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This paper deals with the linear dynamic response of a simply supported elastic single-
span beam subjected to a moving load of constant magnitude and variable velocity. This
analysis focuses attention on the effect of the acceleration or deceleration on the behaviour
of the beam under a single (one-axle) load, or a real vehicle model (two-axle load), while the
influence of the damping of the beam is taken into account for this last model. A variety of
numerical results allows us to draw important conclusions for structural design purposes.
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1. INTRODUCTION

The determination of the dynamic effect of moving loads on elastic structures and,
particularly, on bridges is a very complicated problem. This multi-parameter problem has
been studied by many researchers, in order to present reliable solutions. For this purpose
two different methods are used: The first one is to perform tests and the second is that of
pure theoretical investigation.

The problem of moving loads was first considered approximately for the case of a girder
with negligible mass, compared to the mass of a single moving load of constant magnitude
by Stokes [1] and Zimmermann [2]. Afterwards, the case of a moving load with negligible
mass compared to the mass of the girder was studied by Krylov [3], Timoshenko [4] and
Lowan [5].

The complete problem, including both these parameters, was studied by other
investigators such as Steuding [6], Schallemcamp [7], and Bolotin [8]. A very thorough
treatise on the dynamic response of several types of railway bridges, traversed by steam
locomotives was presented by Inglis [9] using harmonic analysis. Interesting analyses were
also presented by Hillerborg [10] using Fourier’s analysis and by Biggs et al. [11] using
Iglis’s technique. The problem of the dynamic response of bridges under moving loads is
reviewed in detail by Timoshenko [12], and later on by Kolousek [13]. One should also
mention the extended review reported by Fryba [14] in his excellent monograph on this
subject. Based on his text, Fryba [15, 16] studied the effects of the constant speed and
damping on the response of a beam.

Many investigators ascertained that some parameters, usually neglected, had an
interesting, and often pronounced, influence on the dynamic behaviour of the bridges. One
can mention, for example, the type of the vehicle Veletsos and Huang [17], the mass of
the moving load Michaltsos et al. 18], the constants of the springs and dampers Fertis [19],
the bridge’s uneven deck Abdel-Rohman and Al Duaij [20], Michaltsos and
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Konstantakopoulos [21], the centripetal and Coriolis forces Michaltsos and Kounadis [22]
and many others.

A very important parameter in the study of the vibration of bridges caused by moving
loads is the velocity. Although there is scarcity of publications on this subject, one must
mention the work of Zibdeh [23] who included the effect of random velocities on the
dynamic response of a bridge traversed by a concentrated load.

The present paper examines the influence of random loads moving with variable speeds
on the dynamic behaviour of a single-span beam. Three cases are considered. Firstly, the
concentrated load, moved with time-varying velocity, secondly the vehicle (with wheelbase
equal to 2d), moving also with time-varying velocity and finally, the influence of light
damping (with coefficient ¢) on the above case of a moving vehicle. The approach is based
on the Euler—Bernoulli’s beam theory. Closed form solutions for the mean and variance of
the deflection are obtained and comparison of the results for the aforementioned three
cases is performed.

2. MATHEMATICAL FORMULATION

Consider the simply supported beam, shown in Figure 1, of length ¢, having a prismatic
cross-section with constant mass per unit length m, flexural rigidity EI and rotational
inertia J, made from linear, homogeneous and isotropic material. The beam is traversed
by a mass-load P = Mg, with rotational inertia J,, subjected to the horizontal force F(r)
and moving with the velocity v(?).

The position o of the mass-load from the left end of the beam at any time ¢ is equal to
a = s(t), where 7 is measured from the instant the load enters the span. Before that instant,
the deflections throughout the length of the beam are assumed to be zero. The equations of
motion are

EIW" + cob + e — 200" + miv = Mg — (W + 5w/’ + 25W' + 5w")]8(x — )
+ S (x — o), (1)

M5+ Mww'd(x — a) = F(1), (2)

where the prime denotes differentiation with respect to x, while the dot to time ¢, g is the
gravitational acceleration and 6(x — «) the Dirac function.
The associated boundary and initial conditions are, respectively

w(0,7) = w(l, 1) =w'(0,1) =w"({,1) =0, (3)

|—> o(t)

6
m, El, J,,c
X
Va4 * //A//
P=Mg, J,
w
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7 1

L Vv
7 7

Figure 1. A single-span beam traversed by an one-axle load.
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and
w(x,0) =w(x,0) = 0. (4)
In the present paper, one is interested in movements with
F(t) = F = constant (5)
and therefore
§=y=constant, §=v=uvg+7t, §=uvot+*/2, (6)

where 7 is the acceleration or deceleration of the moving mass-load, v = v(¢) its velocity
and vy = constant, the initial velocity at time ¢ = 0 when the mass-load enters the beam.

2.1. THE CONCENTRATED LOAD

The simplest and more usual case is of a moving load without consideration of the
influence of inertia forces (like mass, or centripetal and Coriolis forces whose influence has
already been determined in references [18, 22]). This leads to

EIw" (x,t) + m(x,t) = Mgd(x — a). (7)
A series solution of equation (7) in terms of linear normal modes can be sought in the form
W(X, t) = Z Wn(X, t) = Z Xn(x)Tn(t)v (8)

where
X, (x) =sin(nnx/l), (n=1,2,---). 9)

Substituting equation (8) into equation (7), multiplying the result by X, (x), integrating
over the domain, and considering the orthogonality condition, the differential equation of
the nth mode of the generalized deflection can be written as

T, + 0>T, = 2Mg/ml) sin[(nn/€)(vot + 22 /2)], for y >0, (10a)
T, + 02T, = (2Mg/m¢) sin[(nr/¢)(vot — y2*/2)], for y<0, (10b)
where
44
2 n‘n*El
= =12, 11
n m£4 ’ (n )< ) ( )

are the eigenfrequencies of the beam.
The solution of equation (10) is given by the Duhamel’s formula as

Mg [ . ’
T, = g{/ sin 0 cos T gin w,(t—1)dt
0

 mlo, [ 20

t 2
+/ c0s % in™ T sin wu(t—1)dryp, y>0, (12a)
0 1 20

2M L ye?
T, Ww‘i{/o s1nmr;01 cos nnz/; sin w,(t —7)dt

‘ 2
_/ cos 0T i sinw,(t —1)dty, y<0, (12b)
0 1 20
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For the second case (deceleration) one notes that the vehicle stops at
t=vo/y, £>u5/2, (13a)

t=1/p(vg — \/V] —2v0), £<v}/2y. (13b)

2.2. THE MOVING VEHICLE

One considers the vehicle of Figure 2, having the characteristics: (a) Number of axes, 2;
(b) mass, M; (c) length of wheelbase, 2d; (d) distance of its gravity centre from the upper
surface of the bridge deck, /; (e) moving force, F = M7y; (f) acceleration (or deceleration)
produced by F, y.

One assumes that the first (front) axis enters the beam at ¢ = 0 and that for a vehicle at
rest (v = 0) the load P = Mg is divided equally between the two axles of the vehicle. Hence
the forces P, and P, can be expressed as

Mg Myh Mg Myh
=g Pyt 770 (44
p Mg Myh o, Mg Myho (15)

2 " 2d TP 2 2d

On the other hand, since the second (back) wheel enters the bridge at time 7;, while the
front wheel will have traversed a distance 2d one can write 2d = vyty + yt5/2 giving

ta = 1/y(=vo + /3 + 4yd), 7> 0, (16)
ta =1/y(vo — \/v3 + 4yd), 7<0. (17)

At t = t4, the back wheel will be entering the bridge at a speed
Vg = Vg + Yld, V>07 (18)

Vg = Vo — Yld, "/<07 (19)

Figure 2. A single-span beam traversed by a two-axle vehicle.
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The front wheel, at time ¢, will arrive at a point that is, distance o) from the entrance of the
bridge such that

a = vot +9£2/2, y >0, (20)

ap = vot — £2/2, y<0. (21)

The back wheel will arrive at time ¢ — ¢, (time from its entry on the bridge) at a point that
is, distance o, from the entrance of the bridge such that

ar = (vo + yta)(t — tg) —i—W_TZd)Z, y >0, (22)
% = (v — yta)(t — ta) — Mv y<0 (23)
Then equation (8) becomes
EIwW" +mv = P13(x — o) + P28(x — o). (24)
A solution is sought with the form
wx,0) = 3 X, (0 T (), (25)

where X,,(x) is given by equation (9).
Comparing equations (24) and (25)

EIZX,’[" Tn+mZXnTn :Azl(g—y;>6(x—oc1)—|—A24<g+y;>5(x—oc2), y >0,

and since X, satisfies the equation of free vibration, one may finally write

. M vh M vh
2 _mMfron _ w m _
En X, T, + En @, X, T, = 3 (g )S(x or) + > <g + )S(x o), y>0. (26)

Multiplying both sides by X, integrating the results over the domain and taking into
account the orthogonality condition, we get

T,+ 0T, = I,(1), (27)

where

M h\ [ . t 12 . 2
I, :—(g — y_) (sm 0T s M7 + cos ATl Gin i 4 >

ml d 14 20 1 2
M vh (oo 4+ ta) (1 — tg) oyt — 1g)?
+m£<g+d>{sm 7 cos 27

2
ta)(t—1tq) . t—1
+cos (oo + y;)( a) sin mw(% @) }H(t —14), 7>0, (28)
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M yh\ (. nmvogt  nmyt? nmogt . nmyt
F,,—<g+/—)<sm ™o cos 2l — Cos ™o sin 2l )

ml d ¢ 20 L 20
M n\ | . — i)t —t t— )
N M(g B yd> {Sm nm(vo //)( d) cos ny( - d)
2
—ytg)(t — ¢ . t—1
—cos (Vo = 9ta) (! = ta) sin nmy(t = ta) H(t—1t,), y<0 (29)
14 20
with H(z — t4) as Heaviside’s function.
The solution of equation (27) is given by Duhamel’s integral as
1 t
T,(t) = —/ I'y(t)sin w,(t — 1) dr. (30)
Wy 0
The calculation of integrals (30) is given in Appendix A.
2.3. THE MOVING VEHICLE WITH DAMPING
Equation (24), in this case, becomes
EIW" + oW +miv = P1d(x — o) + Prd(x — o). (31)

Following the same procedure as in section 2.2, and for a solution in the form w =
> X Ty,

MM (2P, /mé) sin ””Z‘z. (32)

Ty + (¢/m)T, + 02T, = (2P /mf) sin

The solution of the above equation (32) is given by Duhamel’s second integral as

2P, [ 7T
2P, 1. [nn y(t = ta)’
= ta)(t — tg) + ——
+m€w,’;/0 Sm{é (vo + 7t4)(z — t4) + >
e P19 sin o’ (¢ — 1)H(x — ) d1, 7 >0, (33)

2P (1. 7 ,
T, ngall,’;/o sin {n;r (vor - ');)] e P sin (¢ — 1) do

2P, [t |nn (1 — tg)?
+ ij;/o sm{Tl(vo —tg) (Tt —tg) — —5

e P sinw? (1 — 1)H(t — 15) dr, <0, (34)

where
B=c/2m, o =\/w2— B> (35)

and P;, P, are given by equations (14) and (15).
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2.4. DIMENSIONLESS FORMS

Using the dimensionless parameters

=x/l, {=y/g, Ty = 2/n)\/m#/EI, t=1t/Ty, h="h/t, d=d/l, 15=14)T),
(36)

¢
¢=(c/2m) Ty, o=vT\/t, 7=7(T?/0), M= M/ml, by =vyT,/¢,

one can write
= _h2 _ = - - - 2
Qut = nmit, w,t =2n"nt, Q,/w, =0/2n, 0=10y+ 1, w, =2n"n/Ty,

Q, = nnv/ Ty, nmy? /20 = nmji? /2, o =1/TiVan*n2 — &, B=2¢/T). (37)
Finally, the dimensionless nth mode displacement w,(&,t) of the beam, is given in

sections 2.4.1-2.4.3.

2.4.1. The concentrated load

Wo(E,7) = wy(x, 1)/ (gml* /7> EI = (4M /n*)sin(nné) T, (1), (38)
where
_ T Sk2
T,= / sin(nnoyt*)cos T sin2n’n(t — )] de*
0
T nn -T*2
+/ cos(nmdyt*)sin sin[2n’n(t — )] de*, 3 >0, (39)
0
_ T . nnytt? 2 N X
T,= [ sin(nndyt*)cos 2 sin[2n°n(t — *)] dz
0
T ~ ) 117'5’)7 *2 ) )
- / cos(nmyt*)sin 7 sin2n°n(t — %)} d7*, y<0. (40)
0
2.4.2. The moving vehicle
Wa(E,1) = wu(x, 1)/ (gmt* /7> EI) = 2M /n?) sin(nné) T, (1), (41)
where
= %2

sin[2n’n(t — )] dt*

T, =(1—(h/d) {/ sin(nnyt*) cosnng
0
r _ . nmpr?
+/ cos(nmy 7) sin
0

(9
d

x sin[2n’n(t — o) H(t* — 14) dt*

sin[2n’n(t — )] dt*

T Sk 2
/ sin[nm(dy + y74)(t" — 14)] cOs M
0

T SOk 2
+ / cos[nn(vy + 774)(t" — 14)]sin M
0

x sin[2n*n(t — t)H(z" — 74)] de*, 9 >0,
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2.4.3.

where
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A T = %2
T, = (1 +i_§l> [/ sin(nmvyt*) cos mt); sin2n’n(t — t*))] dt*
0

= K2

T
. . nmyT
—/ cos(nmogt*) sin
0

- z v(T* 2
+ (1 - %) Vo sinfnm (B + 774) (7" — 74)] COSM

sin2n’n(t — )] dt*

x sin[2n’n(t — t*)|H(t* — 74) d7*

c Sk N2
- / cos[n(iy -+ Fra) (7" — 7)) sin T Z %)
0

2
x sin2n*n(t — o) H(7* — 14) d7*], 7<0. (43)
The moving vehicle with damping
_ 43 oM , .
wa(&,7) = wy(x, 1) (gml* /7’ EI) = —=sin(nné) T, (1), (44)
n* — (¢/2n)*

_ A T = %2 ~ i
T,= (1 - %) [/ sin(nndyt*) cos nm; sin {\/ dntn? — (1 — r*)} e ¢ dr*
0

T

T Sok2
: . NmyT
+ / cos(nmiyt*) sin
0

2
(9
d

sin [\/ dntn? — (1 — r*)} e <) dr*}

T T 2
/ sin[nn(dy + y74)(t" — 74)]cOS nmy(e ~ ta)”
0

2
X sin {\/ dntn? — (1 — r*)} e “TH(T — 1) dt*
‘ .- _ naj(tt —14)°
+ / cos[nm(by + y74)(t* — 14)] sin—————
0
X sin [\/ dntn? — & (1 — r*)} e “TTH(T — 14) dr*}, y >0, (45)

A T =x2 _ i
w = (1 + %) {/ sin(nmoyt*) cos nn);r sin[\/ dntn? — & (1 — r*)} e ) dr*
0
sin [\/ dntn? — (1 — 7:*)} e~ dr*}

¢ L nmpT?
— | cos(nmiyt™) sin 2
0

o W,
+(1 - %) [/0 sin[nn(v, + frd)(; —rd)]cosw

X sin [\/ dntn? — & (1 — r*)} e T H(t* — 14) dt*
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T Sk 2
- / cos[nn(vy + 774) (7" — 14)] sinM
0
X sin {\/ 4ntn? — (1 — r*)} e TH(t — 1) det|,  7<0. (46)

3. NUMERICAL RESULTS AND DISCUSSION

In this section, results in both graphical and tabular form are presented. The effect on
the dynamic response of a bridge of a load (or vehicle, see Figure 2) moving with variable
speed combined with various parameters such as initial velocity or type of vehicle are
discussed in detail.

The mathematical model considered herein is related to a real bridge with a span of
~100 m, weight per unit length of ~150 kN/m and moment of inertia ~0-80 m*, which is
traversed by a moving load with weight 600 kN, moved with initial velocities vy = 0, 20, 30
and 40m/s and accelerations (or decelerations) y =0, 3, 6, 9 and 12m/s> or in
dimensionless form mass M = 0-05, velocities o = 0, 0-38, 0-57, and 0-76 and accelerations
(or decelerations) 7 =0, 0-11, 0-22, 0-33, and 0-44 respectively. The remaining
characteristics are: 1 = 1-5m, 2d =8m, ¢ = 1250 Ns/m or in dimensionless form /s =
0-015, 2d = 0-08, ¢ = 0-05.

Numerical results are given in Tables 1 and 2.

TABLE 1

Dimensionless deflections w(0-5, t) for various dimensionless initial velocities 0y and
accelerations y, for the cases of an one-axle load, two-axle vehicle and a two-axle vehicle with

damping
v 7 First Second Third two-axle 2—-1 (%) 3-2 (%)
one-axle two-axle damping
0-00 0-00 — — — — —
0-11 0-0365488 0-0331876 0-0328557 -9-19 —1-00
0-22 0-0375575 0-0328769 0-0324495 —12-46 —1-30
0-33 0-0382156 0-0367686 0-0362171 —4.03 —1.51
0-44 0-0380566 0-0391482 0-0385218 +2-87 —1-59
0-38 0-00 0-0367220 0-0314440 0-0318643 —14-37 +1-33
0-11 0-0374035 0-0336308 0-0337989 —10-08 +0-49
0-22 0-0409037 0-0368054 0-0367685 —10-02 —0-10
0-33 0-0435678 0-0395225 0-0392854 —9-28 —0-62
0-44 0-0455301 0-0418376 0-0414611 —8-11 —0-90
0-57 0-00 0-0472969 0-0394842 0-0395728 —16-52 +0-22
0-11 0-0490444 0-0416449 0-0413534 —15-09 —0-71
0-22 0-0502667 0-0435067 0-0428541 —1345 —0-49
0-33 0-0510234 0-0450923 0-0444610 —11-62 —0-40
0-44 0-0516009 0-0464272 0-0460093 —10-03 —0-91
0-76 0-00 0-0543276 0-0468736 0-0466483 —13.72 —0-48
0-11 0-0547343 0-0478551 0-0471851 —12-57 —1-40
0-22 0-0548834 0-0487004 0-0479699 —11-26 —1-49
0-33 0-0548121 0-0494222 0-0489774 —9-83 -091

0-44 0-0545605 0-0500296 0-0496793 —8:30 —0-69
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TABLE 2

Dimensionless deflections w(0.5, t) for various dimensionless initial velocities 0y and
decelerations 7y, for the cases of an one-axle load, two-axle vehicle and a two-axle vehicle with

damping
v 7 First Second Third two- 2-1 (%) 3-2 (%)
one-axle two-axle axis + damping
0.38 0-00 0-0367220 0-0314440 0-0318643 —14-37 +1-34
0-11 0-0419286 0-0335010 0-0333330 —20-10 —0-51
0-22 0-0337591 0-0296601 0-0293635 —12-14 —1-02
0-33 0-0217150 0-0253288 0-0251261 +16-64 —0-79
0-44 0-0190705 0-0229527 0-0227989 +20-39 —0-70
0-57 0-00 0-0472969 0-0394842 0-0395728 —16-52 +0-22
0-11 0-0450186 0-0387695 0-0385368 —13-88 —0-60
0-22 0-0422641 0-0377349 0-0338859 —10-71 —0-20
0-33 0-0452819 0-0363593 0-0359957 —19-70 —1.02
0-44 0-0358255 0-0346354 0-0344622 —3.33 —0-51
0-76 0-00 0-0543276 0-0468736 0-0466483 —13.97 —0-48
0-11 0-0536316 0-0467086 0-0461481 —1291 —1-20
0-22 0-0526227 0-0463936 0-0456977 —11-83 —1-49
0-33 0-0512902 0-0458992 0-0454861 —10-51 —0-90
0-44 0-0492876 0-0452018 0-0448853 —8:29 -0-71

In Table 1, the accelerating motion (7 > 0) is comprehensively considered. The
dimensionless deflections of the middle of the bridge (at £ = 0-5) are determined for the
cases of a concentrated moving load of mass M (first case), or for a moving vehicle of,
also, mass M (second case) or, finally, of a moving vehicle of mass M with damping
coefficient ¢ (third case). Percentage increase or decrease of the deflections of the bridge
between second and first or third and second cases are determined in the two last columns
respectively. In Table 2, the decelerating motion (7<0) is also comprehensively
considered.

From the plots of Figures 3 and 4 one can see graphically the relationship between the
dimensionless time 7 and the deflections w of the middle of the bridge (at £ = 0-5) in
conjuction with the dimensionless acceleration (or deceleration) 7. Figure 3, is concerned
with the accelerating movement and shows in: column 1 the movement of an one-axle
load-mass M, column 2 the movement of a two-axle vehicle of mass M, and column 3 the
movement of the above two-axle vehicle including damping.

Figure 4 concerns the decelerating movement with columns 1, 2, and 3 describing the
same cases as in Figure 3.

Figure 5 shows the relationship between the dimensionless acceleration (or deceleration,
dashed lines) 7 and the dimensionless deflections w (at & = 0-5) of the middle of the bridge
in connection with the dimensionless initial speed vy.

From the above plots, it can be comprehensively concluded:

(a) The model of the single axle is not accurate, compared with the two-axle example
(the given results from the one-axle model are more unfavourable).

(b) The differences of the two-axle model from the exact model (with damping) are very
small (from 0-20 to 1-50%). Thus one can consider that the two-axle model is satisfactorily
accurate.
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Column 1 Column 2 Column 3

0.04

0.02

0.00.

0.04

0.02

0.00.

Deflection (w)

0.04

0.02

0.06

0.04}
0.04

0.02 0.02

0.00 0.00

0.2 0.6 1

Time (t)

Figure 3. Relationship between the dimensionless deflections w(0-5, ) to the dimensionless time, for various
dimensionless velocities and for the one-axle load (column 1), two-axle vehicle (column 2) and two-axle model
with damping (column 3). Accelerating movement: (——, y=0; --- - ,y=011; ---, 7=022; ——, y = 0:33;
——, 7 =0-44) with v = 0m/s (row 1), v = 0-38 m/s (row 2), v = 0-57m/s (row 3) and v = 0-76 m/s (row 4).

(c) By studying the accelerating movement (Table 1 and Figure 3), of the two-axle
model, one can see that the differences from a movement with constant speed are higher
than 7% and one often meets differences of 20 to 33%.

(d) As for the decelerating movement (Table 2 and Figure 4), the differences
(for the two-axle model also) from a movement with constant speed amount from —27
to +4%.

One sees that the accelerating movement tends to induce larger bridge deflections, while
the decelerating movement smaller ones.

4. CONCLUSION

On the basis of the chosen model, one can draw the conclusions:

(1) The effect of a variable speed is significant for the deflections of the bridge.

(2) The loading by a two-axle model is more accurate than that by a single-axle model.
(3) The influence of the external (usual) damping can be neglected.
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Deflection (w)

Column 1
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Column 2

0.04

0.02

0.03
0.02
0.10

Column 3

o
S

o
Q
]

0.04

0.02

0.04

0.02]

Time (t)

Figure 4. Relationship between the dimensionless deflections w(0-5, 7) to the dimensionless time, for various
dimensionless velocities and for the one-axle load (column 1), two axle vehicle (Column 2) and two-axle model

with damping (column 3). Decelerating movement: (——, 7 =

------ ,7=011; ---, 7=022; -

—, §=1033;

——, 7 = 0-44) with v = 0-38 m/s (row 1), v = 0-57m/s (row 2) and v =076 m/s (row 3).

005 V020.76
v, =0.57
v, =0.76
v, =0.38
v, =0.00
s — v, =0.57
E 003 T
c —~—
i) S~~~
3 TT T - — < =038
T 002
[a}
0.01
0.1 0.2 0.3 0.4 0.5
Accelaration (y)

Figure 5. Relationship between the dimensionless deflections w(0.5, ¢) to the dimensionless accelerations
(continuous lines) or decelerations (dashed lines) for various dimensionless initial velocities.
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APPENDIX A

Numerical results are obtained by using the formulae:

/t sin(at 4+ bt?)sin[w(t — 1)) dt
0

I ( cos M — 10 | FresC |2 2| — cos la-o)y o)’ — tw | FresC a+2bt—o
8b 4b V2nb 4b V27b

2 2
— Cos (la) + @) FresC [a i w] + cos (Zw + L +bw) > FresC {W}

4 vV 2nb 4 vV 2nh
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. [ (a—w)* {a - co] . [(a—w)? {a + 2bt — w}
+sin| ———— — tw | FresS —sin| — — tw |FresS|——
( 4b V2nb 4b V2nb

, (a+ o) [a + w} . (a+ w)? [a + 2bt + w]
—sin| tw + FresS +sin| tw + FresS | —————
( 4b V27b 4b V2nb

t
/ sin(at 4 bt?)sin[w(t — 7)]e~"" dt
0
_1)¥* Jqe—id ‘ A

:M _eBerfi ( 1) (C 1a+1(u)
(1) (a+ 261 + 0 + ic)
I 2vb
(1) (e +ia + o)
I 2Vb
(=) (a+2bt + 0 + i)
i 2vb
[(—1)*(—ia = 2ibt + ¢ + i)
I 2vb
_(_1)3/4(0 +ia —iw)
i 2vb
[(=1)**(ia + 2ibt + ¢ — i)
i 2vb

(=1)Y*(a+ o +ic)
2vb

(sin tw + 1 cos t®)

+elerfi (—sin tw +1cos tw)

+ederfi (—cos tw +isin tw)

+elerfi (—cos tw + isin tw)

+eBerfi

(sin tw +icos tw)

+eferfi (cos tw +1isin tw)

+eferfi (cos tw +1isin tw)

+ell erfi[ (sin tw +1cos ta))),

where
A= (> + &+ 0* + 2a(w — ic) — 2ic(2bt + w)) /4b, B = (a* — 2icw + w*)/2b,
I =

(a4 ) /2b, A=c*)2b, E=(Z+ 2am — 2icw)/2b

and _ )
FresS[z] :/ sin(nt?/2) dt, FresC[z]:/ cos(nt?/2) dt,
0

0
) z
erf[z] = ﬁ/o eitz dt

are the Fresnel integrals S[z], and C[z] while erf[z] is the integral of the Gaussian
distribution (error function) respectively.
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