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The author is to be congratulated for demonstrating mathematically the convergence of
using Fourier series method to expand the beam displacement into the superposition of
cosine series and an auxiliary polynomial function. The coefficients of the auxiliary
polynomial are determined by the general boundary conditions of the Euler–Bernoulli
beam under analysis. Rapid convergence and excellent accuracy of eigenfrequencies and
modes is achieved [1]. However, some important problems concerned with this paper
should be discussed.

1. In the literature survey, the author missed some recent papers where a linear
superposition of sine series and an auxiliary polynomial function is applied in the
Rayleigh–Ritz method to analyze the vibration of rectangular plates with homogeneous
boundary conditions [2] and general boundary conditions [3] respectively. In references
[2, 3], the trial functions are developed from the complete solution of a uniform Euler–
Bernoulli beam acted upon by a series of static sine loads, which is called as ‘‘static beam

functions’’.
The general form of the static beam functions is given as follows:

wðxÞ ¼
X1
m¼1

Am sinðlmxÞ þ c0 þ c1x þ c2x2 þ c3x3; ð1aÞ

where lm ¼ mp=L; Am (m ¼ 1; 2, 3,. . .) are the unknown coefficients of the sine series and
ci (i ¼ 0; 1, 2, 3) are the coefficients of the auxiliary polynomial, which can be determined
by boundary conditions of the beam under consideration. Although references [2, 3]
focused on the vibration analysis of rectangular plates, it is obvious that the static beam
functions, as given in equation (1a), are also suitable for vibration analysis of the beam
with the general conditions.

Equation (1a) can also be rewritten as

wðxÞ ¼
X1
m¼1

AmðsinðlmxÞ þ cm0 þ cm1x þ cm2x2 þ cm3x3Þ; ð1bÞ

where

X1
m¼1

Amcmn ¼ cn; n ¼ 0; 1; 2; 3: ð1cÞ

In references [1, 2], the expression of cmn is incorrect and should be replaced by equation
(1c), which, however, does not affect the derivations of static beam functions.
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It should be pointed out that if the author expands the beam displacement into Fourier
sine series rather than Fourier cosine series, he can similarly gain equation (1a). This
means that, in essence, the method of Fourier sine series expansion of beam displacement
is the same as the method of static beam functions. Some extensive applications of the
method of static beam functions can be found in literature [4–9].

2. In paper [1], the author expanded the beam displacement into the superposition of a
Fourier cosine series and an auxiliary polynomial function as follows:

wðxÞ ¼
X1
m¼0

Am cosðlmxÞ þ a1

24L
ðx4 � 2L2x2Þ � a0

24L
ð4L2x2 � 4Lx3 þ x4Þ

þ L3

360
ð8a0 þ 7a1Þ þ

b1

6L
ð3x2 � L2Þ þ b0

6L
ð6Lx � 2L2 � 3x2Þ; ð2aÞ

where a0; a1; b0; b1 are the unknown coefficients, which can be determined by boundary
conditions of the beam. Furthermore, wðxÞ can be written in form of

wðxÞ ¼
X1
m¼0

A0
m cosðlmxÞ þ b1x þ b2x2 þ b3x3 þ b4x4; ð2bÞ

where

A0
0 ¼ A0 þ

L3

360
ð8a0 þ 7a1Þ �

b1L

6
� b0L

3
; A

0

m ¼ Amðm ¼ 1; 2; 3; . . .Þ; b1 ¼ b0;

b2 ¼
b1

2L
� b0

2L
� a1L

12
� a0L

6
; b3 ¼

a0

6
; b4 ¼

a1 � a0

24L
: ð2cÞ

It should be pointed out that if the beam is acted upon by a series of cosine static loads as
follows:

qðxÞ ¼
X1
m¼0

Pm cosðlmxÞ: ð3aÞ

Then, the solution of the beam deflection is

wðxÞ ¼
X1
m¼0

A
0

m cosðlmxÞ þ b1x þ b2x2 þ b3x3 þ b4x4; ð3bÞ

where

A
0

0 ¼ b0; Am ¼ Pm=ðl4
mEIÞ; b4 ¼ P0=ð24EIÞ: ð3cÞ

Equation (3b) can also be rewritten as

wðxÞ ¼
X1
m¼0

A
0

mðcosðlmxÞ þ bm1x þ bm2x2 þ bm3x3 þ bm4x4Þ; ð3dÞ

where

X1
m¼0

A
0

mbmn ¼ bn; n ¼ 1; 2; 3; 4: ð3eÞ

This means that, in essence, the method of Fourier cosine series expansion is also the same
as the method of static beam functions of beam displacement.

It should be pointed out that after considering the boundary conditions, the solutions of
the static beam functions and the Fourier series expansion are just the same. And the



FREE VIBRATIONS OF BEAMS 591
solutions of the beam vibration are also just the same because in such a case, the Ritz
solution is the same as the Galerkin solution.

3. The author determined the unknown coefficients a0; a1; b0; b1 by using

H %aa ¼
X1
m¼0

QmAm; ð4aÞ

where

%aa ¼ a0; a1; b0; b1f gT; ð4bÞ

H ¼

8 #kk0L3

360
þ 1

7 #kk0L3

360
�

#kk0L3

3
�

#kk0L

6

7 #kk1L3

360

8 #kk1L3

360
þ 1 �

#kk1L

6
�

#kk1L

3
L

3

L

6
#KK0 þ

1

L
� 1

L
L

6

L

3
� 1

L
#KK1 þ

1

L

2
666666666664

3
777777777775

: ð4cÞ

However, for a free–free beam ( #kk0 ¼ #kk1 ¼ #KK0 ¼ #KK1 ¼ 0), H becomes

H ¼

1 0 0 0

0 1 0 0

L

3

L

6

1

L
� 1

L
L

6

L

3
� 1

L

1

L

2
66666664

3
77777775
: ð4dÞ

It is found that the determinant of above matrix H equals zero, i.e.,

jHj ¼ 0: ð4eÞ

This means that in this case, %aa cannot be determined by equation (4a). For beams with
rigid-body displacements, an alternative method has been presented [5, 6].

4. It should be mentioned that Fourier sine series has a better convergence for pinned–
pinned beams with rotational restraints, and Fourier cosine series has a better convergence
for slid–slid beams with translational restraints. However, for beams with both rotational
and translational restraints, we are unable to conclude that Fourier cosine series expansion
has better convergence than Fourier sine series expansion or vice versa.
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