basis. The error is more in the next two modes. Further, the error decreases as the L/W ratio
increases. Figure 3 shows the variation of errors in natural frequencies for the first three
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TABLE 2

Comparison of natural frequencies by the Euler—Bernoulli model with FEM predictions for
various L/W ratios’

Natural frequencies (Hz)

Euler-Bernoulli FEM % Error
LW a/W on [op w3 on (o) w3 inw, inw, inw;
2 0-20 7940-0 44414-0 146502-0 68780 23296:0 551670 1544 90:65 16556

035 72499 36350-1 1464850 62824 18690-3 52812:1 1540 9449 177-37
0-50 60971 30676:0 1463260 52729 149163 482430 1563 10565 203-31
3 020 35977 206692 651140 33442 142333 342256 758 4522 90-25
035 33654 174377 65107-3 31353 119667 334557 734 4572 94-61
050 29763 148170 647940 2762:4 96533 321050 774 5349 101-82
4 020 20391 119603 366273 19542  9364-6 231812 435 2772 58-00
0-35 19369 103077 366239 18584 81331 22909-1 422 2674 59-87
050 17522 86540 365898 16812 67015 223863 422 2914 6345
5 020 13111 77629 234417 12755  6550-8 166915  2:79 18-:50 40-44
0-35 12576 6831-4 23439-8 12241 58046 165784 274 17-69 41-39
0-50 11576 57923 234376 11264 48734 163438 277 18-86 43-40
6 0-20 9133 54532 162791 8963 48106 125450 190 13-36 2977
0-35 881-8 48686 162779 8654 43218 124923 190  12:65 30-30
0-50 821-:3 41709 162770 8060 36819 123760 190 13-28 31-52
7 0-20 6725 40405 116902 6632 36696 97402 1-40 1011 20-02
0-35 6524 36494 119594 6435 33314 97134 1-39 9-54 2312
0-50 613-:0 315144 119586 6047 28715 9651-4 1-37 975 2391
8 0-20 5157 31136 915711 5103 28851 77606 1-05 7-92 1799
0-35 5022 28390 91565 4970 26414 77462 1-05 7-48 1821
0-50 4751 24723 91573 4703 22990 77113 1-04 7-54 1875
9 0-20 408-0  2472:8 72353 4047 23244 63160 082 6-38 14-55
0-35 3984 22725 72348 3952 21432 63079 081 6:03 14:69
0-50 3791 19938 72343 3761 18810 62875 081 6-00 15-06

'W =25mm, B = 125 mm, E = 210 GPa, p = 7860 kg/m?, v = 0-3, * = 0'5.

modes with L/W ratios for a/W = 0-5. The results based on both the Timoshenko beam
model and the Euler-Bernoulli beam model are shown.

A comparison of analytical and FEM natural frequencies for various crack locations
along the beam is given in Table 3 for two L/W ratios (4 and 6). The accuracy of the
prediction is the highest in the first mode for all the crack locations.

A comparison of the frequencies for different a/W ratios is presented in Table 4. These
results correspond to L =100 mm, W =25mm, B = 12-5mm and the crack location
p* = 0-5. The error in the prediction is found to increase with an increase in a/W ratios.
This may be partly because of an increase in error in f(a/W) with an increase in a/W. The
accuracy in the first natural frequency is higher around a/W = 0-5.

3.2. INVERSE PROBLEM

The method for crack detection is tested for several combinations of crack sizes and crack
locations. The natural frequencies calculated by the FEM are used as input in this case. The
zero setting procedure given by Nandwana and Maiti [10] is applied. The variation of
stiffness K with crack location f is plotted for the three modes. The intersection of the three
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Figure 3. Variation of error in natural frequencies with L/W ratio.
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TABLE 3

571

Comparison of analytical and FEM natural frequencies for various crack locations

Natural frequencies (Hz)

Analytical FEM % Error
ﬁ* w1 () w3 w1 () w3 in w1 in (OF) in w3
L =100 mm, W = 25 mm, B = 12:5 mm, a/W = 0-5
02 1207-00 100734 212461 120098 9839-34 214338  0-50 2-38 0-88
03 1356:93 9279-88 204631 1349-82 8600-40 213617 053 7-90 421
0-4 1520-15 7997-65 223151 151396 741149 222684 041 791 0-21
0-5 1685-12 7163-82 226290 168124 670147 223863 023 6-90 1-08
0-6 1829-70 6960-30 198588 182936 6551-44 200658 002 624 1-03
0-7 1929-30 7470-71 174520 193243  7069-81 177499  0-16 567 1-68
08 1977-18 873273 165964 1982-38 841091 165299 026 3-83 0-40
09 1138-33 9923-01 22550-1 1137-64 953487 220176 006 4-07 2:42
L =150 mm, W = 25 mm, B = 12:5 mm, a/W = 0-5
0-2 613183 508545 11561-5 611-587 503312 118424 026 1-04 2:37
03 677-503 476515 10859-2 676:173 467133 114647 020 2-01 528
0-4 743602 415769 11839-6 742:866 404812 119839  0-10 271 120
05 805-825 377634 124084 805956 3681-89 123760  0-02 2-57 0-26
06 856240  3720-78 11026-8 857297 3638-:62 112936  0-12 2-26 2-36
0-7 888:658  4014-11 973689 890360 3946-15 101953  0-19 172 4:50
TaBLE 4
Comparison of analytical and FEM natural frequencies for different a/W ratios’
Natural frequencies (Hz)
Analytical FEM % Error

a/W w1 (605 w3 w1 (65 w3 in w1 in (OF) in w3
0-10 198023  9879-87 23036:1 198702 990831 232631 034 0-29 0-98
020 194816 9392-89  22960-1 195417 9364-59 231812 031 0-30 0-95
030 189336  8717-61  22856-8 189759 858312 230232 022 1-57 0-72
0-35 185545 838771 22799-8 185843 813315 229091 016 313 0-48
040 1809-08 794527 22741-8 181041 766112 227674 007 371 0-11
0-50 168512  7163-82 226290 168124 670147 223863 023 6-90 1-08
0-60 150440 6433-65 225286 149375 579440 218367 071 11-:03 317
070 123813  5794-82 224434 122948 500798 210446 070 1571 665

fL = 100 mm, W = 25 mm, B = 12:5 mm, f* = 0'5.

curves indicates the possible crack location. When the three curves do not meet exactly, the
centroid of the three pairs of intersections is taken as the crack location [10]. The predicted
crack locations are compared with the corresponding actual values (f*). Since the interest
lies in the detection of a crack anywhere in the whole span of the beam, it is logical to
express the percentage error taking the beam length as the basis. The percentage error is
therefore given by the difference between the predicted and actual crack locations expressed
as a percentage of the beam length. This helps to eliminate the multiplicity of percentage
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Figure 4. Plots of K vs. f for L/W =4 and a/W = 0-5.

errors corresponding to the same absolute difference between the predicted and actual
crack locations when the latter is taken as the basis. It is found that the error in prediction of
location is < + 5%.
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Figure 5. Plots of K vs. f§ for different crack sizes for L/W =4 and f* = 0-5.

Figure 4 shows the graphs of K versus f for different crack locations corresponding to
a/W =05and L/W =4, L = 100 mm, W = 25 mm and B = 12-5 mm. The predicted crack
locations are compared with the actual values in Table 5. Figure 5 shows similar K versus
p plots for cracks of different sizes with location at the centre of the beam. The comparison
with actual values is presented in Table 6. The results for another set of data, L/W =6,
L =150 mm, W =25mm, B =12-5mm, are shown in Figure 6. The corresponding
comparison of predicted and actual crack locations is given in Table 7.

3.3. CRACK EXTENSION MEASUREMENT

The natural frequencies at two crack lengths a; and a, are calculated using the finite
element programme [17]. The results with and without the E correction described in section
2.3 are shown in Tables 8 and 9. Two different sets of geometric and material properties are
used. These are included in the tables. The results clearly show the importance of the
E correction. The errors without E correction are higher for smaller crack extensions.

4. EXPERIMENTAL STUDIES

4.1. SPECIMEN GEOMETRY AND EXPERIMENTAL SET-UP

Aluminium specimens from two different batches of material have been tested.
Cross-sectional dimensions of the specimen are as follows:
Set 1: W = 24-5mm and B = 12:0 mm.
Set 2: W = 37-5mm and B = 124 mm.
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Figure 6. Plots of K vs. § for L/W = 6.

Several L/W ratios and crack locations (%) have been tested. This has been obtained by
clamping each specimen at different positions. The modulus of elasticity E of the material
has been determined experimentally through measurement of the first natural frequency.
The details are given in the following section.
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TABLE 5

Comparison of predicted and actual crack locations'

575

Natural frequencies by FEM (Hz) Predicted
location
p* w1 > w3 p % Error
0-15 1200-98 9839-34 21433-8 0-144 — 06
0-20 1349-82 8600-40 213617 0-234 34
0-30 1513-96 7411-49 222684 0-349 49
0-40 1681-24 670147 223863 0-408 0-8
0-50 1829-36 6551-44 20065-8 0-523 23
0-60 1932:43 7069-81 177499 0-608 0-8
0-70 1982-38 841091 16529-9 0-702 02
0-80 1137-64 9534-87 220176 0-802 02
L = 100 mm, W = 25 mm, B = 12:5mm, a/W = 0'5.
TABLE 6
Comparison of predicted and actual crack locations (f* = 0-5)
Natural frequencies by FEM (Hz) Predicted
location
p* w1 W5 w3 p % Error
0-10 1987-02 9908-31 232631 0-513 1-3
0-20 1954-17 9364-59 231812 0-507 0-7
0-30 181041 766112 227674 0-510 1-0
0-40 1810-41 766112 227674 0-515 1-5
fL =100 mm, W = 25mm, B = 12-5mm
TABLE 7
Comparison of predicted and actual crack locations'
Natural frequencies by FEM (Hz) Predicted
location Error
a/Ww p* N W, w3 p (%)
0-50 02 611-587 503312 118424 0-174 —26
0-50 03 676:173 4671-33 11464-7 0-335 35
0-50 0-4 742-866 404812 119839 0411 11
0-20 05 896032 4810-61 125450 0-495 - 05
0-35 05 865376 4321-77 12492-3 0-504 0-4
0-50 0-5 805956 3681-89 12376:0 0-512 1-2
0-50 0-6 857-297 363862 112936 0-596 — 04
0-50 07 890-360 3946-15 101953 0-687 —13

TL/W =6, L =150 mm, W = 25 mm, B = 12:5 mm, * = 0-5.
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TABLE 8

Results for estimation of crack extension for set 17

Natural freq. (Hz) With E correction Without E correction
ay as (A a)actual
a /W (mm) (mm) [on W, (mm) (4a)  Error (%)  (d4a)  Error (%)
0-20 5-00 700 195416 1911-07  2-00 2:034 17 1-811 —94
0-28 7-00 800  1911-07 118290  1-00 1018 1-8 08716 — 128
0-36 9-00 10-00  1849-58 1810-41 1-00 1-028 2-8 09672 —33
0-40 10-00 11-00 181041 176459  1-00 1-030 30 1-051 51
0-45 11:25 11:50 175198 173888 025 0-2615 4-6 0-2781 112
0-45 1125 11-75 175198 172528  0-50 0-5217 43 0-5375 75
0-46 11-50 1200 173888 171115  0-50 0-5225 4-5 0-5469 9-4
0-47 1175 12:00 172528 1711-15 025 0-2627 50 02969 18-8
0-48 12:00 1225 1711:15 169647 025 0-2634 53 0-3061 22:4
0-48 12:00 12275 1711:15 166542 075 0-7847 46 0-8235 9-8
0-49 12:25 1250 169647 168124 025 0-2638 55 0-3149 260
0-49 12:25 12775 169647 166542  0-50 0-5248 50 0-5735 147
0-50 12:50 13-:00 168124 164901  0-50 0-5252 5-0 0-5815 163
0-50 12:50 13-50 168124 161430  1-00 1045 45 1-:096 9:6
0-52 13-00 1325 164900 163200 025 0-2643 57 0-3388 355
0-52 13-:00 1375 164900 159600 075 0-7848 4-6 0-8522 136
0-52 13-00 1400 164900 1577-:00  1-00 1-044 4-4 1-108 10-8
0-53 13-25 1375 1632:00 159600  0-50 0-5252 50 0-6022 104
0-53 1325 1400 16320 157700 075 0-7845 4-6 0-8577 14-4
0-54 13:50 1375 16142 159600  0-25 0-2631 52 0-3522 409
0-54 13-50 14-0 16143 15770 0-50 0-5230 56 0-6077 21-5
0-55 13-75 140 15960 15770 0-25 0-2645 58 0-3577 43-1
0-55 1375 150 1596:0 149375 125 1-295 36 1370 9-6
0-56 14-00 150 15770 149374 100 1-036 36 1-120 120
0-60 15-00 17:0 149375 128921  2:00 2:012 06 2-087 4-35

L =100 mm, W = 25 mm, B = 12:5mm, E = 210 GPa, p = 7860 kg/m?, v = 0-3.

4.1.1. Measurement of modulus of elasticity

For an uncracked cantilever beam, the natural frequencies based on the Timoshenko
beam theory are given by [16]

2 2
24 [B(® — 72 + 2] coshbpooshg — "+ 5). S sinhbpsinbg =0.  (39)

(1 — b*r?s?)

The above equation is solved for the frequency parameters b corresponding to the first
natural frequencies for a set of beams. The modulus of elasticity is calculated through
equation (7) using b and measured natural frequency w. A number of readings have been
taken considering different length to width ratios. Finally, the average is employed for
further calculations. The moduli for the two sets of material are obtained as 585 and
589 GPa respectively.

4.1.2. Manufacture of cracked specimen

The specimen was cut to size from ready-made rectangular bars. The crack was
introduced by wire cut machining. The wire diameter is 0-25 mm. The width of the slot
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TABLE 9

Results for estimation of crack extension for set 21

Natural freq. (Hz) With E correction Without E correction
ay a (A a)actual
a /W (mm) (mm) [on W, (mm) (4a)  Error (%)  (d4a)  Error (%)
0-449 11-0 11-1 719-53 71810 010 00997 —033 001267 — 8733
0-449 110 11-6 719-53  710-54 0-60  0-6088 1-47 053020 — 1163
0-449 11-0 124 719-53 69693 1-40 1-4220 1-57 135500 — 321
0-453 11-1 116 71810  710-54 0-50  0-5073 1446 043020 — 1396
0-453 11-1 131 71810  683-26 2:00 20310 1-55 197500 — 125
0-473 116 11-8 710-54 68326 020 02024 120 013700 — 31-50
0-473 11-6 129 710-54  687-34 1-30 1-3210 1-62  1-27000 —231
0-482 11-8 12:3 707-32 69874 0-50  0-5082 1-64 045260 — 948
0-502 123 124 69874 69693 0-10  0-1009 090 005549 —44-51
0-502 12-3 129 69874  687-34 060 06107 178  0-57000 — 500
0-506 124 129 69693 68734 0-50  0-5091 1-82  0-47000 — 6:00
0-506 12-4 13-4 69693 67685 1-00 1-:0150 1-50 098100 — 190
0-527 129 131 68734  683-26 020 02028 1140 017470 — 1265
0-527 129 13-4 68734 67685 0-50  0-5073 1446 048100 —3-80
0-535 131 134 68326 67685 030 03042 1-40 028100 — 633
0-535 131 13-5 68326  674-63 040 04056 1140 0-38300 — 425
0-547 13-4 135 676:85 67463 0-10 01012 120 008303 —1697

L =160 mm, W = 24-5mm, B = 12 mm, E = 70 GPa, p = 2645 kg/m?, v = 0-33.

Charge
Amplifier

Accelerometer FFT
\/ Analyzer

Figure 7. Schematic diagram of experimental set-up.

obtained thereby is 0-28 mm. In some cases, cracks are made with a thin hacksaw. The slot
obtained thereby is approximately of width 1 mm.

4.1.3. Experimental procedure

Figure 7 shows the schematic diagram of the experimental set-up. The specimen is
clamped at one end. The beam is excited by hitting it lightly with an instrumentation
hammer. A very light weight accelerometer (0-65 g, B&K make, accelerometer type 4374) is
fixed on the beam near the clamped end to monitor its vibration. The natural frequencies
are obtained by using an FFT analyser (Advantest R9211A).

4.2. FORWARD PROBLEM

The material density and the Poisson ratio were taken [19, 20] as p = 2645 kg/m* and
v = 0-33 respectively. The beam dimensions are included in the tables mentioned later. The
natural frequencies of the beams were calculated from the characteristic equation (33).
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TaBLE 10

Comparison of analytical and experimental natural frequencies

Natural frequencies (Hz)

Analytical Experimental % Error

L/W ﬂ* w1 (60 w3 w1 (%3 w3 in w1 in (5 in w3

W =245 mm, B = 12 mm, a/W = 0506, E = 585 GPa, p = 2645 kg/m?, v = 033

3673 0100 11421 10212 23981 12050 10300 23300 522 085 292
4082 0200 10712 90236 19055 11000 78500 17800  2:62 1495 705
4694 0304 95668 66133 14850 9560 56500 14950 007 1705 067
5429 0398 81913 45432 12861 8200 41750 13050 011 882 145
5918 0448 73332 37113 11708 7225 36125 11450 150 273 225
6531 0500 63641 30235 10020  637-5 30000 9900 017 078 121

W =37-5mm, B = 124 mm, a/W = 04053, E = 58-9 GPa, p = 2645 kg/m?, v = 0-33

5067 0153 55327 40812 97176 5425 4100 9650 199 046 070
5360 0199 52116 37607 85421 5125 3675 8750 169 233 238
6133 0300 44149 28412 65941 43625 2850 6625 120 031 047
7147 0399 37690 19065 59975 3525 1925 5700 692 096 522
6267 0149  381-14 28072 69990 37625 28375 7000 130 107 001
6667 0200 35457 25600 60519 3550 2463 6250 012 394 317
7-120 0251 32598 22525 52104 31125 21375 5175 473 538 068
7627 0301 29631 19283 46024 28375 1750 4725 443 10119 259

Three different beams are tested. Two of the beams have the same cross-sectional area and
material properties. During testing, the clamping position is changed to obtain a variation
in L/W and crack location *. The Newton-Raphson iteration technique has been used for
the solution. These analytical and experimental results are compared in Table 10.
The experimental results are in good agreement with the analytical results. The error in
the second mode natural frequency is the highest. This trend confirms the results of the
numerical studies.

4.3. INVERSE PROBLEM

The dimensional combinations considered for the verification of the inverse problem are
the same as those in the earlier section. The crack location was predicted using the
experimentally measured natural frequencies. The plots of K against f§ are presented in
Figures 8 and 9. A comparison of predicted and actual crack location is presented in Tables
11 and 12 respectively.

The predicted results are in good agreement with the actual values. The error is < 10%.
But in some cases, e.g., Figures 8(b) and 9(e), the three K versus f curves do not intersect in
a single point. In the first case (Figure §(b)), the midpoint of the shortest distance between
the two non-intersecting curves (w; and w3) is considered to be the intersection point for the
pair. In the case of Figure 9e, the midpoint of the two intersections [(w; and w,) and (w, and
ws)] is taken to correspond to the crack location.

4.4. ESTIMATION OF CRACK EXTENSION

The method has been tested for two beams with different geometry and material data.
The crack is located at the centre of the beams in both the cases. The cracks have been cut
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Figure 8. Plots of K vs. f§ for Case 1.

with a thin hacksaw. Whenever the crack is extended, it is done using again the same
hacksaw and without removing the specimen from the experimental set-up. E correction is
employed as usual. The results are presented in Tables 13 and 14. The maximum error in the
estimation of crack extension is 33-8%. A part of this high error can be attributed to the fact
that the hacksaw cut does not correspond to a sharp crack as can be obtained through
fatigue pre-cracking.

5. CONCLUSIONS

Vibration-based methods have been extended to short beams taking into account the
effects of rotational inertia and shear deformation. A method to measure a change in crack
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Figure 9. Plots of K vs. f§ for Case 2.

length from the change in the first natural frequency has been presented. The details of the
methods have been given. The accuracy of the methods is illustrated by case studies
involving a short cantilever beam with a crack. Both numerical and experimental case
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TaBLE 11

Comparison of predicted and actual crack locations for Case 11

581

Experimental
Corresponding Actual crack natural freq. (Hz) Predicted
K versus 8 location location Error
plot Ljw (B*) oh oP) 3 (B) (“o)
Figure 8(a) 3:673 0-100 1205-0 10300 23300 0-138 3-8
Figure 8(b) 4082 0-200 11000 78500 17800 0-283 83
Figure 8(c) 4-694 0-304 9560 56500 14950 0-353 49
Figure 8(d) 5-429 0-398 8200 41750 13050 0-424 2:6
Figure 8(e) 5918 0-448 722:5 3612:5 11450 0-433 —15
Figure 8(f) 6:531 0-500 6375 3000-0 9900 0-513 13
W =24-5mm, B = 12 mm, a/W = 0-506, E = 585 GPa.
TABLE 12
Comparison of predicted and actual crack locations for Case 2%
Experimental
Corresponding Actual crack natural freq. (Hz) Predicted
K versus 8 location location Error
plot L/w (B*) 0y oP) 3 1) (%0)
Figure 9(a) 5-067 0-153 542-5 4100 9650 0-164 1-1
Figure 9(b) 5-360 0-199 512-5 3675 8750 0-158 — 41
Figure 9(c) 6-133 0-300 43625 2850 6625 0-284 — 16
Figure 9(d) 7147 0-399 3525 1925 5700 0-441 41
Figure 9(e) 6267 0-149 37625 28375 7000 0123 —26
Figure 9(f) 6667 0-200 3550 2463 6250 0-144 — 56
Figure 9(g) 7-120 0-251 31125 21375 5175 0-332 81
Figure 9(h) 7-627 0-301 28375 1750 4725 0-378 77
W =37-5mm, B = 12:-4 mm, a/W = 0-405, E = 589 GPa.
TaBLE 13
Experimental results for estimation of crack extension for Case 11
Natural freq. (Hz)
ay az (A a)actual (Aa)estimuted Error
(mm) (mm) (mm) [N W, (mm) (%)
106 114 0-8 6850 667-5 121 331
10-6 122 16 6850 660-0 1-71 69
106 137 31 6850 6375 291 — 68
10-6 14-8 42 6850 6275 3-37 — 191
106 15-5 49 6850 607-5 4-18 — 147
122 137 15 660-0 637-5 121 — 193
122 14-8 2:6 660-0 6275 1-72 — 338
122 155 3-3 660-0 607-5 2-61 — 209
137 15-5 1-8 6375 607-5 1-20 — 330
14-8 155 07 6275 607-5 0-64 —-91

L =160 mm, W = 24-5mm, B = 12 mm, E = 58-:5 GPa.
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TaBLE 14

Experimental results for estimation of crack extension for Case 21

Natural freq. (Hz)

ap a (Aa)actual (Aa)estimated Error
(mm) (mm) (mm) on W, (mm) (%)

114 13-8 2-4 7350 7250 2-140 —10-8
114 167 53 7350 707-5 4-:097 — 227
114 192 7-8 7350 690-0 5716 — 267
114 20-7 93 7350 667-5 7-458 — 198
13-8 167 29 7250 707-5 2-343 — 192
13-8 19-2 54 7250 6900 3-851 — 283
13-8 20-7 69 7250 667-5 5-491 — 188
167 19-2 2:5 707-5 6900 1-700 — 320
167 20-7 40 707-5 667-5 3-203 — 199

fL =180 mm, W = 37-5mm, B = 12:4 mm, E = 58-9 GPa.

studies are presented. From the range of crack locations and sizes considered in the
numerical studies, the errors in prediction of natural frequencies are observed to be < 1%
for the first mode of vibration for beams with L/W > 3. For the second and third mode, the
errors are of the order of 10%. The errors in detection of crack location and estimation of
crack extension are < 10%. Based on the experimental study, the errors in the prediction of
natural frequencies and detection of crack location are of the order of 10%. The maximum
error in estimation of crack extension is about 34%. The results are encouraging. This may
enthuse using the method for measurement of crack extension during fatigue crack growth
studies using the three-point bend specimen.
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