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In this paper, the false degeneracy of the Helmholtz boundary integral equations is
examined. A new theory to explain the false degeneracy of the Helmholtz boundary
integral equations is given. In this proposed theory, a false degeneracy of the boundary
integral equation is explained as finding a non-trivial source distribution such that it results
in trivial field quantities inside the domain interested and non-trivial field quantities for its
counter part, i.e., outside the domain interested. It is clearly explained that such a false
degeneracy is independent of prescribed boundary conditions but dependent on the integral
equation one selects. Moreover, the false degeneracy of the integral equation for the
interested domain relates to the eigenproblem for its counter part. Under such a unified
theory, the fictitious eigenvalue, spurious eigenvalue and pseudo-fictitious eigenvalue can
be explained in a simple mathematical frame. It is concluded from our theoretical analysis
that a multiply connected domain results in the pseudo-fictitious eigenvalue even the
complex-valued formulations are used. In order to eliminate various kinds of false
degeneracy, two methods are employed according to the previous research. A unified view
of these two methods is provided such that they can be thought to be equivalent from
mathematical point of view. Several numerical examples are given to show the validity of
current approach.

# 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

The eigenproblem is very important in engineering. For design engineers, the natural
frequencies of a structure system is essentially important since a catastrophic failure would
happen once the frequency of the driving force coincides with these natural frequencies.
Further, the mode superposition method is based on the analysis of an eigenproblem,
which is a well-known result of the Fredholm theory of the linear operator. Therefore, the
eigenproblem may be viewed as the first step to tackle the vibration problem.

Because of the complexity, some engineering problems ought to be solved by numerical
methods, e.g., the finite element method, the finite difference method and the boundary
element method. For treating the eigenproblem in the boundary element method, the
complex-valued formulation is required theoretically [1, 2]. In order not to deal with the
0022-460X/02/$35.00 # 2002 Elsevier Science Ltd. All rights reserved.
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complicate computation in complex-valued formulation, a simplified method using the
real-part formulation or imaginary-part formulation has been proposed by De Mey [3].
However, this simplified method will result in some side effects such as spurious
eigensolutions [4], and numerical instability in the imaginary-part formulation [5]. The
spurious eigenvalues can be easily detected by the set of dual boundary integral equations
since they cannot satisfy both equations (singular and hypersingular integral equations) at
the same time and thus must not be true eigenvalues. This idea was first proposed to filter
out the spurious eigenvalues by Chen and Wong [6]. It was later extended [7, 8] using the
singular value decomposition method to check the rank of an overdetermined system
constructed by the real-part singular and hypersingular integral equations together.
Another approach to eliminate spurious eigenvalues comes from the work of Chang et al.
[9]. In this work, they showed that the spurious eigenvalue could be detected within the
singular integral equation or hypersingular integral equation alone by simply moving the
artificial boundary of the domain partitioning, i.e., extra information from the counter
part of dual integral formulation is not necessary. Later, Kuo et al. [5] proposed a deep
insight of this new approach. They have explained that the occurrence of spurious
eigenvalues is due to the simultaneous rank deficiencies of the influence matrices that
appear at the right-hand side and left-hand side of the equations constructed by the
incomplete BEM. It means that an indefinite form of 0/0 is encountered in this
formulation. Besides, Kuo et al. also gave an explanation and the solution technique for
the ill-posed behavior of a regular formulation, i.e., the formulation without any singular
integrals and hypersingular integrals. The regular formulation is not our major concern
and a review of the literature relating to this topic can be found in reference [5].

The main goal of this research is to solve the eigenproblem by various singular-type
direct BEM formulations with the domain partitioning technique as the beginning. The
reason why we concern this kind of problem is given as follows. For solving a spatially
distributed loading case, the domain partition becomes necessary in order to separate the
domain into a loaded zone and an unloaded one [10]. Moreover, a domain partition
technique is also necessary for a domain composed by several different materials. After
domain partitioning, one can solve the integral equations resulting from each subdomain
and the interface transmission conditions together. As shown in our previous work [9], one
can expect that the spurious eigenvalues for the real-part formulation may occur at
different values when the partitioning position moves. We will demonstrate this in one of
our numerical examples. Furthermore, when the domain partition is adopted it is possible
for us to have a subdomain that is a multiply connected region in nature. For such a
multiply connected subdomain, we find numerically and analytically that a new type of
spurious eigenvalues exists no matter a real-part or a complex-valued formulation is
adopted. The main contribution of this research is in a higher level than solving an
eigenproblem with domain partitioning. We try to unify all phenomena of the false
degeneracy for the Helmholtz boundary integral equation in a single mathematical frame.

In what followings, section 2 describes the theoretical background on the dual direct
BEM formulation under the condition of domain partitioning for the free vibration
problem. In addition, the methods to filter out the spurious eigenvalue are briefly
reviewed. Moreover, several analytical derivations of true or spurious eigenvalues for
different designed numerical examples are also included here. To unify all kinds of the
false degeneracy, a mathematical theory is given in section 3. Under such a theory, several
facts can be yielded simply. In section 4, numerical examples are employed to validate the
analytical prediction. At the same time, some interesting discoveries explored on the
numerical and analytical results will also be addressed here. Finally, we close with some
important conclusions by recasting the current research in section 5.
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2. THEORETICAL BACKGROUND AND DERIVATIONS

2.1. DUAL INTEGRAL FORMULATIONS FOR A TWO-DIMENSIONAL VIBRATION PROBLEM OF

A MEMBRANE

Considering a free vibration problem for a 2-D membrane, the governing equation is

ðr2 þ k2ÞuðxÞ ¼ 0; x 2 O ð1Þ

where uðxÞ represents the displacement at point x; r2 is the Laplacian operator, O is the
domain considered and k is the wave number which is the frequency over the wave speed.
Based on the complex-valued dual formulations, the dual integral equations for the direct-
BEM can be derived [11]:

(direct, singular integral equation: UT equation)

cuðsÞ ¼ RPV

Z
G

UCðx; sÞtðxÞ dGðxÞ � CPV

Z
G

TCðx; sÞuðxÞ dGðxÞ; ð2Þ

(direct, hypersingular integral equation: LM equation)

ctðsÞ ¼ CPV

Z
G

LCðx; sÞtðxÞ dGðxÞ � HPV

Z
G

MCðx; sÞuðxÞ dGðxÞ; ð3Þ

where CPV ; RPV and HPV denote the Cauchy principal value, the Riemann principal
value and the Hadamard principal value respectively; tðsÞ � @uðsÞ=@ns with ns denotes the
outnormal direction at point s; G denotes the boundary enclosing O: It should be noted
that when s 2 O; the constant, c; is equal to 2p; while s 2 G and s =2 O; c is equal to p on
the smooth boundary. The four kernels are complex with the following properties:
ðr2 þ k2ÞUCðx; sÞ ¼ 2pdðx� sÞ and UCðx; sÞ satisfies the radiation condition, TCðx; sÞ �
@UCðx; sÞ=@ns; LCðx; sÞ � @UCðx; sÞ=@nx and MCðx; sÞ � @2UCðx; sÞ=@ns@nx: As well
known, the real-part BEM has been adopted to avoid the complex-valued calculations
for the computational efficiency. The four real-part kernels of the complex-valued ones are
defined as

URðx; sÞ � RealðUCðx; sÞÞ; TRðx; sÞ � RealðTCðx; sÞÞ;

LRðx; sÞ � RealðLCðx; sÞÞ; MRðx; sÞ � RealðMCðx; sÞÞ:

Details of various boundary integral formulations of direct type can be referred in
reference [5]. Since we will adopt domain partitioning in the following numerical examples,
a brief introduction of constructing integral equations in such a scheme is given as follows.
Consider the domain is partitioned as shown in Figure 1, after performing a finite
discretization in each subdomain, equations (2) and (3) can be symbolically written as a set
of linear algebraic equations with the boundary and interface conditions in the following:

(direct, singular integral equation: UT equation)

Trr Tri Urr Uri

Tir Tii Uir Uii

lr 0 mr 0

0 ci 0 0

0 0 0 di

2
6666664

3
7777775

ur

ui

tr

ti

2
6664

3
7775 ¼

0

0

0

0

0

2
6666664

3
7777775
; ð4Þ



Real boundary node

Interface boundary node

Ω  =  Ω i + Ω j

 Ω j
Ω i

Γ iΓ i

u i

t i

u j

t j

:

:

Figure 1. An illustrative idea of domain partitioning.
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(direct, hypersingular integral equation: LM equation)
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0
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0

2
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; ð5Þ

where the subscript r denotes the collocation on the real boundary, subscript i denotes the
collocation on the interfaces between subdomains; lrur þmrtr ¼ 0 represents the boundary
condition given on the real boundary; ciui ¼ 0 and diti ¼ 0 represent the interface
transmission conditions.

It should be noted that in equations (4) and (5), either the complex-valued or real-valued
kernels can be used and these equations actually combine all the information including the
described boundary integral equations, boundary conditions and interface conditions
together in a matrix form. We refer to such an approach subsequently as the conventional
approach.

2.2. TECHNIQUES OF ELIMINATING SPURIOUS EIGENVALUES

The real-part formulation will result in spurious eigenvalues. Yeih et al. [12] explained
the reason of spurious eigenvalues as lacking information contributed by the imaginary
part kernel. To filter out spurious eigenvalues, two methodologies have been proposed and
will be briefly reviewed in the followings.

The first method simply tries to compensate the insufficient information by providing
further information from the framework of dual integral equations. It means to construct
an overdetermined system using both real-part equations (singular and hypersingular) and
the rank deficiency occurring at the spurious eigenvalue can be avoided due to additional
information [7, 8].

Another approach comes from a different point of view [5]. Considering that not to use
another equation from the dual integral equations, can one give additional information?
Kuo et al. [5] proposed that one could construct an auxiliary boundary value problem with
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linearly independent boundary conditions. These two problems can be combined together
to pick out the spurious eigenvalues since they proved that for these two problems the
spurious eigensolutions must be the same.

Although the above-mentioned two methods look different, they can be related as in the
following. Remember that for the second method, 0/0 form is encountered. Analytically
speaking, the value can only be determined by performing the L’Hospital rule, which
means to give the information form the derivative of original functions. Let us look back
to the first approach, the hypersingular integral equation happens to be the normal
derivative of the singular integral equation. Therefore, they can compensate each other to
perform L’Hospital rule due to the sufficient information.

2.3. ANALYTICAL STUDY FOR RANK DEFICIENCIES

In the following, we will employ the properties of the circulant and degenerated kernel
to derive the rank deficiencies, either true eigenvalues or spurious ones, of influencing
matrices for several cases. The detailed derivation can be found in references [5, 13]. Now
considering that a source, s; is located on a circular boundary with radius R and a
collocation point, x; is located on another circular boundary with radius %rr: These two
circles have a common center, says O that is defined as the origin. The angle between
position vectors of x and s is defined as y and the distance between these two points is
defined as r: The setup of above-mentioned notations is shown in Figure 2. Then from the
properties of the degenerated kernel, one has

Y0ðkrÞ ¼Y0ðk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ %rr2 � 2R%rr cos y

p
Þ

¼
P1

m¼�1 YmðkRÞJmðk%rrÞcosðmyÞ for R > %rr;P1
m¼�1 JmðkRÞYmðk%rrÞcosðmyÞ for %rr > R

(
ð6Þ
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Figure 2. An illustration of source points and collocation points.
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and

J0ðkrÞ ¼ J0 k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ %rr2 � 2R%rr cos y

p� 

¼
X1

m¼�1
JmðkRÞJmðk%rrÞcosðmyÞ ð7Þ

Without lengthy derivation, results are shown directly in Tables 1–3.
In Table 2, we try to analyze the eigenproblem of a circular domain by partitioning it

into two subdomains: a circle with a radius r2 and an annular region with an inner radius
r2 and an outer radius r1: It can be found in Table 2 that a new type of spurious eigenvalue
occurs when a complex-valued formulation is used. Chang [14] named this type as the
pseudo-fictitious eigenvalue. Chang pointed out that this pseudo-fictitious eigenvalue
occurs due to the geometry of a multiply connected domain. He showed analytically by
using an annular region with an inner radius r2 and an outer radius r1 giving different
boundary conditions. These results are shown in Table 3. It can be found that the pseudo-
fictitious eigenvalue occurs again no matter which kind of boundary conditions is
prescribed in this problem.

From these two tables, one can find two interesting things: first, the false rank
deficiency, no matter whether due to the spurious eigenvalue or pseudo-fictitious
eigenvalue, is independent of boundary condition but dependent on which integral
equation one uses; second, once the integral equation is chosen the pseudo-fictitious
Table 1

Characteristics of eigenequations for a circular domain by using various dual BEM

formulations

True eigenequation Spurious eigenequation

Dirichlet case
Complex UT formulation JmðkrÞ ¼ 0 }
Complex LM formulation JmðkrÞ ¼ 0 }
Real-part UT formulation JmðkrÞ ¼ 0 YmðkrÞ ¼ 0
Real-part LM formulation JmðkrÞ ¼ 0 Y0

mðkrÞ ¼ 0

Neumann case
Complex UT formulation J0mðkrÞ ¼ 0 }
Complex LM formulation J0mðkrÞ ¼ 0 }
Real-part UT formulation J0mðkrÞ ¼ 0 YmðkrÞ ¼ 0
Real-part LM formulation J0mðkrÞ ¼ 0 Y0

mðkrÞ ¼ 0



Table 2

Characteristics of eigenequations for a partitioned circular subdomain and an annular

circular one by using various dual BEM formulations

True
eigenequation

Pseudo-fictitious
eigenequation

Spurious eigenequation

Dirichlet case
Complex UT formulation Jmðkr1Þ ¼ 0 Jmðkr2Þ ¼ 0 }
Complex LM formulation Jmðkr1Þ ¼ 0 J0mðkr2Þ ¼ 0 }
Real-part UT formulation Jmðkr1Þ ¼ 0 Jmðkr2Þ ¼ 0 Ymðkr1Þ ¼ 0 and Ymðkr2Þ ¼ 0
Real-part LM formulation Jmðkr1Þ ¼ 0 J0mðkr2Þ ¼ 0 Y0

mðkr1Þ ¼ 0 and Y0
mðkr2Þ ¼ 0

Neumann case
Complex UT formulation J0mðkr1Þ ¼ 0 Jmðkr2Þ ¼ 0 }
Complex LM formulation J0mðkr1Þ ¼ 0 J0mðkr2Þ ¼ 0 }
Real-part UT formulation J0mðkr1Þ ¼ 0 Jmðkr2Þ ¼ 0 Ymðkr1Þ ¼ 0 and Ymðkr2Þ ¼ 0
Real-part LM formulation J0mðkr1Þ ¼ 0 J0mðkr2Þ ¼ 0 Y0

mðkr1Þ ¼ 0 and Y0
mðkr2Þ ¼ 0
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eigenvalue depends on the geometry of inner hole only. However, in Chang’s dissertation
the general proofs for these two findings were not provided.

3. A GENERAL THEORY FOR THE FALSE DEGENERACY OF BOUNDARY INTEGRAL
EQUATIONS

3.1. FALSE DEGENERACY IN INDIRECT BEM

Before we provide our new point of view, we first review the integral equations from
another aspect: the indirect BEM. The indirect BEM represents the field quantities by
superposition of the influence of the single-layer potential or a double-layer potential. It
can be written as

(indirect method: single-layer potential)

puðxÞ ¼
Z
G

UCðx; sÞfðsÞ dGðsÞ; ð8aÞ

ptðxÞ ¼
Z
G

@UCðx; sÞ
@nx

fðsÞ dGðsÞ ¼
Z
G

LCðx; sÞfðsÞ dGðsÞ ð8bÞ



Table 3

Characteristics of eigenequations for an annular circular domain by using various dual BEM

formulations

True
eigenequation

Pseudo-
fictitious

eigenequation

Spurious
eigen-

equation

Dirichlet case
Complex UT formulation Jmðkr2ÞYmðkr1Þ � Jmðkr1ÞYmðkr2Þ ¼ 0 Jmðkr2Þ ¼ 0 }
Complex LM formulation Jmðkr2ÞYmðkr1Þ � Jmðkr1ÞYmðkr2Þ ¼ 0 J0mðkr2Þ ¼ 0 }
Real-part UT formulation Jmðkr2ÞYmðkr1Þ � Jmðkr1ÞYmðkr2Þ ¼ 0 Jmðkr2Þ ¼ 0 Ymðkr1Þ ¼ 0
Real-part LM formulation Jmðkr2ÞYmðkr1Þ � Jmðkr1ÞYmðkr2Þ ¼ 0 J0mðkr2Þ ¼ 0 Y0

mðkr1Þ ¼ 0

Neumann case
Complex UT formulation J0mðkr2ÞY0

mðkr1Þ � J0mðkr1ÞY0
mðkr2Þ ¼ 0 Jmðkr2Þ ¼ 0 }

Complex LM formulation J0mðkr2ÞY0
mðkr1Þ � J0mðkr1ÞY0

mðkr2Þ ¼ 0 J0mðkr2Þ ¼ 0 }
Real-part UT formulation J0mðkr2ÞY0

mðkr1Þ � J0mðkr1ÞY0
mðkr2Þ ¼ 0 Jmðkr2Þ ¼ 0 Ymðkr1Þ ¼ 0

Real-part LM formulation J0mðkr2ÞY0
mðkr1Þ � J0mðkr1ÞY0

mðkr2Þ ¼ 0 J0mðkr2Þ ¼ 0 Y0
mðkr1Þ ¼ 0

Outer radius: Dirichlet
Inner radius: Neumann

Complex UT formulation J0mðkr2ÞYmðkr1Þ � Jmðkr1ÞY0
mðkr2Þ ¼ 0 Jmðkr2Þ ¼ 0 }

Complex LM formulation J0mðkr2ÞYmðkr1Þ � Jmðkr1ÞY0
mðkr2Þ ¼ 0 J0mðkr2Þ ¼ 0 }

Real-part UT formulation J0mðkr2ÞYmðkr1Þ � Jmðkr1ÞY0
mðkr2Þ ¼ 0 Jmðkr2Þ ¼ 0 Ymðkr1Þ ¼ 0

Real-part LM formulation J0mðkr2ÞYmðkr1Þ � Jmðkr1ÞY0
mðkr2Þ ¼ 0 J0mðkr2Þ ¼ 0 Y0

mðkr1Þ ¼ 0
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Outer radius: Neumann
Inner radius: Dirichlet

Complex UT formulation Jmðkr2ÞY0
mðkr1Þ � J0mðkr1ÞYmðkr2Þ ¼ 0 Jmðkr2Þ ¼ 0 }

Complex LM formulation Jmðkr2ÞY0
mðkr1Þ � J0mðkr1ÞYmðkr2Þ ¼ 0 J0mðkr2Þ ¼ 0 }

Real-part UT formulation Jmðkr2ÞY0
mðkr1Þ � J0mðkr1ÞYmðkr2Þ ¼ 0 Jmðkr2Þ ¼ 0 Ymðkr1Þ ¼ 0

Real-part LM formulation Jmðkr2ÞY0
mðkr1Þ � J0mðkr1ÞYmðkr2Þ ¼ 0 J0mðkr2Þ ¼ 0 Y0

mðkr1Þ ¼ 0
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and
(indirect method: double-layer potential)

puðxÞ ¼
Z
G

@UCðx; sÞ
@ns

cðsÞ dGðsÞ ¼
Z
G

TCðx; sÞcðsÞ dGðsÞ; ð9aÞ

ptðxÞ ¼
Z
G

@2UCðx; sÞ
@nxqns

cðsÞ dGðsÞ ¼
Z
G

MCðx; sÞcðsÞ dGðsÞ; ð9bÞ

where G is a closed boundary, fðsÞ is the single-layer potential density function and cðsÞ is
the double-layer potential density function. From the equivalency of direct and indirect
BEMs, it can be proved that

fðsÞ ¼ t½ � ¼ text þ tint ð10Þ
and

cðsÞ ¼ u½ � ¼ uext � uint; ð11Þ
where superscript ‘‘ext’’ means the domain we treat is an infinite domain with a hole
enclosed by G; superscript ‘‘int’’ means the domain we treat is a finite domain enclosed by
G and [ ] means the jump of values obtained from two problems as shown in Figure 3.

Now let us give a definition of the false degeneracy of indirect BEMs by the following
proposition.

Proposition. When a non-trivial source density (single or double layer) distributes on a

closed boundary G and it makes field quantities u and t in the interested domain, having G as

part of its boundary, trivial at the same time, such a potential will result in a false degeneracy

of the integral equation. The field quantities u and t cannot be both trivial everywhere in the

counter part of the interested domain, which is equal to the free space minus the interested

domain.

This proposition is evidently true because it has been proved in reference [5] that at the
true eigenvalue field quantities cannot be trivial at the same time. The reason why we
introduce the indirect method is given as follows. First of all, the indirect method is more
general than the direct one from mathematical point of view. In indirect methods, the
distribution of a source density needs not to be on the real boundary while the direct
methods require the boundary should be the real one. Another reason is that the indirect
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Γ 

Γ 
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∞ 

Figure 3. A closed boundary G; an interior domain and an exterior domain.
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method actually deals with a problem with an infinite domain (free space). Therefore, we
can easily explain why the false degeneracy of the integral equation for a domain occurs at
the wave number that makes true degeneracy of the integral equation for its counter part,
that is a domain equal to the infinite free space minus the interested domain.

3.2. NO SPURIOUS EIGENVALUES EXIST IN SOLVING THE EIGENPROBLEM OF A SIMPLY

CONNECTED FINITE DOMAIN USING COMPLEX-VALUED KERNELS

Theorem 1. For a simply connected domain, no false degeneracy exists in the single-layer

potential method (double-layer potential method) using the complex-valued fundamental

solution.

Proof. For simplicity, only the single-layer potential is considered. The proof of double-
layer potential method is similar to the following proof.

Now let us assume the interested simply connected domain is enclosed by the boundary
G and there exists a non-trivial single-layer density to make u and t both trivial inside
the domain. This means uint ¼ 0 and tint ¼ 0: Then from equations (10) and (8a) and
continuity of u for the single-layer potential, it can be concluded that

fðsÞ ¼ textðsÞ; ð12Þ

0 ¼ puextðxÞ ¼
Z
G

UCðx; sÞtextðsÞ dGðsÞ; ð13Þ

when x approaches boundary from the exterior domain. However, taking the normal
derivative of equation (13), it yields

0 ¼ ptextðxÞ ¼
Z
G

LCðx; sÞtextðsÞ dGðsÞ ¼ fðxÞ: ð14Þ

From equations (13) and (14), we have a physical problem for an infinite domain with a
radiator having trivial boundary excitation, i.e., u and t both are trivial on the surface. It is
then obvious that the solution is the trivial field, which leads to a contradiction.
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Another point of view is to look at equation (12) only, it means the problem we are
dealing with is an infinite domain with a radiator with boundary condition of u ¼ 0: From
a previous result in reference [15], the only solution is a trivial one. It leads to a
contradiction; therefore, it is impossible to have a false degeneracy. &

Due to the equivalency of direct and indirect methods, one can have the following
corollary.

Corollary 1. For a simply connected domain, no false degeneracy exists in the direct singular

(hypersingular) integral equation using a complex-valued fundamental solution.

Proof. Again, only the direct singular integral equation is considered and the proof of the
hypersingular integral equation is similar to that of the singular integral equation. Suppose
we can obtain a false degeneracy in the direct singular integral equation using a complex-
valued fundamental solution. It means that we can have a trivial field, u ¼ 0 and t ¼ 0;
inside the domain. Then we have

0 ¼ puintðsÞ ¼ RPV

Z
G

UCðx; sÞtintðxÞ dGðxÞ � CPV

Z
G

TCðx; sÞuintðxÞ dGðxÞ; ð15Þ

when s approaches the boundary from the interior domain. Now let us consider its
counterpart, the exterior problem, we have

puextðsÞ ¼ RPV

Z
G

UCðx; sÞtextðxÞ dGðxÞ � CPV

Z
G

TCðx; sÞuextðxÞ dGðxÞ; ð16Þ

when s approaches the boundary from the exterior domain. Assume that a non-trivial
solution exists for the exterior problem with a boundary condition as auext þ btext ¼ 0;
equation (16) can be rewritten as

puextðsÞ ¼ pbzðsÞ

¼ � a
Z
G

UCðx; sÞBðxÞ dGðxÞ � b
Z
G

TCðx; sÞBðxÞ dGðxÞ;
ð17Þ

where uextðsÞ ¼ bBðsÞ; textðsÞ ¼ �aBðsÞ a and b cannot be both trivial at the same time.
Let us now construct its corresponding indirect integral equations from equations (8a)

and (8b), we have

puextðxÞ ¼ pbBðxÞ ¼ �a
Z
G
BðsÞUCðx; sÞ dGðsÞ; ð18aÞ

ptextðxÞ ¼ �paBðxÞ ¼ �a
Z
G
BðsÞLCðx; sÞ dGðsÞ: ð18bÞ

Comparing equation (18a) with equation (17) and by using the equality UCðx; sÞ ¼
UCðs; xÞ; we have

0 ¼
Z
G
bTCðs; xÞBðsÞ dGðsÞ ¼

Z
G
bLCðx; sÞBðsÞ dGðsÞ ð19Þ

by using the equality that TCðs; xÞ ¼ LCðx; sÞ: Equation (19) holds if b ¼ 0; however, that
means the exterior problem we are dealing with is a problem with uext ¼ 0 which is already
proved to have a trivial solution only as mentioned earlier. It leads to a contradiction thus
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b cannot be zero. It then can be concluded that
R
G LCðx; sÞBðsÞ dGðsÞ ¼ 0; then substituting

it into equation (18b), we have text ¼ 0 which immediately leads to uext=0 on the
boundary. It leads to a contradiction too. &

3.3. SPURIOUS EIGENVALUES EXIST IN THE REAL-PART BEM

It has been found earlier that when the real-part kernels are used instead of complex
kernels to solve the eigenproblem for a simply connected domain, spurious eigenvalues
exist in the direct real-part BEM. Yeih et al. [12] have explained this phenomenon as the
lack of information from the imaginary part of kernel functions. We will explain this
meaning more deeply in the following. Let us begin with an indirect method using a single-
layer potential. To take the real-part kernels in equations (8a) and (8b), we have the
following formulations:

puðxÞ ¼
Z
G

URðx; sÞfðsÞ dGðsÞ; ð20aÞ

ptðxÞ ¼
Z
G

LRðx; sÞfðsÞ dGðsÞ; ð20bÞ

when x is in the interior domain only. Remember that equations (8a) and (8b) are valid for
any x in a free space, it is quite different from equations (20a) and (20b). It is meaningless
to let x be in the exterior domain in equations (20a) and (20b). For the exterior domain,
equations (8a) and (8b) should be written as

puðxÞ ¼
Z
G

UCðx; sÞfðsÞ dGðsÞ

þ lim
jjsjj!1

Z
G1

UCðx; sÞtðsÞ dGðsÞ �
Z
G1

TCðx; sÞuðsÞ dGðsÞ
� �

; ð21aÞ

ptðxÞ ¼
Z
G

LCðx; sÞfðsÞ dGðsÞ

þ lim
jjsjj!1

Z
G1

LCðx; sÞtðsÞ dGðsÞ �
Z
G1

MCðx; sÞuðsÞ dGðsÞ
� �

; ð21bÞ

where G1 is the boundary at infinity. The integrals at infinity approach to zero since the
physical fields, u and t; satisfy the radiation condition at infinity and the complex-valued
kernel functions also satisfy the radiation condition. If we take the real-parts of kernels in
equations (21a) and (21b) and hope trivial quantity for integrals at infinity, it means we
have a ‘‘false’’ boundary condition for the physical quantities, u and t; as

lim
s!1

Z
G1

jjsjj½URðx; sÞtðsÞ � TRðx; sÞuðsÞ� df� ¼ 0; ð22Þ

where f� represents the relative angle of s vector and a unit vector in x-axis.
It leads to

lim
s!1

Z
G1

jjsjj½Y0ðk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jjs� xjj

p
ÞtðsÞ �Y0

0ðk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jjs� xjj

p
ÞuðsÞ� df� ¼ 0: ð23Þ
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Finally, by using the asymptotic expansion we can have

lim
s!1

Z
G1

ffiffiffiffiffiffiffiffi
jjsjj

p
cos k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jjs� xjj

p
� p

4

� 

tðsÞ � sin k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jjs� xjj

p
� p

4

� 

uðsÞ

h i
df� ¼ 0: ð24Þ

This condition is not a type of radiation condition, but it is then possible to have a non-
trivial field for this exterior domain. By doing so, it then makes an irrational degeneracy
for integral equations modelling an interior domain. The false degeneracy of integral
equations for analyzing a simply connected finite domain using real-part formulations
(direct or indirect) then can be understood as a wrongly posed problem by a
misinterpretation of the radiation condition. In the following, we will prove that when
we use the real-part BEM to deal with an eigenproblem of a simply connected domain, the
non-trivial field quantity for the exterior domain should not have a projection on the
Bessel functions of first kind.

If the source point, s; is located at a circle with radius R (R tends to infinity) and the
collocation point, x; is located at a circle with radius %rr; we can use equation (6) to rewrite
equation (23) as

lim
s!1

Z
G1

jjsjj Y0ðk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jjs� xjj

p
ÞtðsÞ �Y0

0ðk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jjs� xjj

p
ÞuðsÞ

h i
df�

¼ lim
R!1

Z
G1

R
X1

m¼�1
YmðkRÞJmðk%rrÞcosðmyÞtðsÞ �

X1
m¼�1

Y0
mðkRÞJmðk%rrÞcosðmyÞuðsÞ

 !
df�;

ð25Þ

where y is the relative angle between s vector and x vector and is of course a function
of f�:

The solution of u can be assumed to have a form of a linear combination of
JmðkrÞcosðmf�Þ; JmðkrÞsinðmf�Þ; YmðkrÞcosðmf�Þ and YmðkrÞsinðmf�Þ: If we choose a
Bessel function of first kind as a basis, said JpðkrÞcosðpf�Þ; then we substitute it into
equation (25) and further integrate it at the circle with radius R; we can conclude that this
integral cannot vanish since the following equality holds:

lim
R!1

ðY0
mðkRÞJmðkRÞ �YmðkRÞJ0mðkRÞÞ ¼ c�

R
; ð26Þ

where c� is a non-zero constant.
If we choose YpðkrÞcosðpf�Þ or YpðkrÞsinðpf�Þ as basis functions, it perfectly makes the

integral, equation (25), vanish. When p is not equal to m; the integral vanishes by the
orthogonal property of triangular functions. When p is equal to m; we have

lim
R!1

ðY0
mðkRÞYmðkRÞ �YmðkRÞY0

mðkRÞÞ ¼ 0: ð27Þ

Therefore, we can say that the spurious eigensolution using the real-part BEM must be
represented by a linear combination of YmðkrÞcosðmf�Þ and Ym(kr)sin(mf�). The
coefficients of these basis functions depend on which integral formulation you use. For the
singular integral formulation or single-layer potential formulation, we require a Dirichlet
boundary condition, uext ¼ 0; on boundary G: On the other hand, we require a Neumann
boundary condition, text ¼ 0; on the boundary G for a hypersingular formulation or a
double-layer formulation.
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3.4. FICTITIOUS EIGENVALUES EXIST FOR THE EXTERIOR UNBOUNDED DOMAIN

After understanding the false degeneracy of integral equations for a simply connected
finite domain, now let us consider an unbounded domain. It means we will examine the
fictitious eigenvalue in various formulations.

Theorem 2. For an unbounded domain with a radiator having a boundary G, the false

degeneracy occurs when the complex-valued, single-layer (double-layer) potential boundary

integral equation is used. The false characteristic wave numbers are the characteristic wave

numbers for the free vibration problem of the radiator prescribing the Dirichlet (Neumann)

boundary condition, u ¼ 0 ðt ¼ 0Þ.

Proof. Now we are looking for a non-trivial single-layer potential such that it makes a
trivial field outside the radiator and correspondingly a non-trivial field inside the radiator.
We need to prove the existence of such a single-layer potential, then to see what
characteristics it has. From our argument, we will have uext ¼ 0 and text ¼ 0 on the
boundary G: Then from the continuity of u in the single-layer potential approach, one can
have uint ¼ 0: It then leads to a problem of solving the eigenproblem of an interior domain
(radiator) with the Dirichlet boundary condition. At the characteristic wave number for
this specified eigenproblem, it then results in an irrational degeneracy for the integral
equation concerning the exterior unbounded domain. &

Furthermore, we can take a look at the following corollary for the direct BEM.

Corollary 2. For an unbounded domain with a radiator having a boundary G, the false

degeneracy occurs when the complex-valued, direct, singular (hypersingular) boundary

integral equation is used. The false characteristic wave numbers are the characteristic wave

numbers for the free vibration problem of the radiator prescribing Dirichlet (Neumann)

boundary condition, u ¼ 0ðt ¼ 0Þ.

It is not difficult to prove Corollary 2 by the same technique used in the proof of
Corollary 1. The only difference is that the interested domain now is the unbounded
domain, thus its counter part is a finite domain. Therefore, a key question is can one find
non-trivial boundary field quantities for the corresponding interior problem. The answer is
for sure positive because all finite domains may have a natural resonance once non-
dissipative boundary conditions are prescribed on the boundary. As usual, the type of
boundary condition relates to a single-layer potential approach or a direct, singular
integral equation is the Dirichlet type. On the other hand, the Neumann type boundary
condition relates to a double-layer approach or a direct, hypersingular integral equation.

3.5. PSEUDO-FICTITIOUS EIGENVALUES EXIST FOR A MULTIPLY CONNECTED FINITE

DOMAIN

We have examined a simply connected domain and an unbounded domain with a
radiator. To continue our exploration, we will take a look at a multiply connected domain.

Theorem 3. For a multiply connected domain shown in Figure 4 and the indirect, complex-

valued, single-layer (double-layer) potential boundary integral equation is used, the false

degeneracy, i.e., pseudo-fictitious eigensolution, depends on the eigenproblem of the inner

hole prescribing the Dirichlet (Neumann) condition.
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Figure 4. A multiply connected domain.

FALSE DEGENERACY OF THE HELMHOLTZ BIES 109
Proof. Let us first divide the whole space into three regions: the inner region (domain 1),
the interested domain (domain 2) and the exterior unbounded region (domain 3). We then
denote the field quantities, u and t, on the boundary with subscripts 1, 2 and 3,
respectively, to specify the domains currently being dealt with. From the above argument,
we can say that now we are looking for a non-trivial distribution of f on boundaries G1

and G2 such that u2 ¼ 0 and t2 ¼ 0 on G1 and G2: For domain 3, since u3 ¼ 0 on G1

(continuity of u) it can be concluded that t3 ¼ 0 on G1 physically. For domain 1, since
u1 ¼ 0 on G1 continuity of u), the non-trivial t1 on boundary G1 can be found at the
characteristic wave number for the Dirichlet problem of the domain 1. It then completes
the proof. &

A simple view of this proof is that for a multiply connected domain, the counter part of
an interested domain has two parts, domain 1 and domain 3. For domain 2, our interested
domain, domain 1 is an interior domain and domain 3 is an exterior domain. To seek the
possibility of the false degeneracy when modelling a domain with a boundary integral
equation is equivalent to seek a ‘‘physically’’ possible rank deficiency for its counter part.
Since domain 1 is interior to domain 2, the characteristic wave number of domain 1 makes
irrational degeneracy of integral equation for domain 2. Again, the type of these irrational
characteristic wave numbers depends on which integral equation one uses.

Finally, we will have the following corollary for the direct method by the equivalency of
the direct and indirect methods.

Corollary 3. For a multiply connected domain shown in Figure 4 and the direct, complex-

valued, singular (hypersingular) boundary integral equation is used, the false degeneracy,

i.e., pseudo-fictitious eigensolution, depends on the eigenproblem of the inner hole prescribing

the Dirichlet (Neumann) condition.

There are some interesting remarks worth mentioning here. First for all, if one let G1

extend to infinity, the false degeneracy (pseudo-fictitious eigensolution) then becomes the
well-known fictitious eigenvalue [16, 17]. Our proof reconfirms the results obtained in
Chen’s work [18]. However, our proof is much more general as compared with Chen’s
proof.

Furthermore, it is wondered what will happen for a multiply connected finite region
using a real-part BEM. It can be quickly concluded that another type of non-trivial
potential on boundary G1 becomes possible, and the corresponding false eigenequation
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Figure 5. A distribution of sources on a multiply connected type boundary results in the false degeneracy
when solving the eigneproblem of a simply connected domain.

W. YEIH ET AL.110
(spurious eigenequation) depends on the shape of G1 and the type of integral equations
one uses.

3.6. SOME REMARKS

Application of the general theory mentioned here can yield many interesting results. For
example, when we use the complex-valued single-layer potential to solve an eigenproblem
of a simply connected finite domain, it is possible to have degeneracy of integral equations
once we allow the potential distributes not only on a simple closed boundary. As shown in
Figure 5, we can arrange our single-layer potential on two closed curves. Then from our
argument, we can quickly conclude that the degeneracy of integral equations occurs at a
characteristic wave number of the corresponding Dirichlet problem of a multiply
connected domain enclosed by two curves where the single-layer potential distributes on.
Other application on the half-plane problem has been worked out and will be submitted
soon.

Before closing this section, we would like to give some comments here. The fictitious
eigenvalue (handling the radiation or scattering problem for an unbounded exterior
domain using the complex-valued formulation), the spurious eigenvalue (handling a free
vibration problem of a finite domain using the real-part BEM formulation) and the
pseudo-fictitious eigenvalue (handling a multiply connected finite domain using real-part
or complex-valued BEM formulation) are basically the same. Mathematically speaking,
they all encounter the rank deficiency problem in an indefinite form of 0/0. Furthermore,
finding such a rank deficiency is equivalent to a problem of finding a potential distribution
such that all the field quantities become trivial in the interested domain and non-trivial
field quantities exist in the counter part.

4. NUMERICAL EXAMPLES

In the following examples, we will validate our arguments mentioned in previous
sections. Let us begin with a circular membrane with radius equal to 1 and subjected to the
Dirichlet boundary condition. Using different direct BEMs will result in different spurious
eigenequations and these results are shown in Table 1. This case is a benchmark problem
mentioned in the earlier research. Now let us find what will happen when one solve this
simple problem by introducing a domain partition scheme.

Example 1. The unit circle domain is partitioned into two semi-circles.
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In this example, it is impossible for us to derive eigenvalues, true or false, analytically.
The purposes we design this numerical example are: first, we will verify that when a
domain is partitioned into several simply connected domains, pseudo-fictitious eigenvalues
will not appear as predicted in the previous section; second, by comparing the result of this
example with that of the next one, it will be concluded that the positions where the false
degeneracy occurs depend on the partitioning scheme.

In Figure 6, the complex-valued UT method is used to solve this problem. The singular-
value decomposition method is adopted to check the degeneracy of the influencing matrix.
It can be seen that in this partitioning scheme no false degeneracy occurs in the complex-
valued UT method. In this figure and following ones, the analytical values of degenerated
wave numbers are marked in the bracket once they are available.

Figure 7 illustrates the results obtained from the real-part UT method. Comparing these
results with those in Figure 6, it is easy to find that the real-part formulation results in
some unwanted rank deficiencies. Since these unwanted rank deficiencies do not appear in
the complex-valued BEM, it can be concluded that they are spurious eigenvalues.

Before closing this example, we combine the real-part UT and LM equations together to
construct an over-determined system as mentioned in section 2. As shown in Figure 8, it
can be found that this method successfully filters out spurious eigenvalues resulting from
the real-part formulation. It should be mentioned here that such a technique is not
superior to using the complex-valued UT or LM equation alone. When we combine the
real-part UT and LM equations together, it means that we have as many equations as we
have in the complex-valued UT or LM equation. It then becomes meaningless to adopt the
real-part formulation in the very beginning. However, using real-part formulations will
save computation effort in a problem involving a multiply connected domain as mentioned
in the following examples.
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Figure 6. Solving a Dirichlet problem of a unit circle using the complex-valued UT equation and partitioning
the domain into two semi-circles.
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Example 2. The unit circle now is divided into two regions, one is simply connected and
the other is multiply connected. The simply connected one is a circular domain with a
radius r2 ¼ 0�5 and the multiply connected domain is an annular region with an outer
radius r1 ¼ 1�0 and an inner radius r2 ¼ 0�5:
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In this example, a multiply connected domain is included in the domain partitioning. As
predicted from the previous section, the pseudo-fictitious type of degeneracy should
appear even in a complex-valued formulation. From Figures 9 and 10, we can find that
some unwanted rank deficiencies appear in this partitioning scheme no matter where the
complex-valued UT or LM formulation is used. We call this kind of rank deficiency as the
pseudo-fictitious eigenvalue.

Besides the pseudo-fictitious eigenvalues, the real-part formulation suffers another kind
of false degeneracy, the spurious eigenvalues. The above-mentioned results using the real-
part UT equation are shown in Figure 11.

Comparing these results obtained in this example with those in the previous one, it can
further be found that the false rank deficiencies appear in different wave numbers when the
partitioning scheme is changed. In our previous research [9], we have already pointed this
out. This method can be considered as another alternative to filter out the false rank
deficiencies. However, additional mesh is required and it becomes not economical in
numerical practice.

In the previous example, we have mentioned that a combined use of the real-part UT
and LM equations together does not save computation effort in the numerical sense.
However, in this example using real-part formulations is superior to using complex-valued
UT or/and LM equations. This is because of a multiply connected domain existing in the
partitioning scheme. When a multiply connected domain exists, even the complex-valued
UT or LM equation will result in false degeneracy. Therefore, using real-part UT and LM
equations together to construct an over-determined system indeed saves computation
effort as compared with using complex-valued formulations. In Figure 12, we can filter out
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Figure 9. Pseudo-fictitious eigenvalues appear in solving a Dirichlet problem of a unit circle using the
complex-valued UT equation and partitioning the unit circle into two subdomains: a circle and an annular region.
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all kinds of false rank deficiencies by combining the real-part UT and LM equations
together.
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Figure 12. Eliminating spurious and pseudo-fictitious eigenvalues by a combined use of the real-part UT and
LM equations.
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Example 3. An annular region with an outer radius equal to 1.0 and an inner radius equal
to 0.5 is considered.

In the previous example, the pseudo-fictitious eigenvalues are found. We have illustrated
in the previous example that this kind of false degeneracy occurs due to the existence of a
multiply connected domain. Now, let us solely look at this multiply connected domain.

First, let us prescribe the Dirichlet boundary condition on the boundary and use the
complex-valued UT method. As seen in Figure 13, the positions where pseudo-fictitious
eigenvalues occur are very close to the results in Figure 9. It then confirms our argument
that a multiply connected domain results in pseudo-fictitious rank deficiencies.

To eliminate the false degeneracy, we have proposed two alternatives in section 2.
Demonstrations for using singular and hypersingular equations together have been shown,
now let us take a look at another alternative. The second method to filter out the false
degeneracy is to perform an operation on the 0/0 indefinite form by the generalized
singular-value decomposition method. As mentioned in reference [5], the false rank
deficiencies occur simultaneously in the original problem and its auxiliary problem, whose
boundary condition is homogeneous, linearly independent of the original problem. For a
Dirichlet problem, one can use the Neumann problem as its auxiliary problem. The real-
part UT equation is adopted here. In Figure 14(a), we have rank deficiencies of the

original problem. In Figure 14(b), we have rank deficiencies of
h

UT
R

TT
R

i
The common

eigenvalues in both graphs are false ones as proved in reference [5].
We further claim that the pseudo-fictitious or spurious eigenvlaues are independent of

boundary conditions. Now let us take a look at the Neumann problem. We here adopt the
real-part UT equation to analyze the eigenproblem. As shown in Figure 15, we can find
out that both the pseudo-fictitious or spurious eigenvalues are very close to the results of
the Dirichlet problem as shown in Figure 14(a).
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Figure 13. Solving the Dirichlet problem of an annular region by the complex-valued UT equation.
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Example 4. A square region with edge length equal to 2 is divided into two regions. The
first region is a circular domain located at the center of the square with radius equal 0�5.
The second region is a multiply connected domain, which is simply a square region with a
circular hole. The Dirichlet boundary condition is given in this case.

As we mentioned in the previous section, the pseudo-fictitious eigenvalues only depend
on the type of integral equations we used and the geometry of the hole in a multiply
connected domain. The first part of the above description has been demonstrated
numerically, we now use this numerical example to demonstrate the second part.
Comparing the geometry in this example with that in Example 2, we can find that the same
part is the hole of the multiply connected domain, which is a circular region with radius
0�5. Since we only concern with the pseudo-fictitious eigenvalue, we can adopt the
complex-valued UT or LM equation. The result for complex-valued UT method is shown
in Figure 16. The analytical values for true eigenvalues can be found in reference [11].
Comparing Figure 16 with Figure 9, we can confirm that when the type of integral
equations is chosen and the geometries of inner holes in the multiply connected
subdomains are the same, pseudo-fictitious eigenvalues occur at the same wave numbers
for both of the problems.

Example 5. In this example, a circular domain with an eccentric square hole is considered
as shown in Figure 17. A Dirichlet boundary condition is given on the boundary.

The reason we design this example is to reconfirm that the pseudo-fictitious eigenvalue
depends on the geometry of the inner hole of a multiply connected domain but has nothing
to do with the position where it is located. In previous examples, one may argue that some
kinds of symmetry can be found. However, no symmetry property exists in this case.

We here use Kuo’s approach [5] to look at the false degeneracy. Since only the pseudo-
fictitious eigenvalue is concerned, we simply use the complex-valued UT equation for

demonstration. After performing the QR factorization of
h

UT
C

TT
C

i
system, the rank deficiency
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Figure 14. Eliminating the false degeneracy in solving a Dirichlet problem of an annular region using the real-
part UT equation by comparing the degeneracy of two problems: (a) the original problem, both the true and false
rank deficiencies exist; (b) the common part in the original problem and its auxiliary problem, only false rank
deficiency exists.
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occurring in R matrix is the false degeneracy. It can be found in Figure 18 that all
numerically computed pseudo-fictitious eigenvalues match analytical predictions very well.

Before we close this section, we show the numerical results of true eigenmodes in
Example 4. The first three eigenmodes for a square domain are shown in Figure 19(a)–(c).
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Figure 15. Solving the Neumann problem of an annular region by the real-part UT equation.
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Figure 16. Solving a Dirichelt problem of the square region using the complex-valued UT equation and
partitioning the domain into two subdomains and one of them is a multiply connected domain.
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The dotted lines in these figures are the artificial interface in the domain partitioning. It
should be mentioned here that we compute these eigenmodes in every subdomain
independently by first obtaining those eigendata on the real boundary and interface.
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Figure 17. A multiply connected domain: a circular domain with an eccentric square hole.
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Figure 18. The pseudo-fictitious eigenvalue depends on the geometry of inner hole.
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5. CONCLUSIONS

In this paper, a new type of spurious eigenvalues arising due to the multiply connected
domain has been discovered and further validated both by the numerical and analytical
calculations. We have proposed a new point of view for the false degeneracy of the
Helmholtz boundary integral equations to unify the spurious eigenvalue, fictitious
eigenvalue and pseudo-fictitious eigenvalue. We also prove that the false degeneracy
occurs when a non-trivial source distribution (single layer or double layer) exists to make
the field quantities in the interested domain trivial. Such false degeneracy is independent of
the boundary condition but dependent on the type of integral equations one uses.
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Figure 19. The first three modes of the Dirichlet case of a square domain: (a) the first mode; (b) the second
mode; (c) the third mode.
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Figure 19. Continued.
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Furthermore, pseudo-fictitious eigenvalues depend on the geometry of inner hole of a
multiply connected domain. Numerical results match our analytical predictions very well.
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