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Free non-linear vibration of a rotating thin ring with a constant speed is analyzed when
the ring has both the in-plane and out-of-plane motions. The geometric non-linearity of
displacements is considered by adopting the Lagrange strain theory for the circumferential
strain instead of the infinitesimal strain theory. By using Hamilton’s principle, the coupled
non-linear partial differential equations are derived, which describe the out-of-plane
bending and torsional motions as well as the in-plane bending and extensional motions.
During deriving the equations of motion, we discuss how to model the circumferential
stress and strain in order to consider the geometric non-linearity. Four models are
established: three non-linear models and one linear model. For the four models, the
linearized equations of motion are obtained in the neighbourhood of the steady state
equilibrium position. Based on the linearized equations of the four cases, the natural
frequencies are computed at various rotational speeds and then they are compared.
Through the comparison, this study recommends which model is appropriate to describe
the non-linear behaviour more precisely.

© 2002 Elsevier Science Ltd. All rights reserved.

1. INTRODUCTION

The vibration analysis of a stationary or rotating ring is of great interest because the ring
has very simple geometry but shows most of the dynamic characteristics of more complex
axisymmetric structures. An axisymmetric structure, which may be modelled as a ring, is
used in many engineering applications such as ring stiffeners, gears and rate-sensors.
The free and forced vibrations of stationary or rotating rings have been widely studied
for various ring models and for various boundary conditions. Rao and Sundararajan [1]
and Kirkhope [2] investigated the in-plane vibrations of stationary rings using linear
formulations. The corresponding non-linear case was treated by Evensen [3]. In addition
to the in-plane vibration analyses of stationary rings, many papers are also available for
the in-plane vibrations of rotating rings. For example, the linear vibration of a rotating
ring was investigated by Carrier [4] and the non-linear formulations were used by Huang
and Soedel [5], Natsiavas [6], and Bickford and Reddy [7]. On the other hand, studies
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involving the out-of-plane motion can be found in the literature but most of the studies are
concerned with stationary rings. For instance, Kirkhope [8] and Lee and Chao [9]
presented results for stationary rings using linear models while Maganty and Bickford [10]
studied the stationary ring using a non-linear model. Regarding the out-of-plane
vibrations of rotating rings, one available work is that of Eley ez al. [11] on a multi-axis
rate sensor in which the Coriolis coupling effects were studied. However, they did not
consider the non-linear vibration of a ring. To the authors’ knowledge, the out-of-plane
non-linear vibration of a rotating ring has not yet been treated. The non-linearity, caused
by the coupling between the in-plane and out-of-plane displacements, should be
considered in the out-of-plane vibration of a rotating ring. The reason is that this non-
linearity is related to the stiffening effect of a ring due to rotation.

In this paper, free vibration of a ring rotating at a constant speed is studied, considering
the non-linearity and coupling of the in-plane and out-of-plane displacements. In order to
include the geometric non-linearity into the formulation, the Lagrange strain theory is
adopted for the circumferential strain, instead of using the infinitesimal strain theory. By
using Hamilton’s principle, the non-linear equations of motion for a rotating ring are
derived, which describe the out-of-plane bending and torsional motions as well as the in-
plane bending and extensional motions. With the non-linear equations, an equilibrium
position and the linearized equations of motion in the neighbourhood of the equilibrium
position are obtained by the perturbation method. Natural frequencies are calculated from
the linearized equations for various rotational speeds. Finally, computation results from
various non-linear models are compared with those from a linear model and some
differences among them are discussed.

2. EQUATIONS OF MOTION

Figure 1(a) shows an unconstrained ring rotating at a constant angular speed Q about
the Z-axis where the XYZ co-ordinate system is a space-fixed inertial frame. The r, # and Z
are the cylindrical co-ordinates where 0 is measured from the stationary X-axis, and R is
the radius of the undeformed centroidal line of the ring. Shown in Figure 1(b) is the cross-
section of the ring where / and b are height and radial width, respectively, and the xyz co-
ordinate system is a body-fixed rotating frame.

€ (b)

Figure 1. Unconstrained thin ring rotating at constant speed Q: (a) top view; and (b) the cross-section.
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The ring is modelled as a kind of the Euler—Bernoulli beam to study the flexural
vibrations. It is assumed that the entire cross-section perpendicular to the y-axis remains a
plane after deformation. Also, the ring is slender, that is, the height and radial width of the
ring are much less than the radius of the ring, so that the transverse shear deformation is
neglected. It is also assumed that the warping of the cross-section due to torsion is
negligibly small. Therefore, the displacements of a point in the -, - and z-directions can
be written as

u =u(0,1) +z¢(0,1), up =v(0,1) + x¢;(0,1) —z¢p,(0,¢), u. =w(8,1) — x¢p(6,1), (1)

where ¢ is time; u, v and w are the radial, circumferential and out-of-plane displacements,
respectively, of a point on the centroidal line (i.e., x = z = 0); ¢ is the twist angle about the
y-axis due to torsion; ¢, is the rotation angle about the z-axis due to in-plane bending; ¢,
is the rotation angle about the x-axis due to out-of-plane bending. According to references
[1, 6, 11], the rotation angles, ¢; and ¢,, may be expressed as

¢i=@w—u)/R, ¢, =w/R, 2)

where the prime denotes the partial derivative with respect to 6.

The geometric non-linearity results from the large deformation of the ring. The non-
linearity is generally described by the Lagrange strain theory, which represents the non-
linear relations between the strains and the displacements. Based on the Lagrange strain
theory in the cylindrical co-ordinates, the circumferential normal strain of a point on the
centroidal line is represented by

g =&y + % [E)* + () + (8,)°], ®)
where
i — (& +1)/R @

In the right-hand side of equation (3), the first term is linear and the terms in the bracket
are non-linear. Note that the first non-linear term is a square of the linear term while the
second and third non-linear terms are related to the in-plane and out-of-plane rotations
respectively. Due to the third non-linear term, the equation of motion for the out-of-plane
displacement will be coupled to those for the radial and circumferential displacements.
Under the assumptions that the ring is thin and plane cross-sections remain plane after
deformation, the circumferential normal strain of an arbitrary point in the ring can be
approximated [5, 6, 9] by

89:59+%¢;_%(¢:}_¢)' (5)

Note that the above relation between the circumferential normal strain and the
displacements is non-linear. However, since the non-linearity of the shear deformations
due to torsion is negligible, the linear relations between the shear strains and the
displacements are adopted in this study. Based on reference [9], the linear shear strains can

be represented by
z(w , x(w ,
=== Y- = —=| = . 6
Vro R(R—’_(b)? Yoz R<R+¢) ()

Next, consider the strain energy of the ring related to the normal and shear strains. It is
assumed that the material of the ring is homogeneous, isotropic, elastic and Hookean.
Young’s modulus and shear modulus are given by E and G respectively. Since the height /
and radial width b of the ring are very small in comparison with the radius of the ring,
stresses a,, o, and 1., can be neglected. In this case, the strain energy of the ring may be
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2n 2n
/ / dAd9+ /yr() v2.) A4 do, (7)

where 4 is the cross-sectional area of the ring.

To obtain the kinetic energy, the velocity of a point in the rotating ring needs to be
expressed in terms of the displacements of u, v and w. The displacement vector of a point
of the deformed ring can be written as

rp = (r+u.)e, + upeg + (z + u.)e., (8)

expressed as

where e,, eg and e, represent the unit vectors of the cylindrical co-ordinate system,
and note that r = R+ x. The velocity vp, obtained by differentiating the displace-
ment vector with respect to time after substituting equations (1) into (8), can be expressed
as

dl’P

vP:E:VP+X‘Px—ZlP;, (9)
where
Vp = (it + Qu — Qule, + (0 + Q' + Qu + QR)eg + (w + Qw')e., (10)
Q , 1., . / " i /
Wo=2 W —v)e + 5[0 =i + Q0 —u" + R)ley — (¢ + Qd)e:, (11)
Q , . , 1 . "
o= |2 (D Q) e+ | (0 + Q) — Q. (12)

In the above, the superposed dot represents partial differentiation with respect to time.
Then the kinetic energy of the ring may be approximated to

2n
T pR/ /VPVP—i—(x +2)( + Q') + 2% dA do, (13)

where p is the mass density of the ring. Note that the rotary inertia terms are neglected
except in the torsional mode [12] because the ring is assumed to be thin.

The equations of motion can be derived by applying Hamilton’s principle to equations
(7) and (13). The resultant equations of motion are coupled, non-linear, partial differential
equations given by

EI; (v///
pAR*

E
i+ 2Q@ — ) + Q2 =20 —u) — u"") + — e+ &) + (o)) = RQ?, (14)
p

El;
pA1124 (v// _ u///) _p_R[(

54 2Q0 +0) + Q* (W 42 —v) — g) — 20, + (2085)1 =0, (15)

El,
20m QZ "
W4 20 + Q7w + D AR

GI, E
(W" — R¢p") — pA£4 (W' + R¢") — OR (E0¢p,) =0, (16)

. .y P El, I 1 "
é+204 +92<¢> —Eqs) O SR~ (RGN =0 (17)

where [; and I, are the area moments of inertia about the z- and x-axis, respectively, and Ip
is the polar area moment of inertia about the y-axis:

I,:/xsz, IO:/szA, Ip:/(x2+22)dA. (18)
A A A
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Equations (14)—(17) predominantly represent the in-plane bending motion, the
extensional motion, the out-of-plane bending motion and the torsional motion
respectively. It is interesting that the radial and circumferential displacements, u and v,
and the out-of-plane displacement, w, are coupled to each other, as shown in equations
(14)—(16). Note that the last term on the left-hand side of equation (16) can be rewritten by
using equations (2)—(4) as

E E{ w@ +u) W

) = T S =P 0 (19

So, the out-of-plane displacement in equation (16) is coupled to the radial and
circumferential displacements through the non-linear terms of equation (19) whereas it
is coupled to the torsional displacement ¢ through the linear terms. Finally, equation (17)
demonstrates that the torsional displacement is coupled to only the out-of-plane
displacement.

3. NATURAL FREQUENCIES

In order to compute the natural frequencies of the rotating ring, linearized equations of
motion should be obtained from equations (14)—(17) when the ring is in a steady state. The
perturbation method is used to obtain an equilibrium position and the linearized equations
in the neighbourhood of the equilibrium position. The displacements u, v, w and ¢ can be
rewritten as

Uu=u,+Au, v=v.+A4v, w=we+ 4w, ¢ =¢,+ 4, (20)

where u,, v., w,, and ¢, represent the equilibrium position and Au, Av, Aw and 4¢ are the
small perturbations of the displacements u, v, w and ¢, respectively, from the equilibrium
position. When the ring rotates at a constant speed €, the equilibrium position is defined

by
=R(\/1+2pR2Q*JE 1), v, =w,=¢,=0. (21)

The linearized equations of motion in the neighbourhood of the equilibrium position may
be represented in terms of Au, Av, Aw and A¢. For notational simplicity, deleting 4 from
Au, Av, Aw and A¢, the linearized equations of motion are given by

EI;
i +2Q — o)+ QX" — 20 —u) — pA1124 (" —u"™)
+ DR [(2R* + 6Ru, + 3u2) (V' + 1) — u(2R + u,) (" — )] = 0, (22)
. ./ . 271 / EII " mnm
b 4+2Q@0 +u)+ Q° (V" +2u —U)—m(l) —u")
“ 3R [(2R* + 6Ru, + 3u) (V" + ') + u, (2R 4 u,) (U — v)] = 0, (23)
El, GI
.. . 2 " P "
W+ 20 + Q°w" + AR (wW" — R¢") — AR (w" + R¢")
ue(2R + u,)w" =0, (24)

 2pR*
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¢+ 204" + (4)” - ip) _ _EL (W' — Rp) ——= (W' + Rp") =0. (25
Ip plp p
Equations (22) and (23) show that the radial displacement u and the circumferential
displacement v are coupled to each other. On the other hand, from equations (24) and (25),
it is observed that the out-of-plane displacement w and the torsional displacement ¢ are
coupled to each other.
The natural frequencies, w,, can now be obtained by assuming [5, 7] that

U= Clel(n()fwnt)7

v = 02ei(n()7w”t)7 W= C3ei(n07wnl), ¢ _ C4ei(n()7w,,t)’ (26)
which lead to characteristic equations. In the above, ¢, ¢, ¢3, and ¢4 are arbitrary
constants, n is an integer, and i = v/—1. The characteristic equation for the in-plane
bending and extensional vibrations is obtained from the condition for equations (22) and
(23) to have non-trivial solutions after substituting u and v of equations (26) into equations
(22) and (23). The characteristic equation can then be solved numerically for the natural
frequencies, provided all the parameters are specified. In general, four natural frequencies
are obtained for each value of n. Two of them are predominantly associated with the in-
plane bending vibration, and the other two are related to the extensional vibration.
Similarly, the natural frequencies of the out-of-plane bending and torsional vibrations can
be calculated from the characteristic equation obtained from the condition for equations
(24) and (25) to have non-trivial solutions when w and ¢ are given by equations (26). In
this case, for each value of n, two of the four natural frequencies are predominantly related
to the out-of-plane bending vibration, and the other two are related to the torsional
vibration.

To verify the computation of the natural frequencies, consider a numerical example of a
steel ring with p = 7850 kg/m3, E=207GPa, G=80GPa, R=100mm and b=h=
2mm. The lowest natural frequencies of each vibration mode are computed from the
characteristic equations when = 0, and they are compared to the values obtained from
Blevins [12]. The comparison of the lowest natural frequencies for the in-plane and out-of-
plane bending modes and the extensional and torsional modes are shown in Table 1 where
these frequencies agree well with each other. In the in-plane and out-of-plane bending
modes, n = 2 corresponds to modes with the lowest frequencies because n =0 and 1
represent the rigid-body motions of the ring. Meanwhile, in the extensional and torsional
modes, n=0 corresponds to the uniform radial expansion and twist modes with the lowest
natural frequencies.

The natural frequencies of the rotating ring are verified and analyzed. Figure 2(a) and
(b) show the natural frequencies of the in-plane and out-of-plane bending modes,
respectively, as functions of . In these figures, the solid and dotted lines indicate results
for n = 2 and 3 respectively. When the ring rotates, the natural frequency of each mode for
the stationary ring branches into two. In general, these branches represent the natural

TABLE 1

Lowest natural frequencies (radls) of each vibration mode when Q =0

Vibration mode In this study Reference [12]
In-plane bending mode (when n = 2) 795 796
Out-of-plane bending mode (when n = 2) 773 756
Extension mode (when n = 0) 51351 51351

Torsion mode (when n = 0) 36311 36311
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Figure 2. Natural frequencies w, of the bending modes versus the rotational speed Q for (a) the in-plane
vibration and (b) the out-of-plane vibration: SH=2; e e e ,n=23.

frequencies for the forward and backward travelling waves [5, 13]. A point to be noted in
Figure 2 is that frequencies at Q2 = 0 for the in-plane and out-of-plane bending modes are
almost the same because the cross-section of the ring is square, namely, b = h. However, as
Q is increased from 0, the differences between the natural frequencies for the in-plane and
out-of-plane bending modes are increased. Shown in Figures 3 and 4 are the natural
frequencies for the extensional and torsional modes, respectively, versus Q. It is seen that
the frequencies are much higher than those of the flexural bending vibrations. So,
investigations will be focused on the flexural bending vibrations, which are of main interest
from the practical point of view, in the next section.

4. EFFECTS OF THE NON-LINEAR TERMS

Some modelling issues regarding the effects of the non-linear terms in equation (3) on
the flexural bending natural frequencies are discussed in this section. For clear
explanation, the model of circumferential stress and strain used to obtain the non-linear
equations (14)—(17) is called Model 1. As summarized in Table 2, Model 1 used the non-
linear circumferential strain and stress to obtain the strain energy of the ring. Three more
models shown in Table 2 will now be treated to compute the in-plane and out-of-plane
flexural bending natural frequencies. Model 2, based on the von Karman strain theory,
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Figure 4. Natural frequencies w, of the torsional modes versus the rotational speed Q: ——,n=0; --- -+ --- s

n=1.

is the case when the quadratic term of the linear normal strain, (Eé)z, is neglected in
equation (3) based on an assumption that the term is much smaller than the quadratic
terms related to the in-plane and out-of-plane rotations, ((]5[)2 and ((]50)2 respectively. The
similar model of the circumferential strain for the in-plane vibration can be found in
reference [6]. In Model 2, the non-linear circumferential stress is obtained by the usual
manner, 6g = E¢g. The next model, i.e., Model 3, is the case when all non-linear strain
terms in equation (3) are retained, but only the linear portion is used to get circumferential
stress. As a result, Model 3 uses the non-linear circumferential strain and the linear
circumferential stress; this kind of model can sometimes be found in the literature of the
vibrations of rotating disks [14, 15]. The final model, Model 4, is a linear model in which
the linear circumferential strain and stress are used.

The flexural bending natural frequencies are investigated for the four models shown in
Table 2. Figure 5(a) and (b), for the in-plane and out-of-plane flexural bending vibrations,
respectively, show the flexural bending natural frequencies w, when n = 2 as functions of
the rotational speed Q. The non-linear in-plane flexural vibration has been widely studied
by many authors as mentioned in section 1. However, the results for the non-linear out-of-
plane vibrations have not yet been reported in the literature to the authors’ knowledge. In
Figure 5, the solid, dashed and dotted lines stand for results obtained from Model 1,
Model 3 and Model 4, respectively, and the circles indicate results from Model 2. From the
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TABLE 2
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Circumferential strain and stress of the four models used to investigate the effect of the
non-linear terms on the natural frequencies

Case Circumferential strain and stress

Model 1

o =+ 3 (@) + (80 + (B, P) + 50— 5 (6, — )

1

o0 = E{at + 36 + (0°

@+ 5 - 56— 0}

D1+ %0 -5 (8- )

Model 2 |
f0 =8 +35 (4. + (¢
0= {5 43100+ 01+ 56— 50— )}
e o =B+ 3 [E + (80 + (0] + 2~ = (8~ 9)
o0 = E{ef + 20/ = (¢, - 0)}
Model 4

results presented, it can be stated in general that all four models give similar results at a
very low rotational speed. For instance, the frequencies of the limiting case of a stationary

ring (i.e., @ = 0) in Figure 5 can be represented by
oy =\a— /o2 = f,
where, for the in-plane flexural vibration,
_ SE(4l; + AR?) B ﬂzl,
2pAR* p?ARS
and, for the out-of-plane flexural vibration,

. EI,(16Ip + AR*) + 4GIp(Ip + AR?)
N 2pARIp '

p=

(27)
(28)

36EGI,
=i (29)

Note that the same results are obtained from all models when Q = 0. However, the
differences between some models become significant as Q increases. These differences are
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Figure 5. Comparisons of the natural frequencies w, of the in-plane and out-of-plane bending modes when
n = 2: (a) the in-plane vibration; (b) the out-of-plane vibration; , Model 1; 0 0 0 0, Model 2; ————, Model 3;
--------- , Model 4.

due to the existence of the centrifugal force. This phenomenon usually called the stiffening
effect can also be observed for rotating disks, plates, and beams [16]. Note that the
stiffening effect in the rotating ring could not be captured without considering the non-
linear terms of equation (3). With this in mind, it can be suggested to use Model 1 or 2
instead of the simplified Model 3 or 4 for predicting the flexural bending natural
frequencies at a high rotational speed. It is also seen that there is no large difference
between the results obtained from Model 1 and Model 2. So, it may be beneficial to use
Model 2 instead of Model 1 because the former is simpler than the latter. Finally, it is
interesting to note the study of Endo et al [13] for the non-linear in-plane vibrations. In
their work, it was ascertained by theoretical and experimental investigations for the in-
plane flexural bending modes of a rotating ring that no instability phenomenon exists, in
the sense that the frequencies never become zero over the whole range of the rotational
speed. Similarly, the natural frequencies for the out-of-plane bending vibrations of Models
1 and 2 in this study do not become zero over the practical operation ranges of the
rotational speed, as shown in Figure 5(b).

It is now valuable to check whether or not the in-plane natural frequencies obtained
from Model 2 are consistent with the results in the literature. The equation for the in-plane
natural frequency found in references [5, 13] may be written as

2n nn— 17 @
= |l—0Q+ K|, 30
On = \/(n2—|—1) (n2+1+ ) (30)
where
ED?
=—" 31
12pR* (31)

Although equation (30) was given under the assumption of inextensional deformation, the
results were verified by the experiments in reference [13]. It should also be noted that
equation (30) is obtained from the equations of motion derived when the ring is observed
in the rotating co-ordinate system. So, the equations of motion for Model 2 have to be
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Figure 6. Comparison of the in-plane bending natural frequencies w, for n = 2 when the ring is observed in
the rotating co-ordinate system: , reference [13]; 0 0 0 0, Model 2.

derived in the rotating co-ordinate system (i.e., 6 is measured from the ring-fixed rotating
axis) to compare the natural frequencies of the model with equation (30). In this case,
equation (13) should be replaced by

T= %/ / [Fpip + (2 + ) + Q2% dA do, (32)
0JA

where
p = (it — Qu)e, + (0 + Qu + QR)eg + ve.. (33)

In Figure 6, which shows the in-plane flexural bending frequencies versus Q, the natural
frequencies represented by the circles are obtained by the same procedure used to get the
results of Model 2 in Figure 5(a). As shown in Figure 6, the frequencies of Model 2
coincide with those of equation (30) plotted by the solid line. Therefore, since the in-plane
natural frequencies of Model 2 agree well with the results verified by the experiments, the
model may be used to predict effectively the bending natural frequencies of the non-linear
out-of-plane vibration.

5. SUMMARY AND CONCLUSIONS

Equations of motion for a ring rotating at a constant speed have been derived. To
account properly for the effects of the stress generated by the centrifugal force due to
rotation, the non-linear circumferential strain—displacement relation instead of the
infinitesimal strain theory are used. The final governing equations derived by Hamilton’s
principle are coupled, non-linear, partial differential equations that cover the out-of-plane
flexural bending and torsional motions as well as the in-plane flexural bending and
extensional motions.

In order to compute the natural frequencies from the non-linear equations, the
linearized equations of motion at the equilibrium position are obtained by the
perturbation method. The natural frequencies of the rotating ring are calculated from
the linearized equations at various rotational speeds. It is shown that the natural frequency
of each mode for the stationary ring branches into two when the ring rotates.

Finally, several non-linear models for the circumferential stress and strain are discussed
to determine which model is appropriate to describe the non-linear behaviour more
precisely. Focusing on the flexural bending natural frequencies, the non-linear models are
compared with the linear model. At a very low rotational speed all models give similar
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results, but the significant differences are observed due to the stiffening effect as a speed
increases. Therefore, it is suggested to use Model 1 or Model 2 with the non-linear stress
and strain for predicting the bending natural frequencies at a high rotational speed. It is
also found in these models that dynamic instability does not exist over the practical ranges
of a rotational speed.
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