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An aeroelastic analysis based on finite elements in space and time is used to model the
helicopter rotor in forward flight. The rotor blade is represented as an elastic cantilever
beam undergoing flap and lag bending, elastic torsion and axial deformations. The
objective of the improved design is to reduce vibratory loads at the rotor hub that are the
main source of helicopter vibration. Constraints are imposed on aeroelastic stability, and
move limits are imposed on the blade elastic stiffness design variables. Using the aeroelastic
analysis, response surface approximations are constructed for the objective function
(vibratory hub loads). It is found that second order polynomial response surfaces
constructed using the central composite design of the theory of design of experiments
adequately represents the aeroelastic model in the vicinity of the baseline design.
Optimization results show a reduction in the objective function of about 30 per cent. A
key accomplishment of this paper is the decoupling of the analysis problem and the
optimization problems using response surface methods, which should encourage the use of
optimization methods by the helicopter industry.

# 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

Helicopters suffer from high vibration relative to fixed wing aircraft because of a highly
unsteady aerodynamic environment and rapidly rotating flexible blades. High vibration
causes passenger discomfort, fatigue in rotor system components and increases likelihood
of damage to critical avionics components in the helicopter. Vibratory hub loads are a
major source of helicopter vibration and involve higher harmonic forces and moments.
For example, an Nb bladed rotor rotating with angular velocity hub transmits NbO forces
and moments to the body as the primary source of vibration. Thus for a four-bladed
helicopter rotor undergoing 360 r.p.m. (6Hz), the 4O loads of 24Hz are transmitted by the
rotor to the fuselage are the principal sources of vibration [1]. The 4O loads are also called
4 per revolution or 4/rev loads.

Passive vibration devices are often used to suppress vibration levels at some selected
places in the helicopter body, such as the pilot’s seat. Passive devices include pendulum
absorbers, anti-resonance systems and other vibration absorbers. A drawback of passive
devices is the large weight penalty and rapid performance degradation away from the
tuned flight condition. In recent years, there has been considerable research in active
vibration control methodology called higher harmonic control (HHC) where vibration is
suppressed at the source through excitation of the blade pitch at higher harmonics of the
rotational speed. The concept of HHC has been investigated using numerical simulations
0022-460X/02/$35.00 # 2002 Elsevier Science Ltd. All rights reserved.
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[2] and model tests in wind tunnels [3]. HHC is quite effective in reducing vibrations and
causes lower weight penalty than passive devices. The drawbacks of higher harmonic
control include the weight, cost and reliability impact of high-frequency actuators and the
associated control system.

A more direct approach for vibration reduction is to design the rotor for low vibration
by tailoring structural, inertial and aerodynamic properties of the rotor blade. Aeroelastic
optimization of helicopter rotors has been a focus for several researchers over the past
decade [4–10]. Since helicopters suffer from high vibration and a low damped lag-bending
mode, these studies have focussed on reduction of rotor vibratory hub loads and
enhancement of blade aeroelastic stability. Design variables used include blade elastic
stiffnesses, mass, aerodynamic twist, tip sweep, planform taper and others. Some of these
studies used a comprehensive rotorcraft aeroelastic analysis as the mathematical model in
conjunction with an optimization program to obtain optimization results [4–9]. Other
studies have used simple models based on frequency placements and modal-based methods
[10], in place of comprehensive aeroelastic analysis. Reference [11] gives a recent review of
the work in aeroelastic optimization of helicopter rotors.

Application of optimization methods to complex engineering problems is often a
cumbersome and labor-intensive process because of the need to integrate large computer
programs involving analysis and optimization. In fact, the cumbersome process of
integrating large computer programs has discouraged the use of optimization procedures
by the aerospace industry. Response surface approximations of the analysis problem offer
a way to shift the burden from the integration of large computer programs to the problem
of constructing the approximations. Response surfaces for the objective and constraint
functions are created by sampled numerical experiments over the design space. Response
surfaces are obtained by using more analysis than regression coefficients thereby
overfitting the regression model using the theory of design of experiments. Once the
response surfaces are obtained, the optimum can be found at low cost because the
response surfaces are merely algebraic expressions. Taylor’s series approximations are
local in nature. However, since response surface approximations are global in nature, they
have witnessed widespread application to optimization as well as other fields in recent
years [12–14].

Most often, lower order polynomials are used for response surfaces. Response surfaces
have the advantage that they filter out the noise inherent in most numerical analyses, and
simplify the integration with optimization codes because of smooth functions. Numerical
noise manifests itself as low-amplitude, high-frequency variations in the computation
results with changes in the design variables. These variations are present in any numerical
method with iterative solution procedure or discrete representations of continuous
geometric shape or physical phenomenon such as fluid flow. Numerical noise creates
problems for gradient-based search algorithms because they cause spurious local minima.
Response surfaces therefore offer a useful way to approximate analyses models and filter
out numerical noise. The low computational costs of evaluating response surfaces once
they are obtained allow the use of global optimal search strategies such as genetic
algorithms and exhaustive search methods. The disadvantage of response surface methods
is that the computational demands to obtain them can grow rapidly as the number of
design variables increase. However, with growing power of computers, this so-called
‘‘curse of dimensionality’’ problem is decreasing. An excellent introduction to response
surface methods can be found in Reference [15].

In this paper, a first step is taken towards separating the helicopter aeroelastic analysis
problem from the optimization problem. For numerical results, response surfaces are
developed for vibratory hub loads, with respect to blade elastic stiffness design variables.
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The response surfaces are then used in conjunction with optimization methods to minimize
vibratory hub loads and analyze the design space.

2. HELICOPTER AEROELASTIC ANALYSIS

The helicopter is represented by a non-linear model of rotating elastic rotor blades
dynamically coupled to a six-degree-of-freedom rigid fuselage. Each blade undergoes flap
bending, lag bending, elastic twist and axial displacement. Governing equations are
derived using a generalized Hamilton’s principle applicable to non-conservative systems
[16]: Z c2

c1

dU � dT � dWð Þ dc ¼ 0: ð1Þ

The dU, dT and dW are virtual strain energy, kinetic energy, and virtual work respectively.
The dU and dT include energy contributions from components that are attached to the
blade, e.g., pitch link, lag damper, etc. These equations are based on the work of Hodges
and Dowell [16] and include second order geometric non-linear terms accounting for
moderate deflections in the flap bending, lag bending, axial and torsion equations.
External aerodynamic forces on the rotor blade contribute to the virtual work variational,
dW. The aerodynamic forces and moments are calculated using a linear inflow distribution
and quasi-steady aerodynamics based on a lifting line model [1]. In lifting line theory the
flow over the blade section behaves as if it is locally two dimensional, with the influence of
the wake and the rest of the rotor blade represented by a downwash at the section. Two-
dimensional airfoil theory can then be used to calculate blade section loads (lift, drag and
pitching moment). The downwash effects are captured by the inflow or induced velocity [1].

Finite element method is used to discretize the governing equations of motion, and
allows for accurate representation of complex hub kinematics and non-uniform blade
properties [17]. After the finite element discretization, Hamilton’s principle is written asZ cf

ci

XN

i¼1

dUi � dTi � dWið Þ dc ¼ 0 ð2Þ

Each of the N beam finite elements has 15 degrees of freedom. These degrees of freedom
correspond to cubic variations in axial elastic and (flap and lag) bending deflections, and
quadratic variation in elastic torsion. Between the elements there is continuity of slope and
displacement for flap and lag bending deflections and continuity of displacements for
elastic twist and axial deflections. This element ensures physically consistent linear
variations of bending moments and torsion moments and quadratic variations of axial
force within the elements. The shape functions used here are Hermite polynomials for lag
and flap bending and Lagrange polynomials for axial and torsion deflection and are given
in references [17, 21].

Assembling the blade finite element equations and applying boundary conditions results
in equation (2) becoming [17]

M.qq cð Þ þ C’qq cð Þ þ Kq cð Þ ¼ F q; ’qq;cð Þ: ð3Þ

The nodal displacements q are functions of time and all non-linear terms have been moved
into the force vector in the right-hand side. The spatial functionality has been removed by
using finite element discretization and partial differential equations have been converted to
ordinary differential equations. The finite element equations representing each rotor blade
are transformed to normal mode space for efficient solution of blade response using the
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modal expansion. Typically, 6–10 modes are used. The displacements are expressed in
terms of normal modes as

q ¼ Up: ð4Þ

Substituting equation (4) into equation (3) lead to normal mode equations having the form

%MM.pp cð Þ þ %CC’pp cð Þ þ %KKp cð Þ ¼ %FF p; ’pp;cð Þ: ð5Þ

These equations are non-linear ODEs but their dimensions are much reduced compared to
the full finite element equations (equation (3)). The normal mode mass, stiffness, damping
matrix and force vector are given by

%MM ¼ UTMU; %CC ¼ UTCU; %KK ¼ UTKU; %FF ¼ UTF: ð6Þ

The mode shapes or eigenvectors in eqations (4) and (6) are obtained from rotating
frequencies of the blade [17]:

KsU ¼ o2MsU: ð7Þ

The blade normal mode equations in equation 5 can be written in the following
variational form [18]: Z 2p

0

dpT %MM.ppþ %CC’ppþ %KKp� %FF
� �

dc ¼ 0: ð8Þ

Integrating equation (8) by parts, we obtain [18]Z 2p

0

dp

d’pp

( )
%FF� %CC’pp� %KKp

%MM’pp

( )
dc ¼

dp

d’pp

( )
M’pp

0

( ) �����
2p

0

: ð9Þ

Since the helicopter rotor is a periodic system with a time period of one revolution, we
have ’ppð0Þ ¼ ’ppð2pÞ: Imposing periodic boundary conditions on equation (9) results in the
right-hand side becoming zero and yields the following system of first order ordinary
differential equations [18]: Z 2p

0

dyTQ dc ¼ 0;

where

y ¼
p

’pp

( )
; Q ¼

%FF� %CC’pp� %KKp

%MM’pp

( )
: ð10Þ

The non-linear, periodic, ordinary differential equations are then solved for blade steady
response using the finite element in time method [19] and a Newton–Raphson procedure
[18]. Discretizing equation (10) over Nt time elements around the rotor disk (where c1 ¼
0;cNtþ1 ¼ 2p ) and taking a first order Taylor’s series expansion about the steady state
value y0 ¼ pT

0 ’pp
T
0

� 	T
yields algebraic equations [18]

XNt

i¼1

Z ciþ1

ci

dyT
i Qiðy0 þ DyÞ dc ¼

XNt

i¼1

Z ciþ1

ci

dyT
i Qiðy0Þ þ Ktiðy0ÞDy½ � dc ¼ 0;

where

Kti ¼
@ %FF

@p
� %KK

@ %FF

@ ’pp
� %CC

0 %MM

2
64

3
75

i

: ð11Þ
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For the ith time element, the modal displacement vector can be written as

pi cð Þ ¼ H sð Þni; ð12Þ

where H(s) are time shape functions [19] which are fifth order Lagrange polynomials [18]
used for approximating the normal mode co-ordinate p. For a fifth order polynomial, six
nodes are needed to describe the variation of p within the element. Continuity of
generalized displacements is assumed between the time elements. Substituting equation
(12) and its derivative into equation (11) yields the time discretized blade response [18]

QG þ KG
t DnG ¼ 0;

where

QG ¼
XNt

i¼1

Z ciþ1

ci

HTQi dc; KG
t ¼

XNt

i¼1

Z ciþ1

ci

HT

@ %FF

@p
� %KK

@ %FF

@ ’pp
� %CC

0 %MM

2
64

3
75

i

dc;

DnG ¼
XNt

i¼1

Dni ð13Þ

Solving the above equations iteratively yields the blade steady response.
Steady and vibratory components of the rotating frame blade loads (i.e., shear forces

and bending/torsion moments) are calculated using the force summation method [20]. In
this approach, blade inertia and aerodynamic forces are integrated directly over the length
of the blade. The blade root loads are given as [21]

FxR

FyR

FzR

8><
>:

9>=
>; ¼

Z 1

0

Lu

Lv

Lw

8><
>:

9>=
>;dx;

MxR

MyR

MzR

8><
>:

9>=
>; ¼

Z 1

0

�Lvw þ Lwv þ Mu

Luw � Lwv þ Mv

�Luv þ Lvðx þ uÞ þ Mw

8><
>:

9>=
>;dx: ð14Þ

Fixed frame hub loads are calculated by summing the individual contributions of
individual blades [21]:

F H
x ðcÞ ¼

PNb

m¼1

ðF m
x cos cm � Fm

y sin cm � bpFm
z cos cmÞ;

FH
y ðcÞ ¼

PNb

m¼1

ðF m
x sin cm þ F m

y cos cm � bpFm
z sin cmÞ;

FH
z ðcÞ ¼

PNb

m¼1ðFm
z þ bpFm

x Þ;

MH
x ðcÞ ¼

PNb

m¼1

ðMm
x cos cm � Mm

y sin cm � bpMm
z cos cmÞ;

MH
y ðcÞ ¼

PNb

m¼1

ðMm
x sin cm þ Mm

y cos cm � bpMm
z sin cmÞ;

MH
z ðcÞ ¼

PNb

m¼1ðMm
z þ bpMm

x Þ:

ð15Þ

Once the hub loads are obtained the helicopter needs to be trimmed. This is defined as the
condition where the steady forces and moments acting on the helicopter sum to zero and
simulates the condition for steady level flight [1]. The trim solution for the helicopter
involves finding the pilot control angles h at which the six steady forces and moments
acting on the helicopter are zeros:

F hð Þ ¼ 0: ð16Þ
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The trim equations are solved iteratively using a Newton–Raphson procedure [21]. A
coupled trim procedure is carried out to solve the blade response, pilot input trim controls,
and vehicle orientation, simultaneously. This procedure is called coupled trim since the
blade response equations (equation (13)) and trim equations (equation (16)) are
simultaneously solved thereby accounting for the influence of elastic blade deflections
on the rotor steady forces [18, 21]:

Dh ¼ �@F

@h

����
h0

h � h0ð Þ; nGiþ1 ¼ nGi þ DnGi : ð17Þ

The coupled trim is solved iteratively until convergence. The coupled trim procedure is
essential for elastically coupled blades since elastic deflections play an important role in the
steady net forces and moments generated by the rotor. Once the blade response and trim
controls are obtained, a stability analysis is performed. Taking a Taylor’s series expansion
of the blade modal equations (equation (5)) about the deformed state (known from
coupled trim solution) [17], we have

%MM.ppþ %CC’ppþ %KKp ¼ %FFþ @ %FF

@p

����
p0

ðp� p0Þ þ
@ %FF

@ ’pp

����
p0

ð’pp� ’pp0Þ: ð18Þ

The perturbation equations shown in equation (15) then become

%MMd.ppþ %CCd’ppþ %KKdp ¼ @ %FF

@p

����
p0

dpþ @ %FF

@ ’pp

����
p0

d’pp: ð19Þ

Moving the tangential stiffness and damping matrix terms from the right-hand side to the
left-hand side in equation (16) and putting in first order form yields

d ’XX ¼ A cð ÞdX;

where

dX ¼
dp

d’pp

 !
; AðcÞ ¼

0 I

� %MM
�1 %KK� @ %FF

@p

����
p0

 !
� %MM

�1 %CC� @ %FF

@ ’pp

����
p0

 !
2
664

3
775: ð20Þ

Here 2 m equations are obtained if m is the number of modes used. The above equation is a
linearized periodic first order ODE and can be solved using Floquet theory [1] by
obtaining the Floquet transition matrix defined as

W c0 þ 2p;c0ð ÞX ¼ lX: ð21Þ

The analysis of differential equations with periodic coefficients is called Floquet theory [1].
The stability damping and frequencies about the deformed state are obtained from the real
and imaginary parts of the eigenvalues of the Floquet transition matrix.

lk ¼ lR
k þ ilI

k ¼ eðakþiokÞ2p;

ak ¼ 1

2p
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlR

k Þ
2 þ ðlI

kÞ
2

q
; ok ¼ 1

2p
tan�1l

I
k

lR
k

: ð22Þ

Additional details of the aeroelastic analysis including derivations of the blade governing
equations are given in reference [21]. The above aeroelastic analysis is a large computer
program. A primary goal of this paper is to represent the outputs from the aeroelastic
analysis as simple functions that are amenable to optimization. This is accomplished using
response surface methods discussed below.
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3. RESPONSE SURFACE METHODS

Response surface methods (RSM) is a collection of mathematical and statistical
techniques for solving problems in which the goal is to optimize the response y of a system
or process using n independent variables, subject to observational errors [15]. Response
surfaces are smooth analytical functions and are most often approximated by
polynomials. For example, a second order polynomial response surface has the form:

f X; bð Þ ¼ b0 þ
Xn

i¼1

biXi þ
Xn

i¼1

Xi

j¼1

bijXiXj: ð23Þ

The above equation is the regression equation, and b0, bi and bij are the regression
coefficients. Estimates of the coefficients b0, bi and bij can be obtained by fitting the
regression equation to the response surface values observed at a set of data points. For a
second order response surface, (n+1)(n+2)/2 unknown regression parameters are present
and in order to estimate these parameters, an equal number of data points are needed. For
example, if we have n=2, the second order response surface given by equation (23) is
written as

f x1; x2; bð Þ ¼ b0 þ b1x1 þ b2x2 þ b11x2
1 þ b12x1x2 þ b22x2

2: ð24Þ

The above equation has six unknowns. Therefore, we need to evaluate the response in
equation (24) at six unique data points to obtain the following system of equations:
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: ð25Þ

The generalization to higher dimensions is straightforward. The statistical quality of the
fitted response surface increases as the number of data points increases. When the number
of data points used is greater than (n+1)(n+2)/2 for a second order response surface,
least-squares fit is used to get the regression coefficients. However, the computational time
to get additional data points is often high for simulation codes. Therefore, to reduce
computational costs, the total number of response evaluations is kept sufficiently low.

An important consideration in the choice of data points is their distribution over the
design space. A poor distribution can have a strong influence upon the fidelity of the fitted
response surface. Statistical design of experiments addresses the issue for optimal selection
of data points for obtaining high fidelity response surfaces. Central composite designs are
a class of designed experiments that were devised specifically for fitting second order
response surfaces. These designs consist of 2n factorial designs augmented by 2n axial
points and one center point. A full factorial design uses all combinations of the chosen
levels of each factor. If each independent variable is scaled such that each of the 2n

factorial points lies at the vertices of an n dimensional hypercube shown in Figure 1 for
n=2, then each of the 2n axial points lie at a distance a from the center of a factorial
design. Therefore, the data points for the response surface are evaluated at five levels of
each variable, given as (�a, �1, 0, 1, a), as shown in Figure 1 for a=1�414. The number of
response evaluations is therefore the total of the factorial points, axial points and center
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Figure 1. Central composite design for two variables with a total of nine design points.
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points which equals 2n+2n+1 [15]. The design of experiments shown in Figure 1
is the central composite design. The axial distance a is chosen to be 1�414 for n=2
and 1�732 for n=3. In general, the distance a is obtained as square root of n. The
axial points are obtained to ensure design rotatability, which ensures that for any
two points in the design space x1 and x2 for which distances from the origin are the
same, the predicted values of the response should be equally good}that is, have equal
variance.

Once the design points have been obtained, we need to obtain a least-squares response
surface. Such a model is given as [15]

y ¼ Xb þ e; ð26Þ

where y is an (n	 1) vector of observations, X is an (n	 p) matrix of the levels of the
independent variables, b is a (p	 1) vector of the regression coefficients and e is a (p	 1)
vector of error terms. For example, for n=3, we have 2n+2n+1=15 design points.
If we want to fit a second order response surface through these design points, we
have (n+1)(n+2)/2=10 regression parameters. The regression parameters can be
obtained by minimizing the least-squares error obtained using equation (26) as
follows [15]:

L ¼
Xn

i¼1

e2i ¼ eTe ¼ y� Xbð ÞT y� Xbð Þ ¼ yTy� 2bTXTyþ bTXTy: ð27Þ
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To be considered a minimum point, the least-squares estimator must satisfy [15]

@L

@b

����
b

¼ �2XTyþ 2XTXb ¼ 0;

) XTXb ¼ XTy;

) b ¼ XTX
� ��1

XTy: ð28Þ

The fitted regression model is

#yy ¼ Xb: ð29Þ

The difference between observation and fitted value is the residual and is given as [15]

e ¼ y� #yy: ð30Þ

While there are formal methods of estimating the error in the response surfaces,
engineering judgment can often be used to account for the accuracy for the fitted model.

4. OPTIMIZATION PROBLEM

A general mathematical optimization problem is of the form [22]

Minimize objective function : JðDÞ
Subject to constraints : gðDÞ40; DL4D4DU ;

ð31Þ

where superscripts L and U refer to lower and upper bounds and DL and DU form the
lower and upper move limits on design variables respectively. An Nb-bladed rotor
transmits NbO forces and moments to the fuselage as the principal source of vibration. For
a four-bladed rotor, the objective function is defined as a combination of the scalar norm
of the 4O forces and the 4O moments. The 4O forces are the longitudinal (x direction),
lateral (y direction) and vertical (z direction) forces. The 4O moments are the rolling (x
direction), pitching (y direction) and yawing (z direction) moments. The 4O forces are
normalized by the rotor steady thrust, and the 4O moments are normalized by the rotor
steady yawing moment,

J ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F 4O

x þ F 4O
y þ F4O

z

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M4O

x þ M4O
y þ M4O

z

q
: ð32Þ

The design variables considered for this study are the flap bending, lag bending and
torsion stiffness. Behavior constraints are imposed on blade lag mode stability. The other
modes (flap and torsion) are found to be highly damped and are not used as constraints.
Constraints are also imposed on the upper and lower bounds of the design variables (move
limits). The constraint and move limits are

g1 ¼ aþ eL40; EI
ðlowÞ
y 4EIy4EI

ðhighÞ
y ;

EI
ðlowÞ
z 4EIz4EI

ðhighÞ
z ; GJðlowÞ4GJ4GJðhighÞ;

ð33Þ

where eL defines the minimum acceptable level of damping (positive for stability). For this
study, we select eL=0.001. In addition, the higher and lower bounds on the elastic stiffness
design variables are selected at 25 per cent greater and lower than the baseline design
respectively. The upper bound on the stiffnesses act as implicit constraints on blade
frequencies and dynamic stresses and the lower bounds on blade deflections.

The response surfaces for the objective function are then represented as second order
response surfaces in terms of blade elastic stiffnesses. For numerical studies, a blade with
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uniform blade stiffness is assumed:

J ¼ a0 þ a1EIy þ a2EIz þ a3GJ þ a4EI2
y þ a5EI2

z þ a6GJ2 þ a7EIyEIz

þ a8EIyGJ þ a9EIzGJ: ð34Þ

Once the regression parameters in the above response surface model are obtained, the
optimization can easily be performed using an optimization algorithm. The analysis
problem is therefore separated from the optimization problem.

5. RESULTS AND DISCUSSION

For the numerical study, a four-bladed soft-inplane hingeless (cantilevered) rotor
similar to the BO-105 rotor is considered [9]. The properties of the baseline helicopter
rotor are given in Table 1. The elastic stiffnesses are expressed in non-dimensional form.
The rotor blade is divided into five uniform beam finite elements. Since the blade is
uniform, five elements are found to be sufficient [8, 9, 18]. Ten modes (four flap, four lag,
one torsion and one axial) are used for the trim analysis, and nine modes (four flap, four
lag, and one torsion) are used for the stability results [18]. Axial modes have negligible
impact on stability analysis and are neglected to reduce computation costs that are high
for Floquet analysis of periodic systems [1]. The blade steady response is calculated by
dividing the azimuth into six time elements with a fifth order polynomial distribution
within each time element. Results are obtained in forward flight at an advance ratio
(m ¼ V=OR) of m=0�3 and a moderate thrust condition CT/s=0�07.

5.1. DESIGN AND ANALYSIS OF RESPONSE SURFACE

The central composite designs are obtained using the following coded points: (�1�732,
�1, 0, 1, 1�732) in accordance with the theory of design of experiments [15]. Fifteen points
are generated using the coded variable ‘‘0’’ as baseline stiffness and ‘‘1’’ as 25 per cent from
baseline. The 25 per cent bound on the design variables also correspond to the move limits.
Thus, we seek a global second order approximation of the aeroelastic analysis within the
design space. The coded points and the physical variables are shown in Table 2, along with
the values of the objective function J predicted by the aeroelastic analysis and the response
surface. The response surface results are obtained from equation (35) discussed below.

Using these numbers in Table 2 and the least-squares estimator given in Equation (28),
the response surface for the objective function containing vibratory hub loads is given as

J ¼ 0�0107904 � 45�2796EIy þ 1089�27EI2
y þ 5�52299EIz þ 1597�76EIyEIz � 269�759EI2

z

þ 148�478GJ � 4666�24EIyGJ � 3693�38EIzGJ þ 1792�56GJ2: ð35Þ

Results from Table 2 show that the response surface predicts the objective function to a
reasonable degree of accuracy (0–6 per cent) compared to the aeroelastic analysis. In
addition, the mean error is 0�8 per cent and the standard deviation in error is 3�74 per cent.
It should be remembered that the aeroelastic analysis predictions might contain modelling
errors and numerical noise.

It is important to evaluate the nature of the response surface shown in equation (35),
before proceeding with optimization. The first thing to investigate is if the response surface
for the objective function has a stationary point. This can be done by setting the gradients
for J equal to zero with respect to the three elastic stiffnesses and then solving the resulting
three simultaneous equations, yielding EIy=0�0203, EIz=0�0215, GJ=0�00712.



Table 2

Sampling points used for creating response surface for objective function J

No. x1 x1 x1 EIy EIz GJ J (RSM) J (analysis) % Error

1 0 0 0 0�0210 0�0201 0�0077 0�140 0�145 �3�4
2 1 �1 �1 0�0263 0�0151 0�0058 0�115 0�115 0�0
3 1 1 1 0�0263 0�0251 0�0096 0�119 0�117 1�8
4 1 �1 1 0�0263 0�0151 0�0096 0�107 0�108 �0�7
5 1 1 �1 0�0263 0�0251 0�0058 0�269 0�259 3�9
6 �1 1 1 0�0158 0�0251 0�0096 0�163 0�172 �5�3
7 �1 1 1 0�0158 0�0151 0�0096 0�320 0�300 6�7
8 �1 �1 �1 0�0158 0�0151 0�0058 0�140 0�132 6�1
9 �1 1 �1 0�0158 0�0251 0�0058 0�125 0�123 2�0

10 1�732 0 0 0�0301 0�0201 0�0077 0�200 0�190 5�5
11 �1�732 0 0 0�0119 0�0201 0�0077 0�260 0�271 �3�9
12 0 1�732 0 0�0210 0�0288 0�0077 0�118 0�119 �0�7
13 0 �1�732 0 0�0210 0�0114 0�0077 0�121 0�120 0�7
14 0 0 1�732 0�0210 0�0201 0�0110 0�173 0�170 1�6
15 0 0 �1�732 0�0210 0�0201 0�0044 0�147 0�152 �3�1

Table 1

Rotor properties

Number of blades 4
Radius (m) 4�94
Hover tip speed, m/s 198�12
Cl 5�73a
Cd 0�0095+0�2a2

Cm 0�0
c/R 0�08
s 0�10
CT/s 0�07
m0 (kg/m) 6�46
EIy/m0O

2R4 0�021
EIz/m0O

2R4 0�0201
GJ/m0O

2R4 0�007688
Precone bp 0�0
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To find if the stationary point is a minimum, maximum or a saddle point, we evaluate
the Hessian matrix [22] for the response surface in equation (35). The Hessian is the matrix
of second order derivatives of the objective function with respect to the design variables.
The eigenvalues of the Hessian are obtained as l1=9145�47, l2=�3078�17 and
l3=�843�1. If all eigenvalues are positive, the Hessian is positive definite and the
stationary point is a global minimum point. If all eigenvalues are negative, the Hessian is
negative definite and the stationary point is a global maximum point. Since the eigenvalues
have different signs, the Hessian is indefinite, and the stationary point is neither a
minimum nor a maximum but a saddle point.

The view of the response surfaces from the baseline point is shown in Figures 2–4. In
these figures, one of the design variables is kept fixed at the baseline value and the other
two are varied between the move limits. The move limits are the upper and lower bounds



Figure 2. Variation of response surface objective function with respect to blade lag and torsion stiffness with
flap stiffness held constant at the baseline value.
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placed on the design variables. A clear view of the design space can therefore be obtained
from these figures. In Figure 2, the flap stiffness is kept fixed at EIy=0�021 and the lag and
torsion stiffness are varied between the move limits. In Figure 3, the lag stiffness is kept
fixed at EIz=0�0201 and the flap and torsion stiffness are varied between the move limits.
In Figure 4, the torsion stiffness is kept fixed at GJ=0�0078 and the flap and lag stiffness is
varied between the move limits. From Figure 2, we can observe that reducing torsion
stiffness and lag bending stiffness reduces vibration. From Figure 3, we can observe that a
lower torsion stiffness is desirable and a flap stiffness between 0�022 and 0�018 is where
vibration is lowest. Finally, Figure 4 shows that a low lag bending stiffness coupled with a
high flap bending stiffness reduces vibrations for this rotor. The response surfaces allow us
to conclude that the optimal design is likely to be softer in torsion and lag bending and
stiffer in flap bending, compared to the baseline design.

5.2. OBTAINING THE BEST DESIGN POINT

Since the response surface does not have a stationary point that is a minimum, a
constrained optimization is needed to find the minimum point. At this stage, we omit the
stability constraint from the analysis, since it is expensive to evaluate and may not become
critical at the optimum. This follows the constraint deletion strategy proposed by
Vanderplatts [22] when dealing with expensive constraints such as flutter. We can always
add the stability constraint later if it is found to be active or violated at the optimal point.

The constrained optimization is performed using an exhaustive search of the design
space [23]. The response surface allows for very fast evaluation of the objective function,



Figure 3. Variation of response surface objective function with respect to blade flap and torsion stiffness with
lag stiffness held constant at the baseline value.

Figure 4. Variation of response surface objective function with respect to blade flap and lag stiffness with
torsion stiffness held constant at the baseline value.
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Figure 5. Comparison of the baseline and optimum values of the objective function predicted by the
aeroelastic analysis and the response surface approximation (optimal point predicted using response surface).
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and the global optimum is found to be: EIy=0�02205, EIz=0�015075, GJ=0�005766. This
point occurs at a location in the design space where the move limits on the lag stiffness and
torsion stiffness become active. It is also found by running the analysis at the predicted
optimum that the stability constraint does not become active at the optimum, even though
there is some reduction in the blade lag mode damping. The optimum design therefore
remains aeroelastically stable.

Figure 5 shows the values of the objective function at the baseline and optimum point,
for both the analysis and the response surface approximation. The response surface
approximation and the aeroelastic analysis shows a reduction in the objective of 31 per
cent. Thus, the response surface approximation was successful in yielding a better design
for the rotor blade.

The optimal blade design is stiffer in flap bending by 5 per cent, softer in lag bending by
25 per cent and softer in elastic torsion by 25 per cent, when compared to the baseline
blade. The hub forces, hub moments and blade aeroelastic stability results are shown in
Figures 6–8 respectively. The longitudinal 4O hub force decreases by 20 per cent, the
lateral 4O hub force by 13 per cent and the vertical 4O hub force by 34 per cent, as shown
in Figure 6. The 4O rolling moment decreases by 7 per cent, the 4O pitching moment by 16
per cent, and the 4O yawing moment decreases by 60 per cent, as shown in Figure 7. Each
of the six 4O vibratory hub loads is reduced. Thus, the objective function using the scalar
norm of the hub forces and moments successfully results in a low vibration rotor. As
expected, the dominant components of the hub loads (vibratory vertical hub shear and
yawing moment in this case) are reduced by a larger amount compared to the smaller
components, which is desirable.

The lag mode damping decreases by about 40 per cent, the flap mode damping increases
by 25 per cent and the torsion mode damping decreases by about 55 per cent, as shown in
Figure 8. The damping values shown in Figure 4 are normalized with respect to their
baseline values. Thus the low vibration rotor comes at the expense of a decrease on blade
stability, since the rotor lag mode is low damped and the optimal solution results in a
further reduction in the damping.

The results shown above indicate that response surface approximations can simplify the
process of application of formal optimization methods for helicopter rotor design
problems. Though for numerical results a simple case with three stiffness design variables
is considered, the procedure can be easily extended to more design variables. Response
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surface methods work well until about 15 design variables, when the number of analysis
evaluations needed to obtain the response surface starts becoming too large. In addition,
the response surfaces can offer valuable insights into the design space to the helicopter
rotor designer.

6. CONCLUSIONS

1. An aeroelastic analysis of a helicopter rotor is used to construct polynomial response
surfaces of vibratory hub loads using a central composite design based on the theory of
design of experiments. It is found that second order polynomial response surfaces
adequately represent the vibratory hub loads from the aeroelastic model within 1–6 per
cent in the vicinity of the baseline design.

2. Numerical results obtained with elastic stiffness design variables give an optimal design
showing a reduction in the objective function comprising of vibratory hub loads of
about 30 per cent and a reduction in all the 4O hub forces and moments (the main cause
of helicopter vibration for a four-bladed rotor) of about 10–60 per cent.

3. It demonstrated that response surface methods represent an attractive way to decouple
the computationally cumbersome aeroelastic analysis problem from the optimization
problem, and may help to spread the use of optimization methods by the helicopter
industry.
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APPENDIX: NOMENCLATURE

c blade chord
Cd blade section drag coefficient
Cl blade section lift coefficient
Cm blade section moment coefficient
CT thrust coefficient
C finite element damping matrix
D design variables
EIy flap bending stiffness
EIz lag bending stiffness
F hub forces
Fx longitudinal hub force
Fy lateral hub force
Fz vertical hub force
F finite element force vector
GJ torsion stiffness
g constraints
H time shape function
J objective function
K finite element stiffness matrix
Mu blade section moment in axial direction
Mv blade section moment in lag direction
Mw blade section moment in flap direction
Mx rolling moment
My pitching moment
Mz yawing moment
Ks finite element structural stiffness matrix
Lu blade section lift in axial direction
Lv blade section lift in lag direction
Lw blade section lift in flap direction
m0 mass per unit length of blade
M hub moments
M finite element mass matrix
Ms finite element structural mass matrix
n number of response surface variables
N number of spatial finite elements
Nb number of blades
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Nt number of time finite elements
p normal mode co-ordinate vector
q finite element nodal displacement vector
R rotor radius
s local time co-ordinate
T kinetic energy
u axial deflection of blade
U strain energy
v lag bending deflection of blade
V forward velocity
w flap bending deflection of blade
W virtual work
x longitudinal direction
y lateral direction
z vertical direction
d variation
a location of axial points, angle of attack, damping
y helicopter trim control angles
m advance ratio
s solidity ratio
f torsion deformation of blade
c azimuth angle, time
C Floquet transition matrix
O rotation speed, scalar quantity
( )H hub quantity
( )4O 4O component
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