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Many important oscillatory dynamical systems are modelled by differential equations
which take the form [1]

H(x,x,%) = %+ x +¢f (x,X) =0, ()
where ¢ is a positive parameter and f(x, ) is a rational function of its two arguments. An
odd-parity system is defined to be one for which the following property holds:

X — —x = H(—x,—Xx,—%) = —H(x, x,X). (2)

Consider now the following two odd-parity systems along with their corresponding
perturbation derived solutions (for the case where 0 <e<« 1) [1, 2]:

F+x+ex’=0; x(0)=4, x(0)=0, (3)

3
x(0,6) =Acos0+c¢ <%) (—cos 0 + cos 30)

+ & <161254> (23 cos 0 — 24 cos 30 + cos 50) + O(&?), (4a)
2 4
0, 1) = w(e)t = [lH(%?)f(?i)%(Xfﬂt (4b)
and
4+ x=e(l — x)x, (5)

x(0,¢) =2cos 0 + G) (3 sin 0 — sin 30)

&2
—1—<%>(—l3cos0+18cos30—500550)+0( &), (6a)
2
0(z,1) = ()t = P—%+o<ﬂ (6b)

Note that for both of these odd-parity systems the perturbation solutions have
trigonometric expansions in which only odd multiples of the angular frequencies (w)
appear!

To further illustrate the issue, examine the same situation for a mixed-parity system
given by the equation [1]

¥+ x4 eax? + &2px* =0, (7a)
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where
p=0(1), x(0)=4, x(0)=0. (7b)

The perturbation derived solution is

2
x(0,e) =Acos0 +8<O€1:>(—3 + 2 cos 0 + cos 20)

3 2
+ & <A?> {oc2 + <%> cos 0

+ <<x32> cos 20 + <2O€23—;3ﬁ> cos 30} + 0(&%), (8a)
0(c,1) = w(e)t = [1 +e <9ﬁ 2410“ >A2+ 0(53)] ‘. (8b)

Observe for this mixed-parity case that both even and odd multiples of the angular
frequency (w) occur.

The main purpose of this Letter-to-the-Editor is to demonstrate the correctness of the
following proposition: For odd-parity systems, the Fourier representations only include
contributions from terms having odd multiples of the angular frequency. In other words,
such systems have periodic solutions which take the form

Z Aj cos(2k — 1)wt + By sin(2k — 1)wt]. 9)
k=1

To proceed, the following assumptions are needed:

(1) Equation (1) is of odd-parity.

(2) The periodic solutions of equation (1) occur about the fixed-point (X,y) = (0,0) in
the two-dimensional phase-space (x,y), where y = Xx.

(3) The periodic solutions of equation (1) are essentially unique [1, 2]. Within this
context, essentially unique means that if x = ¢(¢) is a non-trivial periodic solution, then
for 1ty > 0, z = ¢(t — 1y) is also a periodic solution. From the perspective of phase space,
the moving point

(x(1), (1)) = ((2), $(1) (10)
traces out a closed path. Likewise, the moving point
(2(1),2(1)) = (¢(t = 10), $(t — 10)) (11)

traces out the same closed path, except for being shifted in phase.
Assume that equation (1) has a periodic solution with period T'; the corresponding
angular frequency is

o =2n/T (12)

and x(7) has the complex Fourier representation [3]

f: Ik(/)f * 1k< )t] ’ ( 1 3)

k=1
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where a; are complex valued coefficients. Now if x(7) is a periodic solution, then so is z(¢)
defined as

2(1) = —x(z+§). (14)

This follows from the fact that both x(z) and —x(¢) are solutions, and consequently
x(t —ty) and —x(t — ty) are also periodic solutions. In equation (14), ¢, is taken to be
to = —T/2. Since z(f) is a solution to equation (1), it follows from uniqueness that

=(1) = x(1) (15)

x(t+§> = —x(1). (16)

Substituting equation (13) into equation (16) and comparing the coefficients of the two
exponential terms gives the relation

(-1 = —a, (17)
which allows non-trivial values for the @, only in k=odd integer. Writing
by = ayn—1, m=1,2,3,... (18)
and defining
Ay =by+0b,,, B, =ilb, b)), (19)

it follows that for odd-parity systems, the periodic solutions have the Fourier
representation

x(t) = i[Am cos(2m — 1)wt + B, sin(2m — 1)wi]. (20)

m=1

In other words, only odd multiples of the angular frequency appear.

It should be indicated that the special case of a forced Duffing’s equation was studied by
Korner [4]. It was concluded that the periodic solution having fundamental angular
frequency, o, took the form given by equation (20). However, the argument given above is
general and holds for any odd-parity system having periodic solutions.

The results presented here also can be applied to non-standard odd-parity equations
such as [5]

i+ x+ex'3=0, 4 x13 =¢(1 = xH)x. (21,22)
Also, for conservative systems, i.e.,
¥+x+ef(x) =0,  f(=x)=—f(x), (23)

the initial conditions can also be selected such that B,, = 0; therefore, no sine terms appear
in the Fourier representation.
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