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A single-degree-of-freedom system with the parallel presence of a linear spring, a viscous
damper and a contact dry friction device is studied here. The mass may slide or stick on the
belt when the driver moves periodically or at a constant speed. We derive closed-form
solutions according to a more complete two-phase formulation, and some interesting
behaviours of the considered system are displayed. For the non-damping oscillator belt
with fixed, we offer closed-form formulae for estimating the maximum displacement and
the minimum driving speed amplitude needed to prevent sticking. Two friction laws are
considered. For the Coulomb friction system, the positive damping term suffices to avoid
the climb motion of the mass slider. We also investigate the friction behaviour of the mass
slider under the influence of the friction force bound on mass speed, whose curve has
negative slope when the mass speed is less than a certain value vmin. For the speed-
dependent friction system we identify a critical speed denoted by v*. According to the
qualitative analysis in the phase plane we give simple criteria of the parameter values for
stable equilibrium point as well as for stable limit cycle. When v varies from v>v* to v5v*,
subcritical Hopf bifurcation occurs. For the latter case the mass slider undergoes a slide–
stick motion, but by increasing the driving speed the slide–stick motion can be avoided.

# 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

In this paper we study a single-degree-of-freedom model with the parallel presence of a
linear spring, a linear viscous damper and a dry contact friction between mass slider and
running belt. The driver, moving periodically with speed v cosodt; is connected to the
mass slider through a linear spring with stiffness k>0, and a linear viscous damper with no
constraint on the viscous coefficient c. The mass is further mounted on a belt which runs
forward with a constant speed v0. A schematic drawing of the mechanical elements’
arrangement is shown in Figure 1. It is a belt driven together with a periodically forcing
oscillator system.

According to the model described in Figure 1 we can plot the free body diagram as
shown in Figure 2, where m .xx represents the inertial force of the mass slider, cð ’xx �
v cosodtÞ is the viscous force, k½x � ðv sinodtÞ=od � is the elastic force due to the action of
a linear spring, and ra is the contact friction force. The direction of m .xx pointing to the left-
hand side means that the inertial force is induced by the motion x(t), which points to the
right-hand side. Hence, by balancing the inertial force to the other three forces, we obtain
the equation of motion of the mass slider as follows:

m .xxðtÞ þ c½ ’xxðtÞ � v cosodt� þ k xðtÞ � v

od

sinodt

� �
þ raðtÞ ¼ 0: ð1Þ
22-460X/02/$35.00 # 2002 Elsevier Science Ltd. All rights reserved.



Figure 1. Mass-spring-viscous-friction slider, where friction refers to dry friction between the mass slider and
the running belt.

Figure 2. Free body diagram of the system.

Table 1

Parameters corresponding to three special cases

v od v0

Belt-driven system v=0 – v0>0
Transmission system v>0 od=0 v0=0
Periodically excited system v>0 od>0 v0=0
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Let u(t):¼x(t)�v0t denote the relative displacement of the mass slider to the belt; hence,
’uuðtÞ ¼ ’xxðtÞ � v0 and .uuðtÞ ¼ .xxðtÞ follow, and equation (1) changes to

m .uuðtÞ þ c ’uuðtÞ þ kuðtÞ þ raðtÞ ¼ c½v cosodt � v0� þ k
v

od

sinodt � v0t

� �
: ð2Þ

Denoting the right side by

pðtÞ :¼ c½v cosod t � v0� þ k
v

od

sinodt � v0t

� �
; ð3Þ

equation (2) amounts to investigating the displacement uðtÞ of an oscillator subjected to
external force pðtÞ and friction force raðtÞ:

The above system includes three special cases as demonstrated in Table 1. The
special case with v0 ¼ 0 is a periodically excited system, of which equation (2)



Figure 3. Coulomb friction model: (a) relation of friction force ra and relative displacement u; (b) relation of
restoring force r and relative displacement u.
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can be recast to

m
d2uðtÞ
dt2

þ c
duðtÞ
dt

þ kuðtÞ þ raðtÞ ¼ v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ k2

o2
d

s
sinodt; ð4Þ

where t ¼ t þ ð1=odÞarctanðcod=kÞ: The above special case together with the Coulomb
friction law for ra has been investigated by many researchers; see e.g., references [1–5]. The
belt-driven system, i.e., v=0 and v0 > 0; together with the Coulomb friction law and a
speed-dependent friction law has been employed by Liu [6] to analyze the self-excited
problem in metal cutting. Popp et al. [7] have investigated a similar system as the one
shown in Figure 1 but with c=0, and displayed the dynamic behaviour via three-
dimensional phase portraits and the Poincr!ee cross-section method, observing stick–slip
chaos. More recently, Andreaus and Casini [8] have investigated a similar moving base
together with a periodically exciting system with switch model for friction force, and have
shown that the considered system undergoes a periodic-doubling cascade to chaos by
increasing the frequency ratio.

In this paper we first give some interesting phenomena of the general system behaviour.
A complete formulation of the Coulomb friction law led us easily to calculate the
responses according to the two-phase closed-form solutions. Then we consider a more
simple arrangement of the system with od ¼ 0 and v0 ¼ 0: But we consider two models of
the dry friction: Coulomb friction model (see Figure 3) and a speed-dependent friction



Figure 4. Friction force of the speed-dependent friction model depends on mass velocity through the relation
ra ¼ ry sgnð ’uuÞ � a1 ’uu þ a2 ’uu3; where a1 and a2 are experimentally determined constants.

C.-S. LIU AND W.-T. CHANG250
model (see Figure 4). The first model assumes that the friction law between the mass slider
and the belt obeys the relation as shown in Figure 3(a), where ra denotes the constant
friction force and ry is a constant friction force bound independent of mass relative speed.
The resulting system includes five parameters, namely the mass m of the slider, the stiffness
k and the viscous coefficient c of support component, the friction force bound ry between
mass slider and belt, and the driver moving speed v. It is a simple model to simulate the
self-excited vibration behaviour of mass transmission due to contact friction. Then, in
addition to the above five-parameters model the second model also includes another two
constants a1 and a2; which reflects the non-linear dependence of the friction force bound
on mass relative speed.

2. MODELLING COULOMB FRICTION

The conventional two-valuedness representation of the Coulomb’s friction law is usually
expressed as

raðtÞ ¼
ry if ’uu > 0 or ’xx > v0;

�ry if ’uu50 or ’xx5v0:

(

This formalism is correct but incomplete. In fact, the friction force ra may take any value
between �ry and ry when ’uu ¼ 0; therefore, the following expression provides a more
precise description:

raðtÞ
¼ ry if ’uu > 0 or ’xx > v0;

2 ½�ry; ry� if ’uu ¼ 0 or ’xx ¼ v0;

¼ �ry if ’uu50 or ’xx5v0:

8><
>:

Nevertheless, the above formalism, although correct, is not complete yet, since it still lacks
a two-way relation between ’uu and ra. For completeness we need a sliding rule and a
complementary trio as follows [4]:

’uu ¼
’LL
r2y

ra; jraj4ry; ’LL50; jraj ’LL ¼ ry
’LL; ð528Þ



FRICTIONAL BEHAVIOUR OF OSCILLATOR 251
where ’LL is the friction power, so that L is the dissipated energy due to friction. Equation
(5) is a sliding rule, which duplicates a two-way relation between ra and ’uu as shown in
Figure 3(a). More importantly, it depicts the relation of ra to u, not to ’uu as the
conventional ones are.

The restoring force rðtÞ of the mass slider can be defined as

r ¼ ra þ rb; ð9Þ

with ra modelled by equations (5)–(8) and rb by

’rrb ¼ k ’uu: ð10Þ

Thus, the relation between the restoring force function rðtÞ and the relative displacement
function uðtÞ is described by equations (5)–(10), which may be schematically illustrated in
Figure 3(b).

According to the above descriptions, the mass slider can be either in the sticking phase
or in the sliding phase according to the values of ’LL and ra as follows:

’LL > 0 and jraj ¼ ry ) ’LL ¼ ra ’uu > 0 sliding phase;

’LL ¼ 0 and jraj4ry ) ’LL ¼ ra ’uu ¼ 0 sticking phase:

Phase (i) is nothing but the sliding phase, since ’LL ¼ ra ’uu > 0 and ’uu=0; so that the contact
surfaces slide relative to each other and dissipation occurs due to friction between the
sliding surfaces. Phase (ii) is obviously the sticking phase, since ’LL ¼ 0 drastically reduces
equation (5) to ’uu ¼ 0; which indicates that the contact surfaces are sticking together. In the
sliding phase, the sliding friction causes positive friction dissipation, while in the sticking
phase the mass slider sticks on the surface of the belt and no friction dissipation occurs.
Thus the history of the motion of the mass slider may be composed of a succession of
contiguous time intervals, sliding-phase intervals being interlaced with sticking-phase
intervals, but the time duration of a sticking-phase interval can be finite, infinite
(permanent sticking) or zero.

3. GOVERNING EQUATIONS

In terms of rðtÞ equation (2) can be written as

m .uuðtÞ þ c ’uuðtÞ þ rðtÞ ¼ pðtÞ: ð11Þ

By considering the initial values of rðtiÞ; raðtiÞ and uðtiÞ at an initial time ti; the above rðtÞ;
in view of equations (9) and (10), can be re-expressed as

rðtÞ ¼ rðtiÞ þ raðtÞ � raðtiÞ þ k½uðtÞ � uðtiÞ�: ð12Þ

Substituting it into equation (11), we obtain

m .uuðtÞ þ c ’uuðtÞ þ kuðtÞ þ raðtÞ ¼ pðtÞ � rðtiÞ þ raðtiÞ þ kuðtiÞ: ð13Þ
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3.1. SLIDING PHASE

In a sliding-phase interval, jraj ¼ ry and raðtÞ ¼ raðtiÞ; equations (12) and (13) can be
reduced, respectively, to

rðtÞ ¼ rðtiÞ þ k½uðtÞ � uðtiÞ�; ð14Þ

m .uuðtÞ þ c ’uuðtÞ þ kuðtÞ ¼ pðtÞ � rðtiÞ þ kuðtiÞ; ð15Þ

where the initial time ti is chosen to be the start-to-side time tslide of the sliding-phase
interval. Hence, equations (14) and (15) together are the sliding-phase governing equations
for rðtÞ and uðtÞ:

3.2. STICKING PHASE

In a sticking-phase interval, ’LL ¼ 0; ’uu ¼ 0 and .uu ¼ 0; equation (11) simply reduces to

rðtÞ ¼ pðtÞ; ð16Þ

and

uðtÞ ¼ uðtiÞ ð17Þ

follows directly, where the initial time ti is chosen to be the start-to-stick time tstick of the
sticking-phase interval. Equations (16) and (17) together are the sticking-phase governing
equations for rðtÞ and uðtÞ:

3.3. SLIDE–SLIDE CONDITION

It is interesting to find the condition under which the time duration of a sticking-phase
interval is zero. The transition (say at time t) from a sliding-phase interval to a sticking-
phase interval of non-zero time duration is possible only if jpðtÞ � kuðtÞj5ry: Otherwise, a
sliding-phase interval will continue to another sliding-phase interval with a sticking phase
of zero time duration present in between the two sliding-phase intervals. The above type of
motion may be called the slide–slide motion.

If at the time instant t

jpðtÞ � kuðtÞj5ry; ð18Þ

the duration of the sticking-phase interval is zero, resulting in the mass slider moving from
a sliding-phase interval to another sliding-phase interval. Therefore, equation (18) may be
called the slide–slide condition. Stops with zero duration may be further classified into two
types [3,4]: normal stop and abnormal stop. The former occurs when the relative
displacement reaches a local extremum and ’uuðtÞ reverses its sign after a turning point. The
criteria for normal stop are

jpðtÞ � kuðtÞj5ry and raðtÞ .uuðtÞ50 ð19Þ

at the time moment t with ’uuðtÞ ¼ 0: The criteria for abnormal stop are

jpðtÞ � kuðtÞj5ry and raðtÞ .uuðtÞ > 0 ð20Þ

at the time moment t with ’uuðtÞ ¼ 0: The latter condition leads to ’uuðtþÞ > 0 if raðtÞ > 0 and
’uuðtþÞ50 if raðtÞ50; which indicates that the abnormal stop occurs when the relative
displacement reaches a local extremum and, upon separation, ’uuðtÞ does not change its sign
as the one prior to the stop has.
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4. RESPONSES OF FRICTION OSCILLATOR

In what follows we will derive the exact solutions in the sliding phase and decide the
values of tstick and tslide.

4.1. EXACT SOLUTIONS

In the sliding phase uðtÞ can be obtained by solving equation (15) for the following three
different cases:

Case 1. c2�4mk>0 (over-damped z>1):

uðtÞ ¼C1 exp½onð�zþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1

q
Þðt � tiÞ� þ C2 exp½onð�z�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1

q
Þðt � tiÞ�

þ D1 sinodt þ D2 cosodt � v0t þ uðtiÞ �
rðtiÞ

k
; ð21Þ

where

on :¼
ffiffiffiffi
k

m

r
; z :¼ c

2mon

ð22; 23Þ

are, respectively, the natural frequency and damping ratio, and

D1 :¼
v½ð4z2 � 1Þr2w þ 1�

odr2w½4z
2 � 2þ r2w� þ od

; ð24Þ

D2 :¼
�2vzr3w

odr2w½4z2 � 2þ r2w� þ od

: ð25Þ

Here rw :¼ od=on denotes the frequency ratio. The above two integration constants are
given, respectively, by

C1 :¼
½D1onð�z�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1

p
Þ þ D2od �sinod ti þ ½D2onð�z�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1

p
Þ � D1od �cosod ti

2on

ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1

p
þ ’uuðtiÞ þ v0 � onð�z�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1

p
Þ½rðtiÞ=k þ v0ti�

2on

ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1

p ; ð26Þ

C2 :¼
½D1od � D2onð�zþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1

p
Þ�cosodti � ½D1onð�zþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1

p
Þ þ D2od �sinod ti

2on

ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1

p
� ’uuðtiÞ þ v0 � onð�zþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1

p
Þ½rðtiÞ=k þ v0ti�

2on

ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1

p : ð27Þ

Case 2. c2�4mk=0 (critically damped z=1):

uðtÞ ¼ ½C1 þ C2ðt � tiÞ�exp½�onðt � tiÞ�

þ D1 sinodt þ D2 cosodt � v0t þ uðtiÞ �
rðtiÞ

k
; ð28Þ



C.-S. LIU AND W.-T. CHANG254
where

C1 :¼
rðtiÞ

k
þ v0ti � D1 sinodti � D2 cosod ti; ð29Þ

C2 :¼ðD2od � D1onÞsinod ti � ðD2on þ D1odÞcosodti

þ ’uuðtiÞ þ v0 þ on

rðtiÞ
k

þ v0ti

� �
:

ð30Þ

Case 3. c2�4mk50 (under-damped z51):

uðtÞ ¼ exp½�zonðt � tiÞ�½C1 cosoðt � tiÞ þ C2 sinoðt � tiÞ�

þ D1 sinodt þ D2 cosodt � v0t þ uðtiÞ �
rðtiÞ

k
; ð31Þ

where

o :¼ on

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

q
ð32Þ

is the damped frequency, and

C1 :¼
rðtiÞ

k
þ v0ti � D1 sinodti � D2 cosod ti; ð33Þ

C2 :¼
ðD2od � D1zonÞsinodti � ðD2zod þ D1odÞcosodti

o

þ ’uuðtiÞ þ v0 þ zon½rðtiÞ=k þ v0ti�
o

:
ð34Þ

4.2. START-TO-SLIDE TIME

The start-to-slide time t=tslide, which is the end time of the preceding sticking-phase
interval, can be determined by solving

k
v

od

sinodt � v0t


 �
þ cðv cosodt � v0Þ � kuðtiÞ

����
���� ¼ ry: ð35Þ

However, it needs a numerical method to solve the above equation for tslide.

4.3. START-TO-STICK TIME

The start-to-stick time tstick of the sticking-phase interval is the end time of the preceding
sliding-phase interval, which is determined by solving ’uuðtÞ ¼ 0 with uðtÞ given,
respectively, by equations (21), (28) and (31) for the three different cases. Because these
equations are transcendental in nature we appeal to a numerical scheme to solve them.

4.4. RESPONSES FOR SOME GENERAL CASES

In order to display the different behaviour of the considered friction system, we use the
above solutions to calculate the responses as shown in Figure 5 for three different
parameter values. For each case we have fixed the same values of m=8kN s2/cm
(=8� 105/9�81 kg), z=0�02, ry=10kN and od=2p rad/s. In Figures 5(a)–(e), rw=0�5,
v=5cm/s, v0=1 cm/s are adopted, and the other parameter values are calculated,



Figure 5. Three typical friction responses of a belt-driven and periodically excited system.
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respectively, by on ¼ od=rw ¼ 4p rad/s, k ¼ mo2
n ¼ 128p2 kN/cm and c ¼ 2monz ¼

1�28p kN s/cm. In Figures 5(f)–(j), rw ¼ 0�5; v ¼ v0 ¼ 5 cm/s are adopted, and the other
parameter values are the same as above. In Figures 5(k)–(o), rw ¼ 1�5; v ¼ 5 cm/s,
v0 ¼ 1 cm/s are adopted, and the other parameter values are on ¼ od=rw ¼ 4p=3 rad/s,
k ¼ mo2

n ¼ 128p2=9 kN/cm and c ¼ 2monz ¼ 1�28p=3 kN s/cm. In addition to the initial
sticking the motions are all of the slide–slide types. It can be seen that all phase portraits
exhibit stabilized limit cycles. However, their sizes are very different. Especially the size of
the limit cycle in Figure 5(n) is far less than that in Figures 5(d) and 5(i). The above two
limit cycles almost have the same size. It appears that the belt running speed v0 has little
influence on the size of the limit cycle. However, the frequency ratio rw is an important
factor to decide what the size of the limit cycle should be.

5. STEADY STATE RESPONSE FOR THE CASE v0 ¼ 0 AND c ¼ 0

For estimating the steady state responses of the system behaviour and investigating the
influence of the system parameters, we may employ the phase plane method in our system
as that done in reference [5] for a simpler system to derive formulas, which can be used to
calculate the maximum displacement and the minimum load amplitude to prevent
sticking. For this purpose let us return to equation (1) and consider a simpler case with
c=0 and v0=0. For such a system, the maximum displacement in the steady state is given
by

xmax

xy

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
monv

ryrwð1� r2wÞ


 �2

� ðsinðp=rwÞÞ2

r2wð1þ cosðp=rwÞÞ2

s
; ð36Þ

where xy :¼ ry=k: In Figure 6(a) the results calculated by the above formula for several
values of v=5, 10, 15, 20, 25 cm/s are displayed. Here we fixed the values with m=8kN s2/
cm (=8� 105/9�81 kg), ry=10kN, k=32kN/cm, and hence on=2rad/s. More impor-
tantly, a precise formula for estimating the border line of the domain of steady state slide–
slide oscillatory responses in the plane (rw, v) can be derived as follows:

v ¼ rwry

mon

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

r2w
� 1


 �2

1þ rw sinðp=rwÞ
1þ cosðp=rwÞ


 �2
" #vuut : ð37Þ

The value of v which is greater than what the above formula predicts will make the
oscillator vibratory without stops in the steady state, so that the criterion for zero stop per
cycle is

v5
rwry

mon

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

r2w
� 1


 �2

1þ rw sinðp=rwÞ
1þ cosðp=rwÞ


 �2
" #vuut : ð38Þ

In Figure 6(b) the result calculated by the above formula is displayed. The region of slide–
slide motion is marked in the plane (rw, v).

In steady state estimation for both the belt-driven and periodically excited system
however requires a deeper study and will be presented in another place.



Figure 6. (a) Maximum displacement curves of the system with c=0 and v0=0 for several values of v.
(b) Minimum driving speed amplitude to prevent sticking.
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6. SPECIAL CASE WITH od ¼ 0 AND v0 ¼ 0

Here and henceforth we focus on the special case od ¼ 0 and v0=0, of which u(t)=x(t)
and p(t)=kvt+cv, and equation (1) reduces to

m .xxðtÞ þ c½ ’xxðtÞ � v� þ k½xðtÞ � vt� þ raðtÞ ¼ 0: ð39Þ

By noting that

lim
od!0

D1 sinodt ¼ vt;

lim
od!0

D1od cosodt ¼ v;

lim
od!0

D2 cosodt ¼ 0;

lim
od!0

D2od sinodt ¼ 0;
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and by using equations (21), (28) and (31) for three different cases, the exact solutions of
x(t) in the sliding phase can be derived as follows:

Case 1. c2�4mk>0:

xðtÞ ¼C1 exp½onð�zþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1

q
Þðt � tiÞ� þ C2 exp½onð�z�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1

q
Þðt � tiÞ�

þ vt þ xðtiÞ �
rðtiÞ

k
; ð40Þ

where

C1 :¼
’xxðtiÞ � v � onð�z�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1

p
Þ½rðtiÞ=k � v0ti�

2on

ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1

p ; ð41Þ

C2 :¼
v � ’xxðtiÞ þ onð�z�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1

p
Þ½rðtiÞ=k � v0ti�

2on

ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1

p þ rðtiÞ
k

� vti: ð42Þ

Case 2. c2�4mk=0:

xðtÞ ¼ ½C1 þ C2ðt � tiÞ�exp½�onðt � tiÞ� þ vt þ xðtiÞ �
rðtiÞ

k
; ð43Þ

where

C1 :¼
rðtiÞ

k
� vti; ð44Þ

C2 :¼ ’xxðtiÞ � v þ on

rðtiÞ
k

� vti:

� �
ð45Þ

Case 3. c2�4mk50:

xðtÞ ¼ exp½�zonðt � tiÞ�½C1 cosoðt � tiÞ þ C2 sinoðt � tiÞ� þ vt þ xðtiÞ �
rðtiÞ

k
; ð46Þ

where

C1 :¼
rðtiÞ

k
� vti; ð47Þ

C2 :¼
’xxðtiÞ � v þ zon½rðtiÞ=k � vti�

o
: ð48Þ

Owing to the simplicity of the sticking-phase equations, the start-to-slide time t=tslide

can be determined exactly by solving

jkvt þ cv � rbðtiÞj ¼ ry: ð49Þ

The resultant is

tslide ¼
ry þ kxðtiÞ � cv

kv
: ð50Þ

However, if the numerator ry+kx(ti)�cv50 we let tslide=ti.
The start-to-stick time tstick is determined by solving ’xxðtÞ ¼ 0 with x(t) given,

respectively, by equations (40), (43) and (46) for the three different cases. Because these
equations are transcendental in nature, we appeal to the numerical scheme to solve them.
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Let z(t):¼x(t)�vt denote the relative displacement between mass slider and driver, and
’zzðtÞ ¼ ’xxðtÞ � v and .zzðtÞ ¼ .xxðtÞ follow; hence, equation (39) can be written as

m.zzðtÞ þ c’zzðtÞ þ kzðtÞ þ raðtÞ ¼ 0; ð51Þ

where ra(t)=� ry in the sliding phase. This equation is rather simple, and as usual we have
an unstable focus in the plane ðz; ’zzÞ for the cases of c50, stable focus for the cases of c>0,
and a centre for the case c=0. We only show results for the last in Figure 7 with
m=8kN s2/cm (=8� 105/9�81 kg), k=32kN/cm, ry=10kN and v=5cm/s. From
Figure 7 we can find that when the damping ratio is zero, i.e., c=0, there exist no
energy-damped mechanisms in equations (39) and (51), and hence the velocity of the mass
slider ’xx; the relative motion of z, and its velocity ’zz all exhibit periodically oscillatory
behaviour. Consequently, in the phase plane ðz; ’zzÞ there is a circle around the equilibrium
point (�0�3125, 0). Practically, the relative motion between mass slider and driver may
cause climb motion, which in turn destroys the uniformity of transmission. For this case it
can be seen that upon starting to slide, the mass never comes to stick on the belt. When ’xx

decreases to zero, the mass immediately undergoes another sliding motion as shown in
Figure 7(b), the slide–slide motion, and such type of motion has been named abnormal
stop [3, 4], which is due to the single-direction action of the external force.

7. FRICTION FORCE DEPENDING ON MASS SPEED

Instead of the constant friction force bound used in the Coulomb friction model, let us
consider a more complicated law of friction force [9]:

raðtÞ ¼ ry sgnð ’xxÞ � a1 ’xx þ a2 ’xx3; ð52Þ

where sgn is the signum function, i.e., sgnð ’xxÞ ¼ ’xx=j ’xxj if ’xx=0; and ry, a1 and a2 are three
experimentally determined constants. In Figure 4 the shape of this curve is plotted, where
vmin denotes the speed value at which the magnitude of friction force is minimum. It shows
that the friction force–speed curve may have negative slope when the mass speed is less
than the critical value vmin ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1=ð3a2Þ

p
: It is known that the negative slope is responsible

for the energy that is transferred to the vibration, and thus may render self-excited
vibration in the course of contact friction [10].

Substituting equation (52) for ra into equation (39), we obtain

m .xxðtÞ þ c½ ’xxðtÞ � v� þ k½xðtÞ � vt� þ ry sgnð ’xxÞ � a1 ’xxðtÞ þ a2 ’xx3ðtÞ ¼ 0: ð53Þ

As before we let the restoring force be

rðtÞ ¼ raðtÞ þ rbðtÞ ¼ ry sgnð ’xxÞ � a1 ’xxðtÞ þ a2 ’xx3ðtÞ þ kxðtÞ; ð54Þ

where

raðtÞ
¼ ry � a1 ’xx þ a2 ’xx3 if ’xx > 0 or ’zz > �v;

2 ½�ry; ry� if ’xx ¼ 0 or ’zz ¼ �v;

¼ �ry � a1 ’xx þ a2 ’xx3 if ’xx50 or ’zz5� v:

8><
>: ð55257Þ

When ’xx ¼ 0 the friction force may be any value between �ry and ry needing to balance
with other forces. In terms of r(t), equation (53) can be written as

m .xxðtÞ þ c ’xxðtÞ þ rðtÞ ¼ pðtÞ; pðtÞ :¼ kvt þ cv; ð58; 59Þ



Figure 7. Time history plots and phase plots of the Coulomb friction system with z=0.
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where by considering the initial conditions we let

rðtÞ ¼ rðtiÞ þ raðtÞ � raðtiÞ þ k½xðtÞ � xðtiÞ�: ð60Þ
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Thus, we get

m .xxðtÞ þ c ’xxðtÞ þ kxðtÞ þ raðtÞ ¼ pðtÞ � rðtiÞ þ raðtiÞ þ kxðtiÞ: ð61Þ

In a sliding-phase interval, j ’xxðtÞj > 0 and raðtÞ ¼ ry sgnð ’xxÞ � a1 ’xxðtÞ þ a2 ’xx3ðtÞ; equations
(61) and (60) can be reduced, respectively, to

m .xxðtÞ þ c ’xxðtÞ þ kxðtÞ � a1 ’xxðtÞ þ a2 ’xx3ðtÞ ¼ pðtÞ � rðtiÞ þ kxðtiÞ; ð62Þ

rðtÞ ¼ rðtiÞ þ k½xðtÞ � xðtiÞ� � a1 ’xxðtÞ þ a2 ’xx3ðtÞ; ð63Þ

where the initial time ti is chosen to be the start-to-slide time tslide of the sliding-phase
interval. Hence, equations (62) and (63) together are the sliding-phase governing equations
for x(t) and r(t).

In a sticking-phase interval, ’xx ¼ 0 and .xx ¼ 0; so that r(t)=p(t) and x(t)=x(ti), where the
initial time ti is chosen to be the start-to-stick time tstick of the sticking-phase interval.

8. QUALITATIVE ANALYSIS OF SYSTEM BEHAVIOUR

If we replace x(t)�v(t) by z(t), ’xxðtÞ � v by ’zzðtÞ and .xxðtÞ by .zzðtÞ; equation (53) can be
written as

m .zzðtÞ þ c’zzðtÞ þ kzðtÞ þ ry sgn½’zzðtÞ þ v� � a1½’zzðtÞ þ v� þ a2½’zzðtÞ þ v�3 ¼ 0: ð64Þ

Let w :¼ ’zz, and the above equation can be written as

d

dt

z

w

" #
¼

w

1
m
ða1ðw þ vÞ � a2ðw þ vÞ3 � ry sgnðw þ vÞ � cw � kzÞ

" #
:¼

f ðz;wÞ
gðz;wÞ

" #
: ð65Þ

Let f (z, w)=0 and g(z, w)=0. We obtain the equilibrium point

ðz0;w0Þ ¼
a1v � a2v3 � ry

k
; 0


 �
: ð66Þ

Substituting it into the Jacobian matrix for f(z, w) and g(z, w), we get

J ¼
0 1

�o2
n

1
m
ða1 � 3a2v2 � cÞ

" #
: ð67Þ

The eigenvalues of J determine the stability of the equilibrium point (z0, w0). The
characteristic equation for the eigenvalues is

l2 � tr Jlþ det J ¼ 0; ð68Þ

where

tr J ¼ a1 � 3a2v2 � c

m
; det J ¼ o2

n: ð69; 70Þ

Hence the discriminant of equation (68) is given by

D ¼ a1 � 3a2v2 � c

m


 �2

�4o2
n: ð71Þ

In order to decide the stability type of the equilibrium point, we should consider seven
cases as shown in Figure 8. We note that det J=on

2>0, and for the case D>0 we have
either tr J50 or tr J>0. For the first case the equilibrium point is a stable node; for the
second case the equilibrium point is an unstable node, and the system exhibits limit cycle



Figure 8. Relations among parameters and stability types of the speed-dependent friction system.
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behaviour. For the case D=0 we have either tr J50 or tr J>0. For the first case the
equilibrium point is a stable sink; for the second case the equilibrium point is an unstable
source, and the system exhibits limit cycle behaviour. For the case D50, the stability of the
equilibrium point is further determined by the values of tr J as follows:

tr J > 0 ) a1 � 3a2v2 � c > 0 ) c5a1 � 3a2v2 ) limit cycle; ð72Þ

tr J ¼ 0 ) a1 � 3a2v2 � c ¼ 0 ) c ¼ a1 � 3a2v2 ) neutral centre; ð73Þ

tr J50 ) a1 � 3a2v2 � c50 ) c > a1 � 3a2v2 ) stable focus: ð74Þ

From equations (71) and (72)–(74) we can detect the stability property of the equilibrium
point for different parameter values as plotted in Figure 8.

In order to obtain a stable limit cycle, a simple criterion is given as follows:

tr J ¼ a1 � 3a2v3 � c

m
50: ð75Þ

Let us denote the critical speed of the driver by

vn :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a1 � c

3a2

r
; ð76Þ

which slightly deviates from the minimum speed vmin for the minimum friction force bound
due to the damping constant c. It indicates that when v>v* (tr J50) the mass slider
motion tends to a stable equilibrium point, and when v5v* (tr J50) the mass slider
motion tends to a stable limit cycle. Thus, we say that when v varies from v>v* to v5v*
subcritical Hopf bifurcation occurs [11, 12].

On the other hand, solving D=0 we obtain the other two critical speeds:

vnn1 :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1 � c þ 2

ffiffiffiffiffiffiffi
mk

p

3a2

s
; ð77Þ

vnn2 :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1 � c � 2

ffiffiffiffiffiffiffi
mk

p

3a2

s
: ð78Þ



Figure 9. Relations of driving speed v and the values of D and trJ of the speed-dependent friction system.
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Obviously, v2
nn5v*5v1

nn. In Figure 9 we show the relations of D, tr J, v2**, v* and v1
nn in

the co-ordinate v. Accordingly, we have the following system behaviour:

vnn1 5v ) stable node; ð79Þ

v ¼ vnn1 ) stable infected node; ð80Þ

vn5v5vnn1 ) stable focus; ð81Þ

v ¼ vn ) neutral stable centre; ð82Þ

vnn2 5v5vn ) limit cycle; ð83Þ

v ¼ vnn2 ) limit cycle; ð84Þ

05v5vnn2 ) limit cycle: ð85Þ

9. RESPONSES OF SPEED-DEPENDENT FRICTION SYSTEM

By employing the group-preserving scheme [13] we have calculated four types of
responses. Some results are shown in Figures 10 and 11 for different v=65, 20, 5,
1�5 cm/s, but the same other parameter values with m=8kNs2/cm (=8� 105/9�81 kg),
k=32kN/cm, c=0�64 kN s/cm, ry=10kN, a1=1kN s/cm and a2=0�0048 kN s3/cm2. For
these parameter values we have v*=5 cm/s and vnn1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
20225=9

p
� 47�4 cm/s and the

stability properties of the equilibrium point are summarized as follows:

v ¼ 65 ) v > vnn1 and v > vn ) stable node;

v ¼ 20 ) v5vnn1 and v > vn ) stable focus;

v ¼ 5 ) v5vnn1 and v ¼ vn ) neutral stable centre;

v ¼ 1�5 ) v5vnn1 and v5vn ) limit cycle:

When the driving velocity is v=65 cm/s, the speed-dependent friction system behaves
like an over-damped system, and the input energy is damped out very quickly. For this
case the velocity of the mass slider ’xx quickly approaches the value of the driver v=65 cm/s,
and the relative displacement z and its velocity ’zz tend to the stable node point ðz; ’zzÞ ¼
ð�39�475; 0Þ very soon as shown in Figure 10(a). From Figure 10(b) we can find that when
the driving velocity is v=20 cm/s, the equilibrium point is of stable focus type, and the
system behaves like an under-damped system. The oscillating amplitudes of the velocity ’xx;
of the relative displacement z and of its velocity ’zz are all decreased. In the phase plane
ðz; ’zzÞ; the trajectory is spiraled gradually into the focus point (�0�8875, 0), and the relative



Figure 10. Phase plots of the speed-dependent friction system with (a) v=65 cm/s, (b) v=20 cm/s and
(c) v=5cm/s.
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motion between the mass slider and the driver converges to a constant value. When the
driving velocity is v=5cm/s, the equilibrium point is of neutral stable centre type, and the
system still behaves like a slightly under-damped system in the first few hundred seconds.



Figure 11. Time history plots and phase plots of the speed-dependent friction system with v=1�5 cm/s.
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For this case, the oscillating amplitudes of the velocity ’xx; of the relative displacement z and
of its velocity ’zz are all slowly decreased to some certain values. In the phase plane ðz; ’zzÞ;
the trajectory is spiraled gradually to an ellipse with centre (�0�1675, 0) as shown in
Figure 10(c).



Figure 12. A refined version of the time history of the mass velocity shown in Figure 11(b).
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For the last case we let the driving velocity be v=1�5 cm/s, at which the equilibrium
point becomes unstable, and instead we have a stable limit cycle as shown in Figure 11(f).
This indicates that when v>v*, the mass slider motion tends to a stable equilibrium point,
and when v5v*, the mass slider motion tends to a stable limit cycle. That is, the system
undergoes a subcritical Hopf bifurcation when v varies from v>v* to v5v*. From
Figure 11 it can be seen that the oscillating amplitudes of the velocity ’xx; of the relative
displacement z and of its velocity ’zz are all constant. In the phase plane ðz; ’zzÞ; the trajectory
is a limit cycle with a short sticking phase in the bottom. The period of the motion is about
3 s, and within each period the duration of the sticking phase is about one-half second. At
the sticking phase ’xx ¼ 0; however, by numerical solutions it is hard to match this
condition. A refined version of the plot in Figure 11(b) is amplified to investigate the
numerical result as shown in Figure 12. The numerical values are close to zero but exhibit
an irregular burst with height among 0�002–0�0025 cm/s as shown in Figure 12(b).
However, we can avoid this irregular burst by letting j ’xxj5e instead of j ’xxj ¼ 0; where
e is a positive small number. In Figure 12(c) we show such a refined version with
e=0�0025 cm/s.

From the time history plot as shown in Figure 11(a) we know that the mass slider has a
climb motion. For the uniformity of the mass transmission we want to avoid such type of
motion. Figure 13 displays the slide–stick motion region of the system in the parametric
plane (c, v). To avoid climb motion of the mass slider, the driving velocity must be large
enough so as to be v>v*.



Figure 13. Slide–stick motion region in the parametric plane (c, v) for the speed-dependent friction system.
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10. CONCLUSIONS

For both the belt-driven and periodically excited system we have derived closed-form
solutions according to a more complete two-phase formulation, and some interesting
behaviours of the considered system were displayed. For the non-damping oscillator with
belt being fixed, we have provided closed-form formulae for estimating the maximum
displacement and the minimum driving speed amplitude needed to prevent mass from
sticking to the belt. Despite the deceiving simplicity of the model used to simulate the mass
transmission behaviour by considering friction, its non-linear dynamic behaviour may
represent the qualitative response of the more general transmission system. In this paper
we have considered two friction laws for the mass transmission device. For the Coulomb
friction system the positive damping term suffices to avoid the climb motion of the mass
slider, and hence slide–stick phenomena can be avoided. For the speed-dependent friction
system we have identified a critical speed v*. According to the qualitative analysis in the
phase plane, we give simple criteria of the parameter values for the stable equilibrium
point as well as for the stable limit cycle. When v varies from v>v* to v5v*, subcritical
Hopf bifurcation occurs. For the latter case, the mass slider climbs forward, sliding is
interrupted by sticking, but by increasing the driving speed the climb motion can be
avoided.
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