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In this paper, a theoretical model is developed for the dynamic analysis of composite
thin-walled beams with open or closed cross-sections. The present model incorporates, in a
full form, the shear flexibility (bending and warping shear) as well as a state of initial
stresses. This allows to study the free vibration and buckling problems in a unified fashion.
An analytical solution of the developed equations is obtained for the case of simply
supported thin-walled beams. Numerical examples are given to demonstrate the
importance of the shear flexibility on the vibration and buckling behavior of the
considered structures.

# 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

Structural members made of composites are increasingly used in aeronautical, mechanical
and civil engineering applications where high strength and stiffness, and low weight are of
primary importance. Other advantages that motivate some applications are corrosion
resistance, enhanced fatigue life, low thermal expansion, etc. [1]. Many structural members
made of composites have the form of thin-walled beams. Accordingly, a significant
amount of research has been conducted in recent years toward the development of
theoretical and computational methods for analyzing the structural behavior of such
members.

The structural analysis of isotropic thin-walled open beams is appropriately performed
by means of Vlasov’s theory. This theory considers the warping effect that is of great
importance in this type of structures [2]. Vlasov’s theory was extended to composites by
Bauld and Tzeng [3]. Recently, Ghorbanpoor and Omidvar [4] introduced new equivalent
moduli of elasticity and rigidity to allow decoupling (in an approximate form) of the Bauld
and Tzeng equations. In this way, the composite thin-walled open beam is treated by
means of Vlasov’s theory with new equivalent moduli of elasticity. This simplified
approach yields practically the same numerical values as those by Bauld and Tzeng’s
model. Massa and Barbero proposed a strength of materials formulation for static analysis
of composite thin-walled beams [5]. A study about the determination of the shear center in
composite beams was carried out by Pollok et al. [6]. In the case of box beams made of
orthotropic materials and subjected to tension and bending, Estivalezes and Barrau [7]
developed a simplified method to calculate stresses and strains.

However, the above-mentioned works do not consider the influence of the shear
flexibility on the dynamics of the member. This effect is important for predicting the
022-460X/02/$35.00 # 2002 Elsevier Science Ltd. All rights reserved.
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dynamic behavior of thin-walled open beams made of isotropic materials, as shown by
Cort!ıınez et al. [8–10]. For the case of composite thin-walled beams, the shear effect may be
even more important owing to the high value of the ratio between the longitudinal
elasticity modulus and the transverse elasticity modulus. Sherbourne and Kabir [11]
analyzed the shear effect in connection with the lateral stability of composite I-section
beams. Godoy et al. [12] developed a mathematical model for I-section composite beams
considering shear effects and cross-sectional distortion for interactive buckling analysis.
Shear flexibility associated to bending and new formulas for the shear coefficients were
analyzed by Omidvar [13]. The static behavior of tailored composite box-beams
considering only bending shear was performed by Smith and Chopra [14]. Song and
Librescu [15] developed a theory for the dynamic analysis of anisotropic composite thin-
walled closed beams. This model takes into account the shear flexibility due to bending
displacements in addition to primary and secondary warping effects. These authors
presented interesting applications and extensions of this last theory [16–18].

None of the papers cited above have considered the shear flexibility due to warping.
This effect may be very important in several situations. Moreover, taking into account the
coupled dynamic behavior of thin-walled members due to both cross-sectional geometry
and laminate characteristics, warping shear may also affect the dominant flexural modes.

According to the authors’ knowledge, the only study taking into account the shear
flexibility, in a full form, is that of Wu and Sun [19]. However, in their paper, emphasis was
given in showing the effectiveness of the developed finite element and not in characterizing
the shear effect on the dynamics of the member. Moreover, initial stresses were not
considered.

In this paper, a theoretical model is presented for the dynamic analysis of composite,
open and closed cross-sectional, thin-walled beams with initial stresses. This model takes
into account, in a full form, the shear flexibility (bending and warping shear). On the other
hand, it is strictly valid for symmetric balanced laminates and especially orthotropic
laminates [1]. The present equations are obtained by means of a Hellinger–Reissner
formulation of composite shells.

The model is used for analyzing the free vibration and buckling problems in a unified
fashion. To do this, an analytical solution of the present equations is performed for the
case of simply supported thin-walled beams. Parametric analyses are done to evaluate the
influence of the shear flexibility as well as the effect of the initial stresses on the natural
frequencies and buckling loads of beams with different cross-sectional shapes and laminate
architecture.

2. THEORY

2.1. ASSUMPTIONS

A composite thin-walled beam with an arbitrary cross-section is considered (Figure 1).
The points of the structural member are referred to a Cartesian co-ordinate system
ðx; %yy; %zzÞ; where the x-axis is parallel to the longitudinal axis of the beam while %yy and %zz are
the principal axes of the cross-section. The axes y; z are parallel to the principal ones but
having their origin at the shear center (defined according to Vlasov’s theory of isotropic
beams). The co-ordinates corresponding to points lying on the middle line are denoted as
Y and Z (or %YY and %ZZ). In addition, a circumferential co-ordinate s and a normal co-
ordinate n are introduced on the middle contour of the cross-section. On the other hand,
y0 and z0 are the centroidal co-ordinates measured with respect to the shear center.



Figure 1. Co-ordinate system of the cross-section.
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The present structural model is based on the following assumptions: (1) the cross-
section contour is rigid in its own plane; (2) the warping distribution is assumed to be given
by the Saint–Venant function for isotropic beams; (3) shell force and moment resultants
corresponding to the circumferential stress sss and the force resultant corresponding to gns

are neglected; (4) the radius of curvature at any point of the shell is neglected; (5) twisting
curvature of the shell is expressed according to the classical plate theory, but bending
curvature is expressed according to the first order shear deformation theory; in fact,
bending shear strain of the wall is incorporated; (6) initial shell force and initial bending
moment resultants, N0

xx and M0
xx related to s0xx are taken into account and (7) the laminate

stacking sequence is assumed to be symmetric and balanced, or specially orthotropic [1]
(the corresponding constitutive equations for the shell stress resultants are given in
Appendix A).

2.2. VARIATIONAL FORMULATION

Taking into account the adopted assumptions, the Hellinger–Reissner principle for a
composite shell may be expressed in the form [20]Z Z

ðNxxdeL
xx þ MxxdkL

xx þ NxsdgL
xs þ MxsdkL

xs þ NxndgL
xn þ N0

xxde
NL
xx þ M0

xxdk
NL
xx Þ ds dx

þ
Z Z

er
@2 %UU

@t2
d %UU þ @2 %VV

@t2
d %VV þ @2 %WW

@t2
d %WW

� �
þ e3r

12

@2fx

@t2
dfx þ

@2fs

@t2
dfs

� �� �
ds dx

�
Z Z

½ %qqxd %UU þ %qqsd %VV þ %qqnd %WW þ %mmxdfx þ %mmsdfs� ds dx

�
Z

ð %NNxxd %UU þ %MMxxdfx þ %NNxsd %VV þ %MMxsdfs þ %NNxnd %WWÞ ds

� �x¼L

x¼0

¼ 0; ð1aÞ

Z Z
eL

xx �
Nxx

A11

� �
dNxx þ gL

xs �
Nxs

A66

� �
dNxs þ kL

xs �
Mxs

D66

� �
dMxs

� �
ds dx

þ
Z Z

kL
xx �

Mxx

D11

� �
dMxx þ gL

xn �
Nxn

A
ðHÞ
55

 !
dNxn

" #
ds dx ¼ 0; ð1bÞ
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where Nxx; Nxs; Mxx; Mxs and Nxn are shell stress resultants defined according to the
following expressions:

Nxx ¼
Z e=2

�e=2

sxx dn; Mxx ¼
Z e=2

�e=2

ðsxxnÞ dn; Mxs ¼
Z e=2

�e=2

ðsxsnÞ dn; ð2a2cÞ

Nxs ¼
Z e=2

�e=2

sxs dn; Nxn ¼
Z e=2

�e=2

sxn dn: ð2d; eÞ

Initial shell stress resultants are denoted with the superscript ‘‘*0’’ and the applied shell
stress resultants on the boundaries are denoted as ‘‘ %**’’. %qqx; %qqs and %qqn are applied forces per
unit area in the directions x; s and n; respectively, while %mmx and %mms are applied couples per
unit area about the directions s and x respectively. On the other hand, the shell strains are
defined in the form

eL
xx ¼ @ %UU

@x
; kL

xx ¼ � @fx

@x
; gL

xs ¼
@ %UU

@s
þ @ %VV

@x
; kL

xs ¼ �2
@2 %WW

@x@s
; ð3a2dÞ

gL
xn ¼ @ %WW

@x
� fx; eNL

xx ¼ 1

2

@ %VV

@x

� �2

þ @ %WW

@x

� �2
" #

; ð3e; fÞ

kNL
xx ¼ @fs

@x

@ %VV

@x
; ð3gÞ

where %UU ; %VV and %WW are the shell displacements in the x; s and n directions, respectively,
whereas fx and fs are bending rotations about s and x respectively.

It should be noted that, in equations (1), the stress resultants and the displacements are
variationally independent quantities. Expressions (1a) and (1b) represent the variational
forms of the dynamic equilibrium and constitutive equations respectively.

2.3. KINEMATIC EXPRESSIONS

The displacement field [8] (compatible with assumptions 1 and 2) are assumed to be
expressed in the form

ux ¼ u0ðxÞ � yzðxÞ %yyðs; nÞ � yyðxÞ%zzðs; nÞ þ yðxÞoðs; nÞ; ð4aÞ

uy ¼ vðxÞ � fðxÞzðs; nÞ; uz ¼ wðxÞ þ fðxÞyðs; nÞ; ð4b; cÞ

where

%yyðs; nÞ ¼ yðs; nÞ � y0; %zzðs; nÞ ¼ zðs; nÞ � z0; ð5a; bÞ

%yyðs; nÞ ¼ %YYðsÞ � n
dZ

ds
; %zzðs; nÞ ¼ %ZZðsÞ þ n

dY

ds
; ð5c; dÞ

yðs; nÞ ¼ YðsÞ � n
dZ

ds
; zðs; nÞ ¼ ZðsÞ þ n

dY

ds
: ð5e; fÞ

The warping function o of the thin-walled cross-section may be defined as

o ¼ opðsÞ þ osðs; nÞ; ð6Þ
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where op and os are the contour warping function and the thickness warping function
respectively. They are defined in the form [8,14]

opðsÞ ¼
1

S

Z S

0

Z s

s0

½rðsÞ � cðsÞ� ds

� �
ds

� �
�
Z s

s0

½rðsÞ � cðsÞ� ds; osðs; nÞ ¼ �nlðsÞ; ð7a; bÞ

where

rðsÞ ¼ �ZðsÞ dY

ds
þ Y ðsÞ dZ

ds
; lðsÞ ¼ YðsÞ dY

ds
þ ZðsÞ dZ

ds
: ð8a; bÞ

In expression (7), c is the shear strain in the middle line, obtained by means of the Saint–
Venant theory of pure torsion for isotropic beams, and normalized with respect to df@dx

[21]. For the case of open sections c ¼ 0:
The displacements with respect to the curvilinear system (x; s; n) are obtained by means

of the following expressions:

%UU ¼ uxðx; s; 0Þ; %VV ¼ uyðx; s; 0Þ dY

ds
þ u2ðx; s; 0Þ dZ

ds
; ð9a; bÞ

%WW ¼ �uyðx; s; 0Þ dZ

ds
þ u2ðx; s; 0Þ dY

ds
; fx ¼ � @ux

@n
; ð9c; dÞ

fs ¼
@

@n
uy

dY

ds
þ u2

dZ

ds

� �
: ð9eÞ

Substituting shell displacements (9) into strain definitions (3) one obtains

eL
xx ¼ u0

0 � y0zYðsÞ � y0yZðsÞ þ y0opðsÞ; ð10aÞ

kL
xx ¼ y0z

dZ

ds
� y0y

dY

ds
� y0lðsÞ; ð10bÞ

gL
xs ¼ ðv0 � yzÞ

dY

ds
þ ðw0 � yyÞ

dZ

ds
þ ðf0 � yÞðr � cÞ þ cf0; ð10cÞ

kL
xs ¼ �2f0; gL

xn ¼ �ðv0 � yzÞ
dZ

ds
þ ðw0 � yyÞ

dY

ds
þ ðf0 � yÞlðsÞ; ð10d; eÞ

eNL
xx ¼ 1

2
½ðv02 þ w02Þ þ f02ðr2 þ l2Þ� þ f0 v0 rðsÞ dY

ds
� lðsÞ dZ

ds

� �
þ w0 rðsÞ dZ

ds
þ lðsÞ dY

ds

� �� �
;

ð10fÞ

kNL
xx ¼ �½f02r� � f0 v0

dY

ds

� �
þ w0 dZ

ds

� �� �
: ð10gÞ

In the above expressions ð*Þ0 denotes derivation with respect to the variable x:
The first and second terms of expressions (10c) and (10e) may be considered as the shear

strains associated to bending, the third term corresponds to the warping shear and the last
term in expression (10c) is the Saint–Venant (pure torsion) shear strain.

2.4. EQUATIONS OF MOTION

Substituting expressions (9) and (10) into equation (1a) and integrating with respect to s,
one obtains the one-dimensional expression for the virtual work equation given by

LK þ LKG þ LM þ LP ¼ 0; ð11Þ
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where

LK ¼
Z L

0

ðNdu0
0 � Mzdy

0
z � Mydy

0
y þ Bdy0 þ Qydðv0 � yzÞ

þ Qzdðw0 � yyÞ þ Twdðf0 � yÞ þ Tsvdf
0Þ dx; ð12aÞ

LKG ¼
Z L

0

N0

2
d ðw0Þ2 þ ðv0Þ2 þ IS

A
ðf0Þ2 þ 2y0ðf0w0Þ � 2z0ðf0v0Þ

� �


þM0
z

2
d½bzðf0Þ2 þ 2f0w0� þ

M0
y

2
d½byðf0Þ2 � 2f0v0� þ B0

2
d½bwðf0Þ2�

)
dx; ð12bÞ

LM ¼
Z L

0

%rr A
@2u0

@t2
du0 þ Iz

@2yz

@t2
dyz

�
þ Iy

@2yy

@t2
dyy þ Cw

@2y
@t2

dy

þ A
@2

@t2
ðv � z0fÞdv þ A

@2

@t2
ðw þ y0fÞdw þ @2

@t2
ð�Az0v þ Ay0w þ ISfÞdf

�
dx; ð12cÞ

LP ¼
Z L

0

ð�qxdu0 � qydv � qzdw þ mzdyz þ mydyy � bdy� mxdfÞ dx

þ ½ %NNdu0 � %MMzdyz � %MMydyy þ %BBdyþ %QQydv þ %QQzdw þ ð %TTw þ %TTsvÞdf�x¼L
x¼0 : ð12dÞ

In the previous equations, the following definitions, for the beam forces, have been made:

N ¼
Z

S

Nxx ds; MY ¼
Z

S

Nxx
%ZZ þ Mxx

dY

ds

� �
ds; ð13a; bÞ

MZ ¼
Z

S

Nxx
%YY � Mxx

dZ

ds

� �
ds; B ¼

Z
S

ðNxxop þ MxxlðsÞÞ ds; ð13c; dÞ

QY ¼
Z

S

Nxs
dY

ds
� Nxn

dZ

ds

� �
ds; QZ ¼

Z
S

Nxs
dZ

ds
þ Nxn

dY

ds

� �
ds; ð13e; fÞ

TW ¼
Z

S

½Nxsðr � cÞ þ NxnlðsÞ� ds; TSV ¼
Z

S

ðNxsc� 2MxsÞ ds: ð13g; hÞ

In the above expressions the integration is carried out over the middle contour perimeter.
N is the axial force, MZ; MY are the bending moments, B is the bimoment, QY ; QZ are the
shear forces, TW is the flexural–torsional moment and TSV is the Saint–Venant torsional
moment, N0; M0

z ; M0
y ; B0 are the initial forces, %NN; %MMy; %MMz; %BB; %QQy;

%QQz; %TTw; %TTsv correspond
to external generalized forces acting at the ends, qx; qy and qz are the applied forces per
unit length in the directions x; y and z; respectively, while mx; my and mz are the applied
couples per unit length about the directions x; y and z; respectively, and b is the applied
bimoment per unit length. A is the cross-sectional area, IZ and IY are the principal
moments of inertia of the cross-section, CW is the warping constant, IS is the polar
moment with respect to the shear center and %rr is the mean density of the laminate.

Also, the following coefficients have been defined:

bz ¼
1

Iz

Z
S

%YYðY 2 þ Z2Þe � rðsÞe
3

6

dY

ds

� �
ds; ð14aÞ

by ¼ 1

Iy

Z
S

%ZZðY 2 þ Z2Þe þ rðsÞe
3

6

dZ

ds

� �
ds; ð14bÞ
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bo ¼ 1

Cw

Z
S

oPðY 2 þ Z2Þe þ rðsÞe
3

6
lðsÞ

� �
ds: ð14cÞ

One may notice that LK ; LKG; LM and LP represent the virtual work contributions due to
the incremental, initial, inertial and external forces respectively. In reference [8], equations
(11) and (12) were obtained for the case of isotropic beams. This may be explained
considering the fact that the virtual work equation holds irrespective of the constitutive
equations of the material.

Taking variations with respect to the generalized displacements u0; yz; v; yy; w; y and f;
as indicated in equations (12), one obtains the following equations of motion:

�@N

@x
þ %rrA

@2u0

@t2
¼ qx; ð15aÞ

@Mz

@x
� Qy þ %rrIz

@2yz

@t2
¼ �mz; ð15bÞ

� @Qy

@x
þ %rrA

@2

@t2
ðv � z0fÞ �

@

@x
N0@v

@x

� �
þ @

@x
ðM0

y þ N0z0Þ
@f
@x

� �
¼ qy; ð15cÞ

@My

@x
� Qz þ %rrIy

@2yy

@t2
¼ �my; ð15dÞ

�@Qz

@x
þ %rrA

@2

@t2
ðw þ y0fÞ �

@

@x
N0@w

@x

� �
� @

@x
ðM0

z þ N0y0Þ
@f
@x

� �
¼ qz; ð15eÞ

�@B

@x
� TW þ %rrCW

@2y
@t2

¼ b; ð15fÞ

� @ðTw þ TsvÞ
@x

þ %rrA
@2

@t2
IS

A
f� z0v þ y0w

� �
þ @

@x
N0 �IS

A

@f
@x

� y0
@w

@x
þ z0

@v

@x

� �� �

� @

@x
ðM0

z bz þ M0
yby þ B0bwÞ

@f
@x

� �
� @

@x
M0

z

@w

@x

� �
þ @

@x
M0

y

@v

@x

� �
¼ mx; ð15gÞ

subjected to the following boundary conditions (at x ¼ 0;L):

N � %NN ¼ 0 or du0 ¼ 0; ð16aÞ

�Mz þ %MMz ¼ 0 or dyz ¼ 0; ð16bÞ

Qy þ N0@v

@x
þ ðM0

y � N0z0Þ
@f
@x

� %QQy ¼ 0 or dv ¼ 0; ð16cÞ

�My þ %MMy ¼ 0 or dyy ¼ 0; ð16dÞ

Qz þ N0@w

@x
þ ðM0

z þ N0y0Þ
@f
@x

� %QQz ¼ 0 or dw ¼ 0; ð16eÞ

B � %BB ¼ 0 or dy ¼ 0; ð16fÞ
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ðTw þ TsvÞ þ N0 IS

A

@f
@x

þ y0
@w

@x
� z0

@v

@x

� �
þ M0

z bZ

@f
@x

þ @w

@x

� �

þM0
y by

@f
@x

� @v

@x

� �
þ B0bW

@f
@x

� ð %TTw þ %TTsvÞ ¼ 0 or df ¼ 0:

ð16gÞ

In these equations, the terms corresponding to the initial stresses contributions have been
underlined.

2.5. CONSTITUTIVE EQUATIONS FOR THE BEAM STRESS RESULTANTS

The field of the shell stress resultants is assumed to be of the form

Nxx ¼ e
N

A
þ My

Iy

%ZZ þ Mz

Iz

%YY þ B

Cw

oP

� �
; ð17aÞ

Mxx ¼ e3

12

My

Iy

dY

ds
� Mz

Iz

dZ

ds
� B

Cw

lðsÞ
� �

; ð17bÞ

Mxs ¼ �e3

6J
TSV ; ð17cÞ

Nxs ¼ e �QZ

Iy

%llyðsÞ �
QY

Iz

%llzðsÞ þ
TW

Cw

%lloðsÞ
� �

þ ecðsÞ
J

TSV ; ð17dÞ

Nxn ¼ e3

12

QZ

Iy

dY

ds
� QY

Iz

dZ

ds
� TW

Cw

lðsÞ
� �

: ð17eÞ

In expressions (17c) and (17d), J denotes the Saint–Venant torsion constant. In expression
(17d), %lly;%llz and %llo are defined as

%llyðsÞ ¼
Z s

0

%ZZðsÞ ds þ a
S

I Z s

0

%ZZðsÞ ds

� �
ds; ð18aÞ

%llzðsÞ ¼
Z s

0

%YY ðsÞ ds þ a
S

I Z s

0

%YYðsÞ ds

� �
ds; ð18bÞ

%lloðsÞ ¼
Z s

0

oPðsÞ ds þ a
S

I Z s

0

oPðsÞ ds

� �
ds; ð18cÞ

where a ¼ 0 or 1 depending on whether the cross-section contour is open or closed
respectively. S denotes the contour perimeter.

The selected field of shell stress resultants (17) verifies expressions (13) in addition to the
following shell equilibrium equations:

@Nxx

@x
þ @Nxs

@s
¼ 0;

@Mxx

@x
þ @Mxs

@s
� Nxn ¼ 0: ð19a; bÞ

Substituting expressions (17) into equation (1b), integrating with respect to ‘‘s’’ and taking
variations with respect to N; My; Mz; B; Qy; Qz; Tw and Tsv; one obtains the following
constitutive equations for the beam stress resultants:

N ¼ EnA
@u0

@x
; Mz ¼ �EnIz

@yz

@x
; My ¼ �EnIy

@yy

@x
; ð20a2cÞ

B ¼ EnCW

@y
@x

; TSV ¼ GnnJ
@f
@x

; ð20d; eÞ
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Qy

Qz

TW

8><
>:

9>=
>; ¼ Gn½S�

@v

@x
� yz

@w

@x
� yy

@f
@x

� y

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
; ð20fÞ

where E	; G	 and G		 are expressed in the form

En ¼
%AA11

e
; Gn ¼

%AA66

e
; ð21a; bÞ

Gnn ¼
Gn for closed sections;

12 %DD66

e3
for open sections:

8<
: ð21cÞ

The S-matrix arising in equation (20f) is obtained as

½S� ¼

Z
S

%llz

Iz

 !2

LðnÞ
yy ds

Z
S

%llz
%llyLðnÞ

yz

IzIy

ds �
Z

S

%llz
%lloLðnÞ

yo

IzCw

ds

Z
S

%llz
%llyLðnÞ

yz

IzIy

ds

Z
S

%lly

Iy

 !2

LðnÞ
zz ds �

Z
S

%llo %llyLðnÞ
zo

CwIy

ds

�
Z

S

%llz
%lloLðnÞ

yo

IzCw

ds �
Z

S

%llo %llyLðnÞ
zo

CwIy

ds

Z
S

%llo
Cw

 !2

LðnÞ
oo ds

2
666666666664

3
777777777775

�1

: ð22Þ

In expression (22), the following definitions have been introduced:

LðnÞ
yy ¼ 1þ e4 %AA66

144 %AA
ðHÞ
55

Z
S

dZ

ds

� �2

dsZ
S

ð%llzÞ2 ds

; LðnÞ
zz ¼ 1þ e4 %AA66

144 %AA
ðHÞ
55

Z
S

dY

ds

� �2

dsZ
S

ð%llyÞ2 ds

; ð23a; bÞ

LðnÞ
oo ¼ 1þ e4 %AA66

144 %AA
ðHÞ
55

Z
S

@op

@n

� �2

dsZ
S

ð%lloÞ2 ds

; LðnÞ
yz ¼ 1þ e4 %AA66

144 %AA
ðHÞ
55

Z
S

dY

ds

dZ

ds

� �
dsZ

S

ð%lly
%llzÞ ds

; ð23c; dÞ

LðnÞ
yo ¼ 1þ e4 %AA66

144 %AA
ðHÞ
55

Z
S

@op

@n

dZ

ds

� �
dsZ

S

ð%llo %llzÞ ds

; LðnÞ
zo ¼ 1þ e4 %AA66

144 %AA
ðHÞ
55

Z
S

dY

ds

@op

@n

� �
dsZ

S

ð%lly
%lloÞ ds

: ð23e; fÞ

Another way to obtain equations (20a–e) is by substituting strain expressions (10) into
constitutive equations (A.I.1) and there results into expressions (13).

On the other hand, this last approach for the constitutive equations corresponding to
Qy; Qz and Tw leads to different expressions for the coefficients of matrix [S]. This occurs
because expressions of Nxs and Nxn determined in this way do not verify the shell
equilibrium equations (19). Consequently, expressions (20f) with equation (22) are more
accurate than the constitutive expressions obtained in the form explained in the previous
paragraph.
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In order to clarify this point, it is interesting to consider the particular case of a plane
Timoshenko beam vibrating in the x2y plane. Expressions (20f) with (22) are reduced in
this situation to the form

Qy ¼ 0
866GA
@v

@x
� yz

� �
; ð24aÞ

while the aforementioned second form leads to

Qy ¼ GA
@v

@x
� yz

� �
: ð24bÞ

It may be seen that the shear correction factor 0
866 arises naturally in expression (24a)
but not in expression (24b). The present method of derivation based on the Hellinger–
Reissner principle constitutes a generalization of an approach followed to obtain the
Timoshenko’s beam theory developed in reference [22]

The present beam model is governed by equations (15) and (20) along with boundary
conditions (16).

3. FREE VIBRATION AND BUCKLING ANALYSIS OF THIN-WALLED BEAMS
WITH SIMPLY SUPPORTED ENDS

As it may be seen in governing equations (15), (16) and (20), the longitudinal motion is
decoupled from the flexural–torsional motion. On the other hand, the governing equation
corresponding to the axial motion has the classical form. Therefore, this case is not of
interest. In what follows only the case of flexural–torsional motion is analyzed.

The beam is assumed to be simply supported at both ends. These boundary conditions
are expressed in the form

v ¼ w ¼ f ¼ 0; EnIz

@yz

@x
¼ EnIy

@yy

@x
¼ EnCw

@y
@x

¼ 0 at x ¼ 0;L: ð25Þ

The previous boundary conditions are fulfilled by taking the following expressions for the
generalized displacements:

v ¼ a1m sin
mp
L

x
� �

bmðtÞ; w ¼ a3m sin
mp
L

x
� �

bmðtÞ; f ¼ a5m sin
mp
L

x
� �

bmðtÞ; ð26a2cÞ

yz ¼ a2m cos
mp
L

x
� �

bmðtÞ; yy ¼ a4m cos
mp
L

x
� �

bmðtÞ; y ¼ a6m cos
mp
L

x
� �

bmðtÞ; ð26d2fÞ

where

bmðtÞ ¼ cos½2pfmt�; m ¼ 1; 2; 3; . . . : ð27Þ
the aim’s are constants and fm is the frequency (Hz).

Substituting expressions (26) into equation (20) and then into equation (15), and
factoring the trigonometric functions, the following algebraic system is obtained:X6

j¼1
½K ð1Þ

ij þ lK
ð2Þ
ij � ð2pfmÞ2Mij �ajm ¼ 0; i ¼ 1; . . . ; 6; ð28Þ

where K1
ij ; K2

ij and Mij are symmetric matrices, whose expressions are displayed in
Appendix B.

In equation (28), l is a load factor defined by means of the expressions

N0
xx ¼ l %NN

0

xx; M0
xx ¼ l %MM

0

xx; ð29Þ
where %NN

0

xx and %MM
0

xx are reference initial shell stress resultants, whose values are
conveniently chosen.



COMPOSITE THIN-WALLED BEAMS 711
The solution of the above eigenvalues problem yields the natural frequencies fm: It is
interesting to notice that there exist six frequencies for each value of m: On the other hand,
the critical values of l may be obtained from equation (28) by taking a zero value for the
frequency fm: The minimum value of l corresponds to the buckling load.

4. NUMERICAL EXAMPLES AND DISCUSSION

To evaluate the shear effect on the dynamic and stability behavior of the analyzed
structural members, numerical comparisons are performed among the present model
predictions and results obtained by neglecting the shear deformability (Ghorbanpoor and
Omidvar model). Different cross-sectional shapes, laminate schemes and slenderness ratios
are considered. The analyzed material is graphite-epoxy (AS4/3501) whose properties are
E1 ¼ 144GPa, E2 ¼ 9
65GPa, G12 ¼ 4
14GPa, G13 ¼ 4
14GPa, G23 ¼ 3
45GPa, n12 ¼
0
3; n13 ¼ 0
3; n23 ¼ 0
5; r ¼ 1389 kg/m3. The considered laminate schemes are: (a) {0/0/0/
0}, (b) {0/90/90/0} and (c) {45/�45/�45/45}. The analyzed cross-sections are shown in
Figure 2.

4.1. VIBRATION PROBLEMS

In order to perform the numerical analyses, natural frequencies of vibration for the
following situations are determined: flexural–torsional vibration of U beams}xz plane
(Table 1); symmetric flexural vibration of U beams}xy plane- (Table 2); symmetric
flexural vibration of rectangular section beams}xz plane (Table 3); symmetric flexural
vibration of rectangular section beams}xy plane (Table 4); torsional vibration of
rectangular section beams (Tables 5 and 7); torsional vibration of I beams (Tables 6
and 7); variation of the first frequency of the U beam versus an initial axial force N0

(Figure 3); variation of the first frequency of the U beam versus an initial bending moment
M0

y (Figure 4).
An examination of Tables 1–6 reveals that the general effect of the shear flexibility is to

reduce the values of the natural frequencies in comparison with the frequencies obtained
by means of the Ghoorbanpoor–Omidvar model. It is appreciated that the shear effect is
very important for laminates (a) and (b), in fact when one of the principal axes of the
Figure 2. Analyzed cross-sectional shapes: (a) b ¼ h ¼ 0
6m, (b) b ¼ h ¼ 0
6m, (c) b ¼ h=2 ¼ 0
3m;
t ¼ 0
03m for all cases.
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Table 1

Flexural–torsional frequencies (Hz) of U beams }xz plane: [I] neglecting shear flexibility,

[II] including shear flexibility, [III] percentage difference: j100ðf½II��f½I�Þ=f½II�j
Laminate h=L Model f1 f2 f3 f4

[I] 9
82 38
63 52
07 86
64
0
05 [II] 9
42 33
23 39
03 64
70

[III] (4
07) (13
98) (25
04) (25
32)
[I] 38
63 153
86 207
98 345
90

{0/0/0/0} 0.10 [II] 33
23 99
03 102
79 169
05
[III] (13
98) (35
64) (50
58) (51
13)
[I] 86
64 345
90 467
84 777
95

0
15 [II] 64
70 166
32 169
05 272
03
[III] (25
32) (51
92) (63
87) (65
03)

[I] 7
30 28
35 38
09 63
41
0
05 [II] 7
14 26
02 31
95 53
15

[III] (2
19) (8
22) (16
12) (16
18)
[I] 28
35 112
50 151
95 252
76

{0/90/90/0} 0
10 [II] 26
02 84
94 93
02 153
81
[III] (8
22) (24
50) (38
78) (39
15)
[I] 63
41 252
76 341
73 568
31

0
15 [II] 53
15 153
81 157
26 258
60
[III] (16
18) (39
15) (53
98) (54
50)

[I] 5
34 15
53 18
45 31
32
0
05 [II] 5
33 15
48 18
24 31
10

[III] (0
13) (0
34) (1
15) (0
71)
[I] 15
53 53
14 68
77 115
26

{45/�45/�45/45} 0
10 [II] 15
48 52
50 65
76 112
22
[III] (0
34) (1
22) (4
37) (2
63)
[I] 31
32 115
26 152
67 254
84

0
15 [II] 31
10 112
22 139
01 240
68
[III] (0
71) (2
63) (8
95) (5
56)
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Table 2

Flexural frequencies (Hz) of U beams}xy plane: [I] neglecting shear flexibility, [II]
including shear flexibility, [III] percentage difference: j100ðf½II��f½I�Þ=f½II�j

Laminate h=L Model f1 f2 f3 f4

[I] 22
21 88
85 199
92 355
42
0
05 [II] 20
38 67
17 122
06 178
01

[III] (8
24) (24
40) (38
95) (49
92)
[I] 88
85 355
42 799
69 1421
67

{0/0/0/0} 0
10 [II] 67
17 178
01 288
05 395
60
[III] (24
40) (49
92) (63
98) (72
17)
[I] 199
92 799
69 1799
30 3198
75

0
15 [II] 122
06 288
05 448
76 606
77
[III] (38
95) (63
98) (75
06) (81
03)

[I] 16
22 64
89 146
00 259
56
0
05 [II] 15
46 54
75 105
76 160
85

[III] (4
69) (15
63) (27
56) (38
03)
[I] 64
89 259
56 584
01 1038
24

{0/90/90/0} 0
10 [II] 54
75 160
85 272
53 382
40
[III] (15
63) (38
03) (53
33) (63
17)
[I] 146
00 584
01 1314
02 2336
04

0
15 [II] 105
76 272
53 436
60 597
08
[III] (27
56) (53
33) (66
77) (74
44)

[I] 7
18 28
70 64
58 114
82
0
05 [II] 7
16 28
43 63
22 110
65

[III] (0
24) (0
96) (2
11) (3
64)
[I] 28
70 114
81 258
33 459
28

{45/�45/�45/45} 0
10 [II] 28
43 110
64 238
88 403
69
[III] (0
96) (3
63) (7
53) (12
10)
[I] 64
58 258
33 581
24 1033
38

0
15 [II] 63
22 238
88 496
99 809
59
[III] (2
11) (7
53) (14
49) (21
66)
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Figure 4. Variation of the first frequency (Hz) versus coefficient l ¼ M0
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y ref : M0
y ref ¼ 106 Nm, h=L ¼ 0
10;

U beam, laminate {0/0/0/0}. [I] Considering Shear flexibility, [II] Neglecting shear flexibility.
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Table 3

Flexural frequencies (Hz) of rectangular section beams in the xz plane: [I] neglecting shear

flexibility, [II] including shear flexibility, [III] percentage difference: j100ðf½II��f½I�Þ=f½II�j
Laminate H=L Model f1 f2 f3 f4

[I] 24
84 99
34 223
52 397
37
0
05 [II] 22
68 74
28 134
34 195
36

[III] (8
70) (25
23) (39
90) (50
84)
[I] 99
34 397
37 894
08 1589
47

{0/0/0/0} 0
10 [II] 74
28 195
36 315
23 432
40
[III] (25
23) (50
84) (64
74) (72
80)
[I] 223
52 894
08 2011
67 3576
31

0
15 [II] 134
34 315
23 490
34 662
59
[III] (39
90) (64
74) (75
63) (81
47)

[I] 18
14 72
55 163
24 290
20
0
05 [II] 17
24 60
75 116
80 177
04

[III] (4
96) (16
26) (28
45) (38
99)
[I] 72
55 290
20 652
94 1160
79

{0/90/90/0} 0
10 [II] 60
75 177
04 298
80 418
49
[III] (16
26) (38
99) (54
24) (63
95)
[I] 163
24 652
94 1469
12 2611
77

0
15 [II] 116
80 298
80 477
53 652
40
[III] (28
45) (54
24) (67
50) (75
02)

[I] 8
02 32
08 72
17 128
32
0
05 [II] 8
00 31
72 70
41 122
95

[III] (0
28) (1
11) (2
44) (4
19)
[I] 32
08 128
31 288
70 513
27

{45/�45/�45/45} 0
10 [II] 31
72 122
94 263
93 443
28
[III] (1
11) (4
18) (8
58) (13
64)
[I] 72
17 288
70 649
57 1154
86

0
15 [II] 70
41 263
93 544
08 878
87
[III] (2
44) (8
58) (16
24) (23
90)
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material coincides with the longitudinal axis of the beam. On the other hand, in the case of
laminate (c), the shear effect is negligible. This behavior is due to the fact that beams with
laminate (c) present a higher shear rigidity than beams with laminates (a) and (b). A way
to show this fact is by considering the ratio G	=E	; which takes the values 0
03, 0
05 and 1
for cases (a), (b) and (c) respectively.

Tables 1–6 show that the shear effect increases with the increase of h=L (decrease of the
slenderness of the beam) and with the increase of the mode number. It should be observed
that, for the case of laminate (a), the shear effect is important even for the first frequency
corresponding to slender beams. For example, in the case of the symmetric vibration of the
U beam with h=L ¼ 0
05; the decrease of the first frequency is 10%, approximately.

It is interesting to notice that the torsional modes of the rectangular section beams
(Table 5) are practically unaffected by the shear flexibility. Differently, the torsional
vibration of I beams is noticeably influenced by the shear effect. This discrepancy is due to
the fact that, for the closed section, the torsional motion is governed by the Saint–Venant
behavior (pure torsion), while for the open section case, the torsional motion is dominated
by warping and therefore the shear warping is significant. The warping effect may be



Table 4

Flexural frequencies (Hz) of rectangular section beams in the xy plane: [I] neglecting shear

flexibility, [II] including shear flexibility, [III] percentage difference: j100ðf½II��f½I�Þ=f½II�j
Laminate H=L Model f1 f2 f3 f4

[I] 14
69 58
77 132
24 235
09
0
05 [II] 13
48 44
42 80
67 117
60

[III] (8
24) (24
42) (39
00) (49
98)
[I] 58
77 235
09 528
94 940
34

{0/0/0/0} 0
10 [II] 44
42 117
60 190
17 261
09
[III] (24
42) (49
98) (64
05) (72
24)
[I] 132
24 528
94 1190
12 2115
77

0
15 [II] 80
67 190
17 296
14 400
34
[III] (38
99) (64
05) (75
12) (81
08)

[I] 10
73 42
92 96
57 171
68
0
05 [II] 10
23 36
24 70
00 106
41

[III] (4
69) (15
55) (27
51) (38
02)
[I] 42
92 171
68 386
29 686
73

{0/90/90/0} 0
10 [II] 36
24 106
41 180
12 252
58
[III] (15
55) (38
02) (53
37) (63
22)
[I] 96
57 386
29 869
14 1545
14

0
15 [II] 70
00 180
12 288
31 394
11
[III] (27
51) (53
37) (66
83) (74
49)

[I] 4
75 18
99 42
73 75
98
0
05 [II] 4
74 18
87 42
11 74
04

[III] (0
17) (0
66) (1
47) (2
55)
[I] 18
99 75
97 170
94 303
91

{45/�45/�45/45} 0
10 [II] 18
87 74
03 161
68 276
72
[III] (0
66) (2
55) (5
42) (8
95)
[I] 42
73 170
94 384
61 683
79

0
15 [II] 42
11 161
68 342
85 568
56
[III] (1
47) (5
42) (10
86) (16
85)
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appreciated in Table 7. This table shows torsional frequencies obtained by means of: (1)
the present model, (2) the Vlasov’s model, i.e. neglecting shear flexibility, and (3) the
Saint–Venant model, i.e., neglecting shear and warping effects (Cw ¼ 0). As it may be seen,
for the closed section beam the warping effect is negligible. Conversely, for the I-section
beam, this effect is very important.

From Figure 3, it is possible to appreciate that the effect of an axial compressive force is
to decrease the fundamental frequency with respect to the unloaded case. Moreover, this
decrease is more pronounced when the shear flexibility is included in the analysis. Similar
observations can be established for the case of a beam pre-loaded with a bending moment
as shown in Figure 4.

Figure 5 shows the first two modal shapes corresponding to the unloaded U beam with
the cross-sectional characteristics reported in Figure 2 and with h=L ¼ 0
05: It is
interesting to note that the first modes corresponding to laminates (a) and (b) are
dominated by torsion. In fact the ratio ðfÞmax=ðwÞmax is of the order of 5. Differently, for
the case of laminate (c) the behavior of the first mode has a flexural–torsional character. In
this last case, the ratio ðfÞmax=ðwÞmax takes a value of 1.4, approximately. The second



Table 5

Torsional frequencies (Hz) of rectangular section beams: [I] neglecting shear flexibility,

[II] including shear flexibility, [III] percentage difference: j100ðf½II��f½I�Þ=f½II�j
Laminate h=L Model f1 f2 f3 f4

[I] 55
50 111
74 169
43 229
29
0
05 [II] 55
49 111
60 168
60 226
43

[III] (0
02) (0
13) (0
49) (1
25)
[I] 111
74 229
29 357
99 502
39

{0/0/0/0} 0
10 [II] 111
60 226
43 343
65 461
76
[III] (0
13) (1
25) (4
01) (8
09)
[I] 169
43 357
99 581
64 851
93

0
15 [II] 168
60 343
65 520
91 698
31
[III] (0
49) (4
01) (10
44) (18
03)

[I] 55
44 111
28 167
90 225
69
0
05 [II] 55
44 111
23 167
60 224
63

[III] (0
00) (0
04) (0
18) (0
47)
[I] 111
28 225
69 346
22 475
60

{0/90/90/0} 0
10 [II] 111
23 224
63 340
43 457
74
[III] (0
04) (0
47) (1
67) (3
76)
[I] 167
90 346
22 544
37 770
16

0
15 [II] 167
60 340
43 516
69 694
00
[III] (0
18) (1
67) (5
08) (9
89)

[I] 166
75 333
53 500
36 667
27
0
05 [II] 166
74 333
47 500
17 666
84

[III] (0
01) (0
02) (0
04) (0
06)
[I] 333
53 667
27 1001
43 1336
22

{45/�45/�45/45} 0
10 [II] 333
47 666
84 1000
02 1332
90
[III] (0
02) (0
06) (0
14) (0
25)
[I] 500
36 1001
43 1503
91 2008
52

0
15 [II] 500
17 1000
02 1499
19 1997
34
[III] (0
04) (0
14) (0
31) (0
56)
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mode behavior is the same for all the laminates, from a qualitative point of view
(Figure 6).

4.2. BUCKLING PROBLEMS

Critical values of l are obtained for the cases of (I) an initial longitudinal force N0 and
(II) an initial bending moment M0

y : The adopted reference values are N0
ref ¼ �1� 106 N

and M0
y ref ¼ 1� 106 Nm respectively. Tables 8 and 9 show the values of l ¼ N0

cr=N0
ref and

l ¼ M0
y cr=M0

y ref ; respectively, for the three types of cross-sectional shapes taken into
account. In these tables, it is possible to observe that, for both situations and all the cross-
sectional shapes, the shear effect is very important for laminates (a) and (b), while it is
negligible for laminate (c). For example, in the case of laminate (a) when h=L ¼ 0
1; the
percentage differences of l ¼ N0

cr=N0
ref among the present results and those obtained by

neglecting the shear effect are 26, 25 and 43% for the U, I and rectangular sections
respectively. On the other hand, the corresponding values for the case of laminate (c) are 2,
1 and 1%.



Table 6

Torsional frequencies (Hz) of I-beams: [I] neglecting shear flexibility, [II] including shear

flexibility, [III] percentage difference: j100ðf½II � � f½I �Þ=f½II �j
Laminate h=L Model f1 f2 f3 f4

[I] 16
24 63
35 141
86 251
76
0
05 [II] 15
64 55
00 107
55 165
41

[III] (3
69) (13
18) (24
19) (34
30)
[I] 63
35 251
76 565
78 1005
40

{0/0/0/0} 0
10 [II] 55
00 165
41 284
29 401
86
[III] (13
18) (34
30) (49
75) (60
03)
[I] 141
86 565
78 1272
31 2261
46

0
15 [II] 107
55 284
29 459
86 631
49
[III] (24
19) (49
75) (63
86) (72
08)

[I] 12
19 46
61 103
95 184
21
0
05 [II] 11
96 43
02 87
94 140
98

[III] (1
89) (7
70) (15
40) (23
47)
[I] 46
61 184
21 413
54 734
59

{0/90/90/0} 0
10 [II] 43
02 140
98 257
02 375
94
[III] (7
70) (23
47) (37
85) (48
82)
[I] 103
95 413
54 929
52 1651
89

0
15 [II] 87
94 257
02 435
12 610
43
[III] (15
40) (37
85) (53
19) (63
05)

[I] 10
98 28
11 54
18 89
99
0
05 [II] 10
96 27
98 53
61 88
35

[III] (0
15) (0
49) (1
05) (1
83)
[I] 28
11 89
99 191
65 333
74

{45/�45/�45/45} 0
10 [II] 27
98 88
34 184
14 311
75
[III] (0
49) (1
83) (3
92) (6
59)
[I] 54
18 191
65 419
94 739
46

0
15 [II] 53
61 184
14 386
03 644
07
[III] (1
05) (3
92) (8
07) (12
90)

Table 7

Torsional frequencies (Hz) of rectangular and H section beams: [I] neglecting shear

flexibility, [II] neglecting shear flexibility and warping, [III] including shear flexibility;

material: graphite-epoxy 0/90/90/0, h=L ¼ 0:1

Model f1 f2 f3 f4

H section
[I] 46
61 184
21 413
54 734
59
[II] 8
30 16
61 24
91 33
21
[III] 43
02 140
98 257
02 375
94

Rectangular section
[I] 111
28 225
69 346
22 475
60
[II] 110
75 221
51 332
29 443
09
[III] 111
23 224
63 340
43 457
74
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Figure 5. Mode shape corresponding to first frequency: (a) laminate {0/0/0/0}, (b) laminate {0/90/90/0},
(c) laminate {45/�45/�45/45}: n, u0; , vt; &, yz; , w; }, yy; , f; , y:
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5. CONCLUSIONS

* A theoretical model was developed for vibration analysis of composite thin-walled
beams accounting for shear deformability.

* The theory is applicable to both open and closed cross-sections.
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Figure 6. Mode shape corresponding to second frequency. (a) laminate {0/0/0/0}, (b) laminate {0/90/90/0},
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* The model considers the existence of initial shell stress resultants N0
xx and M0

xx:
Therefore, it is possible to analyze buckling problems.

* The numerical results demonstrate that the shear flexibility has a remarkable effect on
the natural frequencies and critical loads, especially when one of the material axes
coincides with the longitudinal axis of the beam.

* The warping shear may be of great influence on the vibration and stability behavior for
open section beams, although it is negligible for closed section beams.



Table 8

Coefficients l ¼ N0=N0
ref of critical loading for point load at both ends: [I] neglecting shear

flexibility, [II] including shear flexibility, [III] percentage difference: j100ðf½II��f½I�Þ=f½II�j
Laminate h=L Model U profile I profile Rect. profile

[I] 4
16 10
67 9
33
0
05 [II] 3
84 9
83 7
86

[III] (7
86) (7
89) (15
75)
[I] 16
12 42
69 37
31

{0/0/0/0} 0
10 [II] 11
94 31
79 21
34
[III] (25
89) (25
53) (42
79)
[I] 36
04 96
05 83
94

0
15 [II] 20
12 54
22 31
29
[III] (44
16) (43
55) (62
72)

[I] 2
30 5
69 4
97
0
05 [II] 2
21 5
44 4
52

[III] (4
26) (4
37) (9
07)
[I] 8
68 22
77 19
90

{0/90/90/0} 0
10 [II] 7
32 19
25 14
22
[III] (15
61) (15
46) (28
51)
[I] 19
30 51
23 44
77

0
15 [II] 13
59 36
29 23
59
[III] (29
58) (29
15) (47
30)

[I] 1
23 1
11 0
97
0
05 [II] 1
23 1
11 0
97

[III] (0
24) (0
33) (0
12)
[I] 2
60 4
45 3
89

{45/�45/�45/45} 0
10 [II] 2
59 4
32 3
86
[III] (0
38) (2
92) (0
74)
[I] 4
71 10
01 8
75

0
15 [II] 4
67 9
92 8
59
[III] (0
85) (0
92) (1
82)
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It is interesting to point out that the shear effect may be even more important for other
end conditions such as clamped–clamped in analogy with the isotropic case. A numerical
study of this situation by means of a finite element based on the present theory is on
course.
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APPENDIX A: CONSTITUTIVE EQUATIONS OF SYMMETRICALLY BALANCED
LAMINATES

The constitutive equations of symmetrically balanced laminates may be expressed in
terms of shell stress resultants in the following form [1]:

Nxx

Nxs

Nxn

Mxx

Mxs

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼

%AA11 0 0 0 0

0 %AA66 0 0 0

0 0 %AA
ðHÞ
55 0 0

0 0 0 %DD11 0

0 0 0 0 %DD66

2
66666664

3
77777775

eL
xx

gL
xs

gL
xn

kL
xx

kL
xs

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ðA:1Þ

with

%AA11 ¼ A11 �
A2

12

A22
; %AA66 ¼ A66 �

A2
26

A22
; %AA

ðHÞ
55 ¼ A

ðHÞ
55 � ðAðHÞ

45 Þ2

A
ðHÞ
44

; ðA:2a2cÞ

%DD11 ¼ D11 �
D2

12

D22
; %DD66 ¼ D66 �

D2
26

D22
; ðA:2d; eÞ

where Aij ; Dij and A
ðHÞ
ij are plate stiffness coefficients defined according to the lamination

theory presented in reference [1, Chapter 6]. The coefficient %DD16 has been neglected because
of its low value for the considered laminate stacking sequence.
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APPENDIX B: MATRIX ELEMENTS

Elements of matrix equation (28) are

K
ð1Þ
11 ¼ G	SyyG2

n; K
ð1Þ
12 ¼ �G	SyyGn; K

ð1Þ
13 ¼ G	SyzG2

n;

K
ð1Þ
14 ¼ �G	SyzGn; K

ð1Þ
15 ¼ G	SyoG2

n; K
ð1Þ
16 ¼ �G	SyoGn;

K
ð1Þ
22 ¼ G	Syy þ E	IzG2

n; K
ð1Þ
23 ¼ �G	SyzGn; K

ð1Þ
24 ¼ G	Syz;

K
ð1Þ
25 ¼ �G	SyoGn; K

ð1Þ
26 ¼ G	Syo; K

ð1Þ
33 ¼ G	SzzG2

n;

K
ð1Þ
34 ¼ �G	SzzGn; K

ð1Þ
35 ¼ G	SzoG2

n; K
ð1Þ
36 ¼ �G	SzoGn;

K
ð1Þ
44 ¼ G	Szz þ E	IyG2

n; K
ð1Þ
45 ¼ �G	SzoGn; K

ð1Þ
46 ¼ G	Szo;

K
ð1Þ
55 ¼ ðG	Soo þ G		JÞG2

n; K
ð1Þ
56 ¼ �G	SooGn;

K
ð1Þ
66 ¼ G	Soo þ E	CwG2

n; K
ð2Þ
11 ¼ N0G2

n; K
ð2Þ
33 ¼ N0G2

n;

K
ð2Þ
55 ¼ ðN0Is=A þ bwB0 þ byM0

y þ bzM0
z ÞG2

n; K
ð2Þ
35 ¼ ðN0y0 þ M0

z ÞG2
n;

K
ð2Þ
25 ¼ �ðN0z0 þ M0

y ÞG2
n;

M11 ¼ M33 ¼ %rrA; M15 ¼ � %rrAz0; M35 ¼ %rrAy0; M22 ¼ %rrIz;

M44 ¼ %rrIy; M55 ¼ %rrIs; M66 ¼ %rrCw;

M12 ¼ M13 ¼ M14 ¼ M16 ¼ M23 ¼ M24 ¼ M25 ¼ M26 ¼ M34 ¼ M36 ¼ M45

¼ M46 ¼ M56 ¼ 0;

where Gn ¼ np=L; and K
ðkÞ
ji ¼ K

ðkÞ
ij ; k ¼ 1; 2 and i; j ¼ 1; . . . ; 6:


	1. INTRODUCTION
	2. THEORY
	Figure 1

	3. FREE VIBRATION AND BUCKLING ANALYSIS OF THIN-WALLED BEAMS WITH SIMPLY SUPPORTED ENDS
	4. NUMERICAL EXAMPLES AND DISCUSSION
	Figure 2
	TABLE 1
	Figure 3
	TABLE 2
	Figure 4
	TABLE 3
	TABLE 4
	TABLE 5
	TABLE 6
	TABLE 7
	Figure 5

	5. CONCLUSIONS
	Figure 6
	TABLE 8

	ACKNOWLEDGMENTS
	REFERENCES
	TABLE 9

	APPENDIX A: CONSTITUTIVE EQUATIONS OF SYMMETRICALLY BALANCED LAMINATES
	APPENDIX B: MATRIX ELEMENTS

