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A six-node, plane-stress mixed finite element model has been developed by using
Hamilton’s energy principle for the natural vibrations of laminated composite beams.
Continuity of the transverse stress and displacement fields has been enforced through the
thickness of the laminated beam in the formulation for proper modelling. The transverse
stress components have been invoked as the nodal degrees of freedom by applying elasticity
relations. Natural frequencies of laminated composite beams obtained through the present
formulation have been shown to be in good agreement with the data available in the
literature. Various mode shapes have also been presented as benchmark solutions.
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1. INTRODUCTION

Fiber-reinforced composites are finding increasing application in aerospace, marine,
transportation, electrical, chemical, construction and consumer goods industries owing to
their high strength-to-weight and stiffness-to-weight ratios. All these uses of composite
materials in advanced technology areas, where precision and reliability play a paramount
role, demand clear understanding of their behavior and performance under severe
operating environment(s). Failure due to delamination is one of the important behavioral
aspects, which needs prime attention. It has been concluded from investigations by Pipes
and Pagano [1] and Rybicki [2] that high interlaminar stresses on the free edge of laminates
cause edge delamination. A theory that can predict all these stresses accurately is certainly
desired for a clear understanding of the failure mechanism involved in the delamination of
laminated composites.

The behavior of composite laminates can be characterized by complex three-
dimensional state of stress, evidencing high interlaminar stresses caused by the inherent
anisotropy and mismatches of material properties of such structural members [3]. Elastic
solutions for layered plates [4–6] indicate that interlaminar continuity of transverse normal
and shear stresses as well as displacement fields through the thickness of the laminated
plates are essential requirements for their analysis. Thus, a layer-wise analysis is often
required for laminated composite structures. Various displacement-based layer-wise
theories and finite element (FE) formulations have been proposed by Reddy [7], Soldatos
0022-460X/02/$35.00 # 2002 Elsevier Science Ltd. All rights reserved.
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[8], Wu and Kuo [9], Wu and Hsu [10] and others. These theories and the corresponding
FE models have been reported to provide satisfactory results for both global (e.g.,
deflections and flexural stresses) and local values (e.g., transverse stresses) of thin and thick
laminates. However, in all these models only the continuity of displacement fields through
the thickness was satisfied. The continuity of transverse stress components at the interface
could not be enforced.

A layer-wise mixed/hybrid FE model with displacement and transverse stress
components as primary variables can easily satisfy the requirements of transverse stress
continuity in addition to the continuity of displacement fields through the thickness of the
laminated composite structure. Transverse stress components can be evaluated directly
through such a mixed FE model. Thus, integration of the equilibrium equations can be
avoided. This is helpful as they involve differentiation of in-plane stresses and
displacement fields, thereby introducing further approximations in the calculation of
transverse stresses. Wu and Lin [11], for example, presented a two-dimensional mixed FE
scheme based on a local high order displacement model for the analysis of sandwich
structure, where displacement continuity conditions at the interface between layers were
regarded as the constraints and the interlaminar stresses were introduced as the Lagrange
multiplier. Shi and Chen [12] also developed a three-dimensional mixed FE model based
on global–local laminate variational model. The model proposed mixed use of a hybrid
element within a high-precision stress solution region in the thickness direction of the
laminate and a conventional displacement FE in the remaining. Carrera [13–15] has done
extensive work on the development of mixed FE model. Firstly, a mixed plate element was
developed [13] as an extension to Co Reissner–Mindlin plate element by using Reissner’s
mixed variational principle, in which the zig-zag variation of in-plane displacement fields
through the thickness was ensured by including additional terms in the standard Reissner–
Mindlin displacement model whereas the transverse displacement field was kept
unchanged. Stress degrees of freedom (d.o.f.) was introduced by assuming transverse
shear stress fields. As a further development, Carrera [14, 15] also introduced the
transverse normal stress field into the FE model. Because of the fact that in any mixed FE
model developed by using Reissner’s variational principle, the stress fields are assumed
independent of the displacement fields, the fundamental elastic relations cannot be
satisfied exactly.

A six-node, plane-stress mixed FE model has been developed in the present formulation,
by using Hamilton’s minimum energy principle. The transverse stress quantities (sz and
txz) are invoked as the nodal d.o.f. by using fundamental elastic relations between
displacement and stress fields. This ensures the satisfaction of elastic equations throughout
an elastic continuum, which is lacking in numerical models developed by using various
mixed variational principles. Because the transverse stress components are themselves the
nodal d.o.f. in the present FE model, their computation does not require integration of the
equilibrium equations which otherwise would reduce the accuracy in their determination.
Moreover, it can appropriately model a composite laminated structural member of any
number of lay-ups of different materials as it satisfies exactly, the requirements of through
thickness continuity of displacement as well as transverse stress fields.

2. FORMULATION

An anisotropic composite laminated beam consisting of N layers of orthotropic laminae
shown in Figure 1(a,b) has been considered for FE analysis. The beam has been discretized
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Figure 1. Geometry of laminated beam and mixed finite element.
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into a number of plane-stress elements. Each element lies completely within a lamina; no
element crosses the interface between any two successive laminae.

2.1. KINEMATICS

A six-node, plane-stress mixed finite element model shown in Figure 1(c) has been
developed by considering the displacement fields u(x, z, t) and w(x, z, t) having quadratic
variation along the longitudinal axis ‘‘x’’ and cubic variation along the transverse axis ‘‘z’’.
The displacement fields can be expressed as

ukðx; zÞ ¼
X3
i¼1

gia0ik þ z
X3
i¼1

gia1ik þ z2
X3
i¼1

gia2ik þ z3
X3
i¼1

gia3ik; k ¼ 1; 2; ð1Þ

where

g1 ¼
x
2
ðx� 1Þ; g2 ¼ 1� x2; g3 ¼

x
2
ð1þ xÞ; ð2Þ

x ¼ x=Lx ð3Þ

and

u1ðx; z; tÞ ¼ uðx; z; tÞ; u2ðx; z; tÞ ¼ wðx; z; tÞ: ð4Þ

Further, the generalized co-ordinates amik (m=0, 1, 2, 3; i=1, 2, 3; k=1, 2) are
functions of element co-ordinate axis ‘‘z’’. The element’s co-ordinate axes x, z are parallel
to the laminate co-ordinate X, Z.

It may be noted that the variation of displacement fields has been assumed to be cubic
along the thickness of element although there are only two nodes along the ‘‘z’’ axis of an
element (Figure 1(c)). Such a variation is required for invoking transverse stress
components sz and txz as the nodal d.o.f. in the present formulation. Further, it also
ensures parabolic variation of transverse stresses through the thickness of an element.
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2.2. CONSTITUTIVE EQUATION

Each lamina in the laminate has been considered to be in the state of plane stress in X–Z

plane so that the constitutive relation for a typical ith lamina with reference to the
coordinate system can be shown to be

fsg ¼ ½D	f2g; ð5Þ

where

fsg ¼ ½sx sz txz	T; ð6Þ

½D	 ¼
D11 D13 0

D13 D33 0

0 0 D55

2
64

3
75; ð7Þ

f2g ¼ ½2 x 2 z gxz	T: ð8Þ

The coefficients Dmn are the elastic constants.

2.3. FE FORMULATION

The transverse stresses can be obtained from the constitutive equation, equation (5) and
strain–displacement relations as

txz ¼ D55gxz ¼ D55
@u

@z
þ @w

@x

� 	
; ð9Þ

sz ¼ D13 2 x þ D33 2 z ¼ D13
@u

@x
þ D33

@w

@z
: ð10Þ

Equations (9) and (10), respectively, can be rearranged in the following form:

txz

D55
� @w

@x

� 	
¼ @u

@z
ð11Þ

1

D33
sz � D13

@u

@x

� 	
¼ @w

@z
ð12Þ

substituting equations (1), (11) and (12) at each node of the element, the
following expressions for the displacement fields u(x, z, t) and w(x, z, t) can be
obtained:

uðx; z; tÞ ¼
X6
n¼1

gi f qun þ f p

@un

@z

� 	
; ð13Þ

wðx; z; tÞ ¼
X6
n¼1

gi f qwn þ f p

@wn

@z

� 	
; ð14Þ

where ‘‘n’’ are the node numbers (1, 2, . . . , 6) of the element, shown in Figure 1(c). un and
wn are the nodal displacement d.o.f. and @un=@z and @wn=@z contain nodal transverse
stress d.o.f. That is how nodal transverse stress terms (i.e., stress d.o.f.) are brought into
the expression of displacement fields. Further,



MIXED FE MODEL NATURAL VIBRATIONS OF LAMINATED BEAMS 639
i=1, 2, 3 for the nodes with x ¼ �1; 0 and 1, respectively, Z ¼ z=Lz; q=1, 2, p=3, 4, for
the nodes with Z=�1 and 1, respectively,

f 1 ¼ 1
4
ð2� 3Zþ Z3Þ; f 2 ¼ 1

4
ð2þ 3Z� Z3Þ;

f 3 ¼
Lz

4
ð1� Z� Z2 þ Z3Þ; f 4 ¼

Lz

4
ð�1� Zþ Z2 þ Z3Þ:

ð15Þ

Equations (13) and (14) can be rewritten in the standard FE form as

fug ¼ ½u w	T ¼ ½N	fqg; ð16Þ

where

½N	 ¼ ½
%
N1

%
N2

%
N3

%
N4

%
N5

%
N6	; ð17Þ

fqg ¼ ½
*
qT
1

*
qT
2

*
qT
3

*
qT
4

*
qT
5

*
qT
6 	

T: ð18Þ

Further,

fqng ¼ ½un wn ðtxzÞn ðszÞn	T ð19Þ

and

½Nn	 ¼
gif q �g0

if p gif p

1

D55
0

�g0
if p

D13

D33
gif q 0 gif p

1

D33

2
664

3
775: ð20Þ

n, i, q and p are same as expressed in equation (15). Furthermore,

g0
i ¼

@gi

@x
: ð21Þ

In the absence of external and damping forces (i.e., undamped natural vibration), the total
energy of an element within a lamina can be given by

Le ¼ Te � Ue; ð22Þ

where Ue and Te represent the internal strain and kinetic energies respectively. Functional
in equation (22) can be expressed in the matrix form for linear elastic system as

Le ¼ 1
2

Z
rf ’uugTf ’uug dv �

Z
f2gTfsg dv

� �
; ð23Þ

where r is the mass density of the material, and

f ’uug ¼ dfug
dt

: ð24Þ

The strain vector {2} and the stress vector {s} can be expressed as

f2g ¼ ½B	fqg; ð25Þ

fsg ¼ ½D	½B	fqg; ð26Þ

where

½B	 ¼ ½
%
B1

%
B2

%
B3

%
B4

%
B5

%
B6	 ð27Þ
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and

½Bn	 ¼

@

@x
0

0
@

@z
@

@z

@

@x

2
6666664

3
7777775
½Nn	 ¼

g0
i f q �g00

i f p g0
i f p

1

D55
0

�g0
i
%ff p

D13

D33
gi

%ff q 0 gi
%ff p

gi
%ff q � g00

i f p

D13

D33
g0

iðf q � %ff pÞ gi
%ff p

1

D55
g0

i
%ff p

1

D33

2
6666664

3
7777775
: ð28Þ

n, i, q and p are the same as expressed in equation (15). Further,

g00
i ¼

@2gi

@x2
and %ff j ¼

@f j

@z
; j ¼ q or p; ð29Þ

By summing up the total energies over all the elements and applying Hamilton’s Principle
[16]

d
Z t2

t1

L dt ¼ 0; ð30Þ

where

L ¼
X

e

Le ð31Þ

and d implies first variation; the global equation of motion, in the absence of external
forces, can be obtained as

½M	f .QQg þ ½K 	fQg ¼ 0: ð32Þ

Here global mass matrix [M], global stiffness matrix [K], and global nodal d.o.f. vector {Q}
are defined as

½M	 ¼
X

e

½M	e; ½K 	 ¼
X

e

½K 	e; fQg ¼
X

e

fqg; ð33Þ

where

½Me	 ¼ r
Z

½N	T½N	 dv; ð34Þ

½Ke	 ¼
Z

½B	T½D	½B	 dv; ð35Þ

f .QQg ¼ d2fQg
dt2

: ð36Þ

The general solution of the equation of motion (32) for harmonic vibrations can be
considered of the form

fQg ¼ f #QQgeiot; ð37Þ

where f #QQg is the modal vector and o is the natural frequency. Substitution of equation
(37) into equation (32) results in the following generalized eigenvalue problem:

ð½K 	 � o2½M	Þf #QQg ¼ 0: ð38Þ

Solution of equation (38) yields the natural frequency o and the corresponding
eigenvector f #QQg after the imposition of boundary conditions.
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3. ILLUSTRATIVE EXAMPLES

A computer program incorporating the present two-dimensional mixed FE formulation
has been developed in FORTRAN-90 to analyze natural vibrations of symmetric/
unsymmetric composite laminated beams. Numerical computations have been performed
for various examples. Results have been compared with the available analytical and FE
solutions wherever these are available in the literature. Illustrative examples encompassing
a couple of symmetric and unsymmetric cross-ply laminated beams under simple and
clamped–free support conditions have been considered for highlighting the salient features
of the model. The boundary conditions for various support conditions used in the analysis
have been tabulated under Table 1. The geometrical and material properties as well as the
lamination scheme for the examples are tabulated in Table 2.

The higher order FE solutions by Marur and Kant [17] and Kant et al. [18], and mixed
theory by Rao et al. [19] have been considered for comparison of the results obtained in
the present investigation. The present formulation was found to yield converging results
by considering 8–10 elements along the X direction of the beam, along with the
discretization of the thickness (i.e., along Z direction) in such a way, that the ratio Lx/Lz in
an element was between 10 and 15.

The natural frequencies have been non-dimensionalized by using the expressions
shown in Table 3 for a consistent comparison. Variations of normalized displacement ( %uu),
in-plane normal stress ( %ssx), transverse shear and normal stresses (%ttxz and %ssz) through the
thickness of beam under various bending, axial and shear modes of vibrations have been
presented graphically, for simply supported thin and thick laminated beams (Data-1,
Data-2 and Data-3 of Table 2). Normalization factors presented in Table 3 have been used
for presenting the graphical results.

Illustrative numerical examples considered in the present work have been discussed
next.
Table 1

Boundary conditions (BCs) applied to cross-ply laminated beams

Edge BC on displacement field BC on stress field0>

Simple support condition
(i) At X¼0, a and Z=0 w¼0 }
(ii) At X¼0 and Z¼0 u¼w¼0
(iii) At Z¼�d/2 } sz¼txz¼0
Clamped–free support condition
(i) At X¼0 u¼w¼0 }
(ii) At X¼a } txz¼0
(iii) At Z¼�d/2 } sz¼txz¼0
Clamped–simple support condition
(i) At X¼0 (clamped) u¼w¼0 }
(ii) At X¼a (simple support) w¼0 }
(iii) At Z¼�d/2 } sz¼txz¼0
Clamped–clamped support condition
(i) At X¼0, a u¼w¼0 }
(ii) At Z¼�d/2 } sz¼txz¼0
Partially clamped support conditions at both the ends (only lower half of the vertical edges at both
the ends are under clamped condition)
(i) At X¼0, a and Z¼�d/2 to 0 u¼w¼0 }
(ii) At X¼0, a and Z¼0 to +d/2 } txz¼0
(iii) At Z¼�d/2 } sz¼txz¼0



Table 2

Material properties data

Data no. Properties Description

Data-1 [18] Geometrical properties (1) Length a=15000mm
(2) Breadth b=1000mm
(3) Depth d=1000mm

Material properties (material:
AS4/3501-6/graphite/epoxy)

(1) E1=144
80GPa

(2) E2=9
65GPa
(3) G=4
14Gpa
(4) n=0
3
(5) r=1389
23E�12N s2/mm4

Lamination scheme 08/908/908/08
Data-2 [18] Geometrical properties (1) Length a=762
0mm

(2) Breadth b=25
4mm
(3) Depth d=152
4mm

Material properties (1) E1=525
00Gpa
(2) E2=21
00Gpa
(3) G=10
50Gpa
(4) n=0
3
(5) r=800
00E�12N s2/mm4

Lamination scheme 08/08/908/908/08/08
Data-3 [17] Geometrical properties Same as Data-2.

Material properties Same as Data-2.
Lamination scheme 08/908/08/908/08/908

Table 3

Normalization factor

Example no. Normalization factor

All examples %oo ¼ oa2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½r=ðE1d2Þ	

p
%ZZ ¼ Z

d
; %uuðX ; %ZZÞ ¼ uðX ; %ZZÞ

uðX ; d=2Þ; %ssxðX ; %ZZÞ ¼ sxðX ;ZÞ
sxðX ; d=2Þ

Example 1 %ttxzð0; %ZZÞ ¼ txzð0;ZÞ
txzð0; 0Þ

; %ttxzða; %ZZÞ ¼ txzða;ZÞ
txzða; d=4Þ

; %sszðX ; %ZZÞ ¼ szðX ;ZÞ
szðX ; d=6Þ

Example 4 %ttxzð0; %ZZÞ ¼ txzð0;ZÞ
txzð0; 0Þ

; %ttxzða; %ZZÞ ¼ txzða;ZÞ
txzða; d=6Þ

; %sszðX ; %ZZÞ ¼ szðX ;ZÞ
szðX ; d=6Þ

Example 5 %ttxzðX ; %ZZÞ ¼ txzðX ;ZÞ
txzðX ; 0Þ ; %sszðX ; %ZZÞ ¼ szðX ;ZÞ

szðX ; d=3Þ
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3.1. THIN-BEAM SECTIONS

Three examples on thin symmetric cross-ply laminated beam have been considered
for natural vibration analysis. The geometrical and material properties as well as the
lamination scheme for the beam are tabulated under Data-1 of Table 2.



MIXED FE MODEL NATURAL VIBRATIONS OF LAMINATED BEAMS 643
3.1.1. Example 1

A symmetric cross-ply laminated (08/908/908/08) thin beam under simple support
condition has been considered for free vibration analysis. The boundary conditions have
been elaborated in Table 1. The non-dimensionalized natural frequencies ( %oo) obtained
from the present investigation are compared in Table 4, with the first order beam theory
(FOBT), higher order beam theories (HOBTs) [18] and the mixed theory [19]. Results have
been observed to be in very good agreement with the HOBT and the mixed theory. Few
new results of axial, bending and shear frequencies have also been presented in the table.
The variation of normalized displacement %uu; normal stresses %ssx; %ssz and transverse shear
stress %ttxz through the thickness of the beam under various modes of vibration have been
plotted in Figures 2, 3 and 4 respectively. Only the first, fifth and ninth bending modes
have been presented in Figure 2 for brevity. The non-linear variation of displacement field,
%uu; through the thickness of the beam clearly illustrates that the FOBT would be unable to
represent the higher bending modes, and any of the shear modes for both thin as well as
thick laminated composite beams as it assumes linear variation of displacement field u

through the thickness. Mode shapes showing the variation of transverse stress quantities
txz and szthrough the thickness show continuity of these quantities at the layer interface
with different material properties, which cannot be achieved by any of the displacement-
based formulations, even using HOBTs. It can be observed from the variation of in-plane
Table 4

Comparison of non-dimensional natural frequencies of a simply supported thin symmetrically

laminated composite beam (Data-1)

Mode FOBT [18] HOBT [18] Mixed theory [19] Present Study

Axial mode
1 } } } 11
439(3)
2 } } } 39
493(7)
3 } } } 70
367(11)
4 } } } 99
837(14)
5 } } } 125
950(18)

Bending mode
1 2
512 2
516 2
513 2
516(1)
2 8
589 8
669 8
660 8
673(2)
3 16
045 16
320 16
330 16
383(4)
4 23
795 24
371 24
436 24
613(5)
5 } } } 33
087(6)
6 } } } 41
827(8)
7 } } } 50
869(9)
8 } } } 57
907(10)
9 } } } 73
415(12)
10 } } } 85
748(13)
11 } } } 100
101(15)
12 } } } 116
524(16)

Shear mode
1 } } } 119
522(17)
2 } } } 127
136(19)

Note. Value within brackets ‘‘( ) ‘‘indicates the mode number and ‘‘}’’ indicates result not available.
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normal stress (sx) under bending mode of vibration, that the full depth of the top and
bottom layers (which has high in-plane elastic modulus ‘‘E1’’) effectively resists the
moment even in higher modes of vibrations.

3.1.2. Example 2

The Beam in Example 1 has been considered under clamped–free support condition.
The non-dimensionalized natural frequencies ( %oo) are presented in Table 5. Results from
FOBT, HOBT (4a, 4b and 5) [17] and the mixed theory [19] have been considered for
comparison of the results. The present models have been shown to yield results in good
agreement with the results from HOBT (4b and 5). The possible reason for FOBT also
giving good results, especially at low frequencies, can be attributed to the fact that the
beam, which has a thin section, becomes quite flexible under the clamped–free support
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Table 5

Comparison of non-dimensional natural frequencies of a clamped–free thin symmetrically

laminated composite beam (Data-1)

Bending
mode

FOBT
[17]

HOBT4a
[17]

HOBT4b
[17]

HOBT5
[17]

Mixed
theory [19]

Present
study

1 0
923(1) 0
927(1) 0
924(1) 0
924(1) 0
923 0
925(1)
2 4
941(2) 5
073(2) 4
985(2) 4
985(2) 4
888 4
996(2)
3 11
656(3) 12
159(3) 11
832(3) 11
832(3) 11
433 11
879(3)
4 19
180(4) 20
262(4) 19
573(4) 19
573(4) 18
689 19
737(5)
5 27
038(5) 28
820(5) 27
720(5) 27
720(5) 26
203 28
174(6)
6 } } } } } 37
079(7)
7 } } } } } 46
632(8)
8 } } } } } 56
405(10)
9 } } } } } 68
855(11)
10 } } } } } 82
396(12)

Note. Value within brackets ‘‘( )’’ indicates the mode number and ‘‘}’’ indicates result not available.
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condition. However, the results from FOBT would be erroneous for vibration in higher
modes due to the reduction in the effective flexibility. Natural frequencies for higher
bending modes have also been presented in the table for future reference.

3.1.3. Example 3

The beam in Example 1 has been reconsidered to investigate variation in the natural
frequencies under the following support conditions: (i) clamped–free; (ii) simple support at
both the ends; (iii) clamped–simple; (iv) clamping in the lower half portion (i.e., partially
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clamped); and (v) clamped–clamped. The boundary conditions for all these different
support conditions have been presented in Table 1. The first five non-dimensionalized
natural frequencies ( %oo) are presented in Table 6, which can serve as benchmark solutions
for future reference. The natural frequencies appear to be in consonance with the relative
flexibility being provided to the beam by the different support conditions. Of course, the
natural frequencies obtained under partially clamped support condition will depend on
how much portion of the ends of the beam is under clamped support condition.

3.2. THICK-BEAM SECTIONS

One example on thick symmetric cross-ply laminated composite beam and one on thick
unsymmetric laminated composite beam under simple support condition have been
considered for natural vibration analysis.

3.2.1. Example 4

A six-layer symmetric cross-ply laminated (08/08/908/908/08/08) thick beam under simple
support has been considered in this example. The geometrical and material properties for
the beam correspond to Data-2 of Table 2. The non-dimensional frequencies in axial,
bending and shear modes obtained through the present model have been compared in
Table 7 with FOBT, HOBT (4a, b) [17], HOBT [18] and the mixed theory [19]. It can be
observed that the results from the present studies are in good agreement with HOBT and
the mixed theory. Through thickness variation of normalized displacement field %uu; normal
stress %ssx and transverse stress fields (%ttxz and %ssz) for bending, axial and shear modes have
also been presented in Figures 5–7. Only the first, fifth and ninth bending modes have been
presented in Figure 5 for brevity. It is interesting to observe that the variation of
displacement field ‘‘u’’ is non-linear even for the first bending mode. Such predictions
cannot be made by FOBT. Moreover, very high stress gradients have been observed in the
variation of transverse shear and normal stresses at the faces of the beam, which obviously
necessitates a refined theory such as the present one. Observation on the variation of
in-plane normal stress %ssx reveals that unlike the thin-beam case of Example 1, a very small
outer part of the top and bottom layers remains effective in resisting moments for higher
modes of vibration. The through thickness continuity in the variation of transverse stresses
at the layer interface as depicted in the figures marks the importance of mixed formulation
over higher order displacement formulations.
Table 6

Comparison of non-dimensional natural frequencies of a thin symmetrically laminated

composite beam under different support conditions (Data-1)

Bending mode Support conditions

Clamped–
free

Simple
support

Clamped–
simple

Partially
clamped

Clamped–
clamped

1 0
925 2
516 3
830 3
534 4
725
2 4
996 8
679 9
829 9
191 10
754
3 11
879 11
666 16
940 16
999 17
907
4 17
180 16
418 23
960 24
597 25
596
5 19
737 24
738 26
376 29
782 33
613



Table 7

Comparison of non-dimensional natural frequencies of a simply supported thick symme-

trically laminated composite beam (Data-2)

Mode FOBT
[17]

HOBT4a
[17]

HOBT4b
[17]

HOBT
[18]

Mixed
theory [19]

Present
study

Axial frequencies
1 } } } } } 1
879(2)
2 12
953(8) 12
636(7) 12
953(7) } } 12
616(8)
3 25
910(14) 23
597(14) 25
910(14) } } 20
168(13)

Bending frequencies
1 1
639(1) 1
736(1) 1
656(1) 1
657 1
654 1
655(1)
2 3
810(2) 4
125(2) 3
923(2) 3
910 3
916 3
908(3)
3 5
912(3) 6
439(3) 6
191(3) 6
138 6
180 6
146(4)
4 7
988(4) 8
722(4) 8
470(4) 8
323 8
446 8
400(5)
5 10
100(5) 11
042(5) 10
803(5) 10
440 10
771 10
694(6)
6 12
188(7) 13
333(8) 13
117(8) 12
469 12
969 13
061(9)
7 14
392(9) 15
751(9) 15
561(9) 14
385 15
222 15
510(10)
8 16
732(10) 18
313(10) 18
151(10) 16
161 17
469 17
404(11)
9 19
205(12) 21
021(12) 20
889(12) 17
771 19
712 21
639(14)

Shear frequencies
1 11
181(6) 12
248(6) 11
111(6) } } 11
107(7)
2 19
088(11) 19
747(11) 18
927(11) } } 18
837(12)

Note. Value within bracket ‘‘( )’’ indicates the mode number and ‘‘}’’ indicates result not available.
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Figure 5. Through thickness variation of normalized (a) displacement ð %uuÞ; (b) normal stress ( %ssx); (c) transverse
shear stress (%ttxz) and (d) transverse normal stress ( %ssz) in various bending modes for a thick symmetric laminated
beam (08/08/908/908/08/08).
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3.2.2. Example 5

A six-layer unsymmetric cross-ply laminated (08/908/08/908/08/908) thick beam under
simple support condition has been considered in this example. The geometrical and
material properties are presented under Data-3 of Table 2. The non-dimensional natural
frequencies ( %oo) for axial, bending and shear modes have been presented in Table 8. On the
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other hand, the through thickness variation of in-plane displacement and various stress
quantities under different types of modes are shown in Figures 8–10. Comparison of
frequencies with the available results from FOBT and HOBT (4a, 4b, 5) [17] indicates that
some of the natural frequencies obtained through the present formulation are somewhat
lower than the corresponding results from FOBT and various HOBTs. Also, it has been
conspicuously noted that FOBT and various HOBTs have failed to give the first axial
mode of vibration in both the examples (i.e., Examples 4 and 5). It can be argued that a
model based on equivalent single layer (ESL) displacement theory (viz., FOBT, HOBTs)
cannot model precisely the exact behavior of a laminated composite member. On the other
hand, the present mixed FE model satisfies exactly the important behavioral conditions
of the continuity of displacement and transverse stress fields through the thickness of a
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Table 8

Comparison of non-dimensional natural frequencies of a simply supported thick unsymme-

trically laminated composite beam (08/908/08/908/08/908) (Data-3)

Mode FOBT [17] HOBT4a [17] HOBT4b [17] HOBT5 [17] Present study

Axial frequencies
1 } } } } 2
791(2)
2 10
932(6) 10
935(6) 10
762(6) 10
668(6) 11
597(8)
3 21
855(14) 21
709(13) 21
430(13) 21
108(13) 19
294(13)

Bending frequencies
1 1
432(1) 1
483(1) 1
434(1) 1
416(1) 1
376(1)
2 3
597(2) 3
806(2) 3
614(2) 3
531(2) 3
480(3)
3 5
750(3) 6
153(3) 5
870(3) 5
675(3) 5
577(4)
4 7
856(4) 8
457(4) 8
114(4) 7
795(4) 7
696(5)
5 9
994(5) 10
809(5) 10
462(5) 10
021(5) 9
887(6)
6 12
104(8) 13
132(8) 12
807(8) 12
285(8) 12
189(9)
7 14
319(9) 15
575(9) 15
253(9) 14
633(9) 14
062(10)
8 16
673(11) 18
166(11) 17
873(11) 17
244(11) 16
178(12)
9 19
147(12) 20
889(12) 20
611(12) 19
981(12) 20
314(14)

Shear frequencies
1 11
181(7) 12
248(7) 11
110(7) 11
110(7) 11
107(7)
2 15
868(10) 16
468(10) 15
839(10) 15
663(10) 15
871(11)

Note. Value within bracket ‘‘( )’’ indicates the mode number.
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laminated composite beam. Because the present example consists of five interfaces with
abrupt change in the material properties compared to the previous examples having only
two, the displacement-based ESL models are unable to incorporate abrupt changes
properly into their formulation. On the other hand, the present mixed formulation has the
ability to model the sudden changes in the material properties very efficiently.
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4. CONCLUSIONS

A novel methodology for the formulation of mixed finite element (FE) model has been
presented in this paper. The FE model has been developed by maintaining the
fundamental elasticity relationship between constituents of the stress, strain and
displacement fields within the elastic continuum. Because it is a layer-wise FE formulation
with the transverse stress components as the degrees of freedom at the nodes, both the
primary requirements of the continuity of displacement fields, as well as those of
transverse stress components through the thickness of the beam have been satisfied. A
comparison of the natural frequencies with various FE and mixed analytical models reveal
that the formulation is well capable of dealing with laminated composite beam problems
under different conditions of supports and loadings. The figures showing the variation of
transverse normal and shear stresses through the thickness of laminated beams clearly
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depict the presence of high stress gradients, particularly at higher modes of vibrations. The
present formulation has shown its ability in handling such problems.
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