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In this paper, a theoretical model is developed for the dynamic analysis of composite
thin-walled beams with open or closed cross-sections. The present model incorporates, in a
full form, the shear flexibility (bending and warping shear) as well as a state of initial
stresses. This allows to study the free vibration and buckling problems in a unified fashion.
An analytical solution of the developed equations is obtained for the case of simply
supported thin-walled beams. Numerical examples are given to demonstrate the
importance of the shear flexibility on the vibration and buckling behavior of the
considered structures.

© 2002 Elsevier Science Ltd. All rights reserved.

1. INTRODUCTION

Structural members made of composites are increasingly used in acronautical, mechanical
and civil engineering applications where high strength and stiffness, and low weight are of
primary importance. Other advantages that motivate some applications are corrosion
resistance, enhanced fatigue life, low thermal expansion, etc. [1]. Many structural members
made of composites have the form of thin-walled beams. Accordingly, a significant
amount of research has been conducted in recent years toward the development of
theoretical and computational methods for analyzing the structural behavior of such
members.

The structural analysis of isotropic thin-walled open beams is appropriately performed
by means of Vlasov’s theory. This theory considers the warping effect that is of great
importance in this type of structures [2]. Vlasov’s theory was extended to composites by
Bauld and Tzeng [3]. Recently, Ghorbanpoor and Omidvar [4] introduced new equivalent
moduli of elasticity and rigidity to allow decoupling (in an approximate form) of the Bauld
and Tzeng equations. In this way, the composite thin-walled open beam is treated by
means of Vlasov’s theory with new equivalent moduli of elasticity. This simplified
approach yields practically the same numerical values as those by Bauld and Tzeng’s
model. Massa and Barbero proposed a strength of materials formulation for static analysis
of composite thin-walled beams [5]. A study about the determination of the shear center in
composite beams was carried out by Pollok et al. [6]. In the case of box beams made of
orthotropic materials and subjected to tension and bending, Estivalezes and Barrau [7]
developed a simplified method to calculate stresses and strains.

However, the above-mentioned works do not consider the influence of the shear
flexibility on the dynamics of the member. This effect is important for predicting the
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dynamic behavior of thin-walled open beams made of isotropic materials, as shown by
Cortinez et al. [8-10]. For the case of composite thin-walled beams, the shear effect may be
even more important owing to the high value of the ratio between the longitudinal
elasticity modulus and the transverse elasticity modulus. Sherbourne and Kabir [11]
analyzed the shear effect in connection with the lateral stability of composite I-section
beams. Godoy et al. [12] developed a mathematical model for I-section composite beams
considering shear effects and cross-sectional distortion for interactive buckling analysis.
Shear flexibility associated to bending and new formulas for the shear coefficients were
analyzed by Omidvar [13]. The static behavior of tailored composite box-beams
considering only bending shear was performed by Smith and Chopra [14]. Song and
Librescu [15] developed a theory for the dynamic analysis of anisotropic composite thin-
walled closed beams. This model takes into account the shear flexibility due to bending
displacements in addition to primary and secondary warping effects. These authors
presented interesting applications and extensions of this last theory [16—18].

None of the papers cited above have considered the shear flexibility due to warping.
This effect may be very important in several situations. Moreover, taking into account the
coupled dynamic behavior of thin-walled members due to both cross-sectional geometry
and laminate characteristics, warping shear may also affect the dominant flexural modes.

According to the authors’ knowledge, the only study taking into account the shear
flexibility, in a full form, is that of Wu and Sun [19]. However, in their paper, emphasis was
given in showing the effectiveness of the developed finite element and not in characterizing
the shear effect on the dynamics of the member. Moreover, initial stresses were not
considered.

In this paper, a theoretical model is presented for the dynamic analysis of composite,
open and closed cross-sectional, thin-walled beams with initial stresses. This model takes
into account, in a full form, the shear flexibility (bending and warping shear). On the other
hand, it is strictly valid for symmetric balanced laminates and especially orthotropic
laminates [1]. The present equations are obtained by means of a Hellinger—Reissner
formulation of composite shells.

The model is used for analyzing the free vibration and buckling problems in a unified
fashion. To do this, an analytical solution of the present equations is performed for the
case of simply supported thin-walled beams. Parametric analyses are done to evaluate the
influence of the shear flexibility as well as the effect of the initial stresses on the natural
frequencies and buckling loads of beams with different cross-sectional shapes and laminate
architecture.

2. THEORY
2.1. ASSUMPTIONS

A composite thin-walled beam with an arbitrary cross-section is considered (Figure 1).
The points of the structural member are referred to a Cartesian co-ordinate system
(x,7,Z), where the x-axis is parallel to the longitudinal axis of the beam while y and Z are
the principal axes of the cross-section. The axes y, z are parallel to the principal ones but
having their origin at the shear center (defined according to Vlasov’s theory of isotropic
beams). The co-ordinates corresponding to points lying on the middle line are denoted as
Y and Z (or Y and Z). In addition, a circumferential co-ordinate s and a normal co-
ordinate n are introduced on the middle contour of the cross-section. On the other hand,
yo and z are the centroidal co-ordinates measured with respect to the shear center.
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Detail of the wall

Figure 1. Co-ordinate system of the cross-section.

The present structural model is based on the following assumptions: (1) the cross-
section contour is rigid in its own plane; (2) the warping distribution is assumed to be given
by the Saint—Venant function for isotropic beams; (3) shell force and moment resultants
corresponding to the circumferential stress o, and the force resultant corresponding to 7y,
are neglected; (4) the radius of curvature at any point of the shell is neglected; (5) twisting
curvature of the shell is expressed according to the classical plate theory, but bending
curvature is expressed according to the first order shear deformation theory; in fact,
bending shear strain of the wall is incorporated (6) initial shell force and initial bending
moment resultants, N and MY _related to ¢° _are taken into account and (7) the laminate
stacking sequence is dssumed to be symmetrlc and balanced, or specially orthotropic [1]
(the corresponding constitutive equations for the shell stress resultants are given in
Appendix A).

2.2. VARIATIONAL FORMULATION

Taking into account the adopted assumptions, the Hellinger—Reissner principle for a
composite shell may be expressed in the form [20]

/ (NeSel + Modich. + Nudyk + Musdich + Nodyh + N 56V 4 MO 51V dy de

U - PV - W Lep 0. qb\
//{ep(alz +W5V+ 2 5W> 2(8[2 0, + 5> 0 )}dsdx

- // 7,00 + q,0V + §,0W +m, ¢, +mdp]dsdx

x=L
- { / (N 0U + M 6¢, + N0V + M, + N, o W) ds} =0, (1a)
x=0

// [( xx W>5Nxx + (V“ - w)éNm + ( - xs)éMm] dsdx
Mo\ sm L N sy ldsde=0 1b
o xx T Vo T A(]-[) xn | dsdxX =V, ( )
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where Ny, Ny, My, My, and Ny, are shell stress resultants defined according to the
following expressions:

e/2 e/2 e/2
Ny = / owdn, M, = / (oxxn)dn, M, = / (oxsn) dn, (2a—c)
—e/2 —e/2 —e/2

e/2 e/2
Ny = / o dn, Ny, = / Oy, dn. (2d,e)
—e/2 —e/2

Initial shell stress resultants are denoted with the superscript “e°”” and the applied shell
stress resultants on the boundaries are denoted as “#”. 4., g, and g, are applied forces per
unit area in the directions x, s and n, respectively, while m, and m;, are applied couples per
unit area about the directions s and x respectively. On the other hand, the shell strains are
defined in the form

oU ¢ oU oV PW
L = — L = — X ’\L = — _— L = —4 — —
b T gy T ax’ 7T By + ax s Ox0s’ (3a=d)
oW 1[rov\° [ow\’
L NL
yxn 8)( ¢x’ Sx). 2 (ax) +(8X) ‘|7 (38, )
dp, OV
NL __ s
Kxx - ax ax7 (3g)

where U, V and W are the shell displacements in the x, s and » directions, respectively,
whereas ¢, and ¢, are bending rotations about s and x respectively.

It should be noted that, in equations (1), the stress resultants and the displacements are
variationally independent quantities. Expressions (1a) and (1b) represent the variational
forms of the dynamic equilibrium and constitutive equations respectively.

2.3. KINEMATIC EXPRESSIONS

The displacement field [8] (compatible with assumptions 1 and 2) are assumed to be
expressed in the form

= o) — 0. (x)5(s,m) — 0, (x)5(s, n) + O(x)o(s,m), (4a)
u, = v(x) — d(x)z(s,n), u. =w(x)+ ¢(x)y(s,n), (4b,¢)

where
)_1(5‘,7’1) :y(s,n)—yo, E(S,n) :Z(S,n) — 20, (Sa»b)
P(s,n) = Y(s) — ni—f, Z(s,n) = Z(s) + ni—j, (5¢,d)
y(s,n) = Y(s) — ni—f, z(s,n) = Z(s) + ncii—j. (Se,f)

The warping function w of the thin-walled cross-section may be defined as

w = w]’(s) + wS(S7 n), (6)
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where w, and oy are the contour warping function and the thickness warping function
respectively. They are defined in the form [8,14]

o =g/ i ([ o =wnas) as] = [ o = vt s, s = nis). (7a.b)

0 K 50

dY dz dy P dz

r(s) = —Z(s)a—i— Y(s) R I(s) = Y(s) e + Z(s) a4

In expression (7), i is the shear strain in the middle line, obtained by means of the Saint—
Venant theory of pure torsion for isotropic beams, and normalized with respect to d¢ / dx
[21]. For the case of open sections iy = 0.

The displacements with respect to the curvilinear system (x, s, n) are obtained by means
of the following expressions:

(8a,b)

- _ dYy dz
U=ucx,s50), V=ux,s,0) o + uy(x,s,0) & (9a,b)
- dz dy Ouy
W = _uy(x,S,O)a—l-uz(X,S,O) av ¢x - 87’1, (9C,d)
0 dYy dz
d)s = % (uya + uza) . (96)
Substituting shell displacements (9) into strain definitions (3) one obtains
ek =uy —0.Y(s) — B’yZ(s) + 0wy (s), (10a)
dz dY
L _ /_ _ /_ _ /
K = 0. & 0, s 0'l(s), (10b)
, dY , dz
Vo = (0 = 0:)——+ (W' = 0,) =+ (¢' = 0)(r — ) + ¥, (10c)
ds ds
dz dYy
Kiy = _2¢/1 ylvln = _(U/ - 02)5 + (W, - 0}’)3 + (¢/ - G)I(S)7 (IOda C)

A = S0 W) 2 4 P + { <r<s> i) i—z) - (r<s> & i CL—Y)} ’

(10f)

KN = =[] - ¢ [v/ ((Z—f) ! (‘;—f)] (10g)

In the above expressions (e) denotes derivation with respect to the variable x.

The first and second terms of expressions (10c) and (10e) may be considered as the shear
strains associated to bending, the third term corresponds to the warping shear and the last
term in expression (10c) is the Saint—Venant (pure torsion) shear strain.

2.4. EQUATIONS OF MOTION

Substituting expressions (9) and (10) into equation (la) and integrating with respect to s,
one obtains the one-dimensional expression for the virtual work equation given by

Lg+ Lgg+ Ly +Lp =0, (11)
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where
L
Lk :/ (Nouy — M50, — M0, + BoO' + Q,6(v' — 0.)

0
+ 050w — 0,) + T,d(¢' — 0) + Tywdg') dx, (12a)

tro= [ {5 a7 + @+ B @+ 2t — 2006

0 0
OB + 2] + ‘5[ﬁy(¢’)2—2¢'v’]+%5[ﬂw(¢’)2]}dx, (12b)

L T 8% 829 820 920
Ly = | p|A—=5 duy + L= 80, + I,—="50, + C\rmms 50
2 2 2

0 0
—zop)ov + A—=(w + yo)ow +

0
+ A4 2 82(

o (v Azov + Ayow + Isqﬁ)éqﬁ} dx, (12¢)

L
Lp :/ (—gx0up — q,00 — q:0w + m-00. + m, 60, — bo0 — md¢) dx
0

+ [Noug — M-30. — M0, + B30 + 0,00 + Q.0w + (T + Tyw)d¢l\=p.  (12d)

In the previous equations, the following definitions, for the beam forces, have been made:

N = /Nn ds, MY_/<N”Z+MH iY> ds, (13a,b)
S

Z
Mz = / <NWY M”(:i ) b b= /(Nxxwp + Ml(s)) ds, (13¢,d)
s s

dY dz dz d
Qy—/S<Nxsa—Nwd )ds QZ—/S<N s + Nyn I )ds (13e,f)

Ty = / [Nes(r =) + Nal(s)] ds,  Tsy = / (N — 2M.y) ds. (13g,h)
S S

In the above expressions the integration is carried out over the middle contour perimeter.
N is the axial force, M, My are the bending moments, B is the bimoment, Qy, Q7 are the
shear forces, Ty is the flexural-torsional moment and Ty is the Saint-Venant torsional
moment, N°, M?, MO B° are the initial forces, N, M,, M., B, Qy7 Q.,T,, Ty, correspond
to external generdhzed forces acting at the ends, ¢, g, and ¢. are the applied forces per
unit length in the directions x, y and z, respectively, while m,, m, and m. are the applied
couples per unit length about the directions x, y and z, respectively, and b is the applied
bimoment per unit length. 4 is the cross-sectional area, I, and Iy are the principal
moments of inertia of the cross-section, Cy is the warping constant, /s is the polar
moment with respect to the shear center and p is the mean density of the laminate.
Also, the following coefficients have been defined:

ﬁZ:%/S[Y(Y2+ZZ)e—r(s) 3(11J ds, (14a)
B, :II—y /S [Z(Y2 +Zz)e+r(s)§‘:1—ﬂ ds, (14b)
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3
B., CLW/9|:QP(Y2+Z2)8+V(S)%Z(S) ds. (14¢)

One may notice that Lg, Lgg, Ly and Lp represent the virtual work contributions due to
the incremental, initial, inertial and external forces respectively. In reference [8], equations
(11) and (12) were obtained for the case of isotropic beams. This may be explained
considering the fact that the virtual work equation holds irrespective of the constitutive
equations of the material.

Taking variations with respect to the generalized displacements uy, 0, v, 0,, w, 6 and ¢,
as indicated in equations (12), one obtains the following equations of motion:

ON A 82 U

—ax TPAGE = 4 (15a)

%_ 0, + L. 6;2 = —m., (15b)

-9 pasto—au) - (WS + Lo+ vl —a e

%é—@+@%%:—%, (15d)

e (e B (R U VRIS

—%f—TW+pCW§?=a (15f)
_W+5A$<ﬁ¢—zov+yw> +£C[NO<—{;Z(£—)/OZZ+Z()§;>]

- ot w0 805 -5 (0 50) + M 5) = e

subjected to the following boundary conditions (at x = 0, L):

N-N=0 or duy=0, (16a)
—M.+M.=0 or d0.=0, (16b)
0, + a” o (M)~ Nz )g—‘ﬁf{zyfo or dv=0, (16¢)
~M,+M,=0 or &0,=0, (16d)
ow op -
oYW 0 0, \Y% _ _
Q;+Nax+(Mz+Nyo)ax 0.=0 or ow=0, (16¢)

B—B=0 or 060=0, (16f)
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Is O¢ ow 81) qu ow
0f2 27 il 0
(Tyw+ Ty) + N (A o +y08x 205 ) + M; (ﬁz I

(16g)
+MO (ﬁyaﬁ - %) OﬁWa¢ (Tw + Tsv) =0 or 5¢ =0.

In these equations, the terms corresponding to the initial stresses contributions have been
underlined.

2.5. CONSTITUTIVE EQUATIONS FOR THE BEAM STRESS RESULTANTS

The field of the shell stress resultants is assumed to be of the form

N M. - B
Nxx—e|:z 1} I— C_n :|7 (1721)

M,dY M.dZ B
My = E[l—a—ra_c_”l(s)} (17b)

63
Mxx - _aTSVa (17C)
_ 0z: Or; Ty ey(s)

Na=e| -0~ L 5.40) + o] + AT, (170

63 deY deZ TW
N —E[T,a‘fa‘c—w ( ﬂ (17¢)

In expressmns (17¢) and (17d), J denotes the Saint-Venant torsion constant. In expression
(17d), 4,,4. and A, are defined as

I(s) = / :)Z(s) ds +% f [ / :Z_(s) ds} ds, (18a)
M@/Fuwﬁgf[ﬁ?@mym (18b)
Jo(s) = /;wp(s) ds+%j£ {/;wp(s) ds] ds, (18¢)

where o« =0 or 1 depending on whether the cross-section contour is open or closed
respectively. S denotes the contour perimeter.

The selected field of shell stress resultants (17) verifies expressions (13) in addition to the
following shell equilibrium equations:

aNxx + aN\'S _ 0 aMxx + 8MXS
Ox ds Ox Os

Substituting expressions (17) into equation (1b), integrating with respect to and taking
variations with respect to N, M,, M., B, Q,, O-, T,, and Ty, one obtains the following
constitutive equations for the beam stress resultants:

N = E*4 % M. = —E*L %, M, = —E*I, % (20a—c)
0 )

B=E*Cy—, Tsy = G*J —
W Lsv o

— Ny, =0. (19a,b)

13 73

(20d,e)
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0
KXy,
0, Ox
0. t =S 2 g, ¥, (20f)
ox
ox
where E*, G* and G** are expressed in the form
A A
pr="0 g =2 (21a,b)
e e
G* for closed sections,
G™ = ¢ 12D¢s , (21¢)
2 for open sections.

e

The S-matrix arising in equation (20f) is obtained as
_ . o o -1

2
L Do dy A 1o Ay A
A2\ 4(m) Y yz _ yo
/S <IZ> Ayy ds /S 1217 ds /S IZCW ds
a,Am 7\’
[S] = / - ;1 ¥ ds / (?) AW ds / %o é f"”d . (22)
S z4y S y S w

- 2
Ady A 2 /1 AW A
_ )’U) w zw o n
/S IZ Cw dS S Cwl ds /S (Cw> “o® ds

In expression (22), the following definitions have been introduced:

T
€4A66 S ds /1(”) 14+ €4A66 S ds

A — 1 4 m — (23a,b)
vy —(H) - v e S - ’ ’
1444 /(iz)zds 1444 /(iy)zds
S S
47 /<— ds 45 / ds
e ar e R
14445 /(iw)zds 14445 /(/Iyiz)ds
S S

awpdz> dYa(Up
o [ () o [ ()
A =14 CAw Js\On ds) oy @A Js\ds On (23e, f)
) (H) _ Zw (H) - -
1444;; (Aokz) ds 144455 (Ayho) ds
S S

Another way to obtain equations (20a—¢) is by substituting strain expressions (10) into
constitutive equations (A.I.1) and there results into expressions (13).

On the other hand, this last approach for the constitutive equations corresponding to
0,, 0. and T, leads to different expressions for the coefficients of matrix [S]. This occurs
because expressions of N,; and N,, determined in this way do not verify the shell
equilibrium equations (19). Consequently, expressions (20f) with equation (22) are more
accurate than the constitutive expressions obtained in the form explained in the previous
paragraph.
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In order to clarify this point, it is interesting to consider the particular case of a plane
Timoshenko beam vibrating in the x—y plane. Expressions (20f) with (22) are reduced in
this situation to the form

ov
0, =0-866GA4 (a —0. ) (24a)
while the aforementioned second form leads to
ov
=G4 — — 24
0, = Ga(gr-0.). (240)

It may be seen that the shear correction factor 0-866 arises naturally in expression (24a)
but not in expression (24b). The present method of derivation based on the Hellinger—
Reissner principle constitutes a generalization of an approach followed to obtain the
Timoshenko’s beam theory developed in reference [22]

The present beam model is governed by equations (15) and (20) along with boundary
conditions (16).

3. FREE VIBRATION AND BUCKLING ANALYSIS OF THIN-WALLED BEAMS
WITH SIMPLY SUPPORTED ENDS

As it may be seen in governing equations (15), (16) and (20), the longitudinal motion is
decoupled from the flexural-torsional motion. On the other hand, the governing equation
corresponding to the axial motion has the classical form. Therefore, this case is not of
interest. In what follows only the case of flexural-torsional motion is analyzed.

The beam is assumed to be simply supported at both ends. These boundary conditions
are expressed in the form

00. . 90, . 90 B
e = Bl = E* G =0 atx=0,L. (25)

The previous boundary conditions are fulfilled by taking the following expressions for the
generalized displacements:

V= olm sm( )ﬁm( ), W=z, sm( )ﬁm( ), ¢ =udsm sm( ),Bm( ), (26a—c)

v=w=¢ =0, E*L

0. = oo, cos( )ﬁm( )y 0 = o4 cos( )ﬁm( ), 0 =ogm cos( )ﬁm( ), (26d—f)

where
B,,(t) = cos2nf,t], m=1,23.... (27)
the o;,’s are constants and f,, is the frequency (Hz).

Substituting expressions (26) into equation (20) and then into equation (15), and
factoring the trigonometric functions, the following algebraic system is obtained:

6 R .
> K + 2K — nfu) Mylogn =0, i=1,...,6, (28)

where K;, K; and M are symmetric matrices, whose expressions are displayed in

Appendix B.
In equation (28), 4 is a load factor defined by means of the expressions

450 -0
N(x)x = /“Nx,w MS’( = )‘Mxx’ (29)

<0 -0 o
where N, and M.  are reference initial shell stress resultants, whose values are
conveniently chosen.
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The solution of the above eigenvalues problem yields the natural frequencies f,. It is
interesting to notice that there exist six frequencies for each value of m. On the other hand,
the critical values of 4 may be obtained from equation (28) by taking a zero value for the
frequency f,,. The minimum value of 4 corresponds to the buckling load.

4. NUMERICAL EXAMPLES AND DISCUSSION

To evaluate the shear effect on the dynamic and stability behavior of the analyzed
structural members, numerical comparisons are performed among the present model
predictions and results obtained by neglecting the shear deformability (Ghorbanpoor and
Omidvar model). Different cross-sectional shapes, laminate schemes and slenderness ratios
are considered. The analyzed material is graphite-epoxy (AS4/3501) whose properties are
E, =144 GPa, E;, = 9-65GPa, G, =4-14GPa, G35 =414GPa, Gy; =345GPa, vjp =
0-3, vi3 = 0-3, vo3 = 0-5, p = 1389 kg/m>. The considered laminate schemes are: (a) {0/0/0/
0}, (b) {0/90/90/0} and (c) {45/—45/—45/45}. The analyzed cross-sections are shown in
Figure 2.

4.1. VIBRATION PROBLEMS

In order to perform the numerical analyses, natural frequencies of vibration for the
following situations are determined: flexural-torsional vibration of U beams—xz plane
(Table 1); symmetric flexural vibration of U beams—xy plane- (Table 2); symmetric
flexural vibration of rectangular section beams—xz plane (Table 3); symmetric flexural
vibration of rectangular section beams—xy plane (Table 4); torsional vibration of
rectangular section beams (Tables 5 and 7); torsional vibration of I beams (Tables 6
and 7); variation of the first frequency of the U beam versus an initial axial force N°
(Figure 3); variation of the first frequency of the U beam versus an initial bending moment
M}Q (Figure 4).

An examination of Tables 1-6 reveals that the general effect of the shear flexibility is to
reduce the values of the natural frequencies in comparison with the frequencies obtained
by means of the Ghoorbanpoor—Omidvar model. It is appreciated that the shear effect is
very important for laminates (a) and (b), in fact when one of the principal axes of the

|

(a) (b) (c)

Figure 2. Analyzed cross-sectional shapes: (a) b=h=06m, (b) b=h=06m, (¢) b=h/2=03m;
t = 0-03m for all cases.
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TABLE 1

Flexural-torsional frequencies (Hz) of U beams —xz plane: [1] neglecting shear flexibility,
[11] including shear flexibility, [111] percentage difference: [100(fim—f)/fim

Laminate h/L Model N f fi fa
[ 9-82 38-63 5207 86-64
0-05 [11] 9-42 3323 39-03 64-70
[111] (4-07) (13-98) (25-04) (25:32)
[ 38-63 153-86 207-98 345-90
{0/0/0/0} 0.10 [11] 3323 99.-03 102-79 169-05
[111] (13-98) (35-64) (50-58) (51-13)
[ 86-64 34590 467-84 777-95
0-15 [11] 64-70 166-32 169-05 272-03
[111] (25-32) (51-92) (63-87) (65-03)
[1] 7-30 28-35 38-09 63-41
0-05 [11] 7-14 26-02 3195 53-15
[111] (2-19) (8-22) (16-12) (16-18)
[ 28-35 112-50 151-95 25276
{0/90/90/0} 0-10 [11] 26-02 84-94 93-02 153-81
[11T] (8-22) (24-50) (38:78) (39-15)
[ 63-41 252-76 341-73 568-31
0-15 [11] 5315 153-81 157-26 258-60
[111] (16-18) (39-15) (53-98) (54-50)
[1 5-34 15-53 18-45 31-32
0-05 [11] 5-33 15-48 18-24 31-10
[111] (0-13) (0-34) (1-15) (0-71)
[ 15-53 53-14 68-77 115-26
{45/—45/—45/45} 0-10 [11] 15-48 52-50 65-76 112-22
[111] (0-34) (1-22) (4-37) (2-63)
1 3132 115-26 152:67 254-84
0-15 [11] 31-10 112-22 139-01 240-68
[111] (0-71) (2-63) (8-95) (5-56)
50 /
I_][”] - /
>
3 T\
s / 0
o
[T / ’)Q
-20 -15 -10 5 15 20

Figure 3. Variation of the first frequency (Hz) versus coefficient 2 = N°/N,: N, = 10°N, h/L = 0-10,
U beam, laminate {0/0/0/0}. [I] Considering shear flexibility, [II] neglecting shear flexibility.
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TABLE 2

713

Flexural frequencies (Hz) of U beams—xy plane: [1] neglecting shear ﬂexibility, [11]

including shear flexibility, [111] percentage difference: |100(fiy—fin)/ful
Laminate h/L Model A f S5 fa
[ 2221 8885 199.92 355.42
0-05 [11] 20-38 67-17 122-06 178-01
[111] (8-24) (24-40) (38:95) (49-92)
(1 88-85 355-42 799-69 1421-67
(0/0/0/0} 0-10 [11] 67-17 17801 288.05 395-60
[111] (24-40) (49-92) (63-98) (72-17)
1 199-92 799-69 1799-30 3198-75
0-15 [11] 122-06 288-05 448.76 606-77
(111 (38:95) (63-98) (75-06) (81.03)
(1] 16-22 64-89 146-00 259-56
0-05 [11] 15-46 54.75 105-76 160-85
[111] (4-69) (15-63) (27-56) (3803)
(1] 64-89 259-56 584-01 1038-24
{0/90/90/0} 0-10 [I1] 54.75 160-85 272-53 382-40
[I11] (15-63) (38-03) (53-33) (63-17)
i 146-00 58401 1314-02 233604
0-15 [11] 105-76 272-53 436-60 597-08
(111 (27-56) (53-33) (66-77) (74-44)
il 7.18 2870 64-58 114-82
0-05 [I1] 7-16 28-43 63-22 110-65
[111] (0-24) (0-96) @-11) (3-64)
(1] 28-70 114-81 258-33 459-28
(45/—45/—45/45) 0-10 [11] 2843 110-64 238.88 403-69
(111 (0-96) (3-63) (7-53) (12-10)
(1] 64-58 258-33 581-24 1033-38
0-15 [11] 63-22 238-88 496-99 809-59
[111] @211 (7-53) (14-49) (21-66)
40
35
% _\ ]
T 25
= \
(8]
S 20
> [1 \
o 15
* \
10
: \\ \\
0 , , , ,
0 5 10 15 20 25

Figure 4. Variation of the ﬁrst frequency (Hz) versus coefficient 1 = MO/M
U beam, laminate {0/0/0/0}. [

: M = =10°Nm, h/L = 0-10,

yre

ref -
1] Considering Shear flexibility, [II] Neglecting shear flexibility.
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TABLE 3

Flexural frequencies (Hz) of rectangular section beams in the xz plane: [1] neglecting shear
Sexibility, [11] including shear flexibility, [111] percentage difference: |100(f;—fm)/fim|

Laminate H/L Model N 1 15 fa

[1] 24.84 99-34 223.52 39737

0-05 [11] 2268 74-28 134-34 195-36

[111] (8:70) (25-23) (39-90) (50-84)

(1] 99-34 397.37 894-08 1589-47

{0/0/0/0} 0-10 (1] 7428 195-36 31523 43240
[111] (2523) (50-84) (64-74) (72-80)

[1] 223.52 894-08 2011-67 3576-31

0-15 [11] 134.34 315:23 490-34 662-59
[111] (39-90) (64-74) (75-63) (81-47)

[ 18-14 72.55 16324 290-20

0-05 [11] 17-24 60-75 116-80 177-04
[I11] (4-96) (16-26) (28:45) (38:99)

(1] 72-55 290-20 652-94 1160-79

{0/90/90/0} 0-10 [11] 60-75 177-04 298-80 418-49
[111] (16:26) (38-99) (54-24) (63-95)

[1] 163-24 652-94 1469-12 2611-77

0-15 [11] 116-80 298-80 477-53 652-40
[111] (28-45) (54-24) (67-50) (75-02)

il 802 32.08 7217 128-32

0-05 [I1] 8-00 3172 70-41 122-95
[111] (0-28) (1-11) (2-44) (4-19)

(1] 3208 128-31 288-70 513-27

(45/—45/—45/45) 0-10 [11] 3172 122.94 26393 443.28
[111] (1-11) (4-18) (8-58) (13-64)

1] 7217 288-70 649-57 1154-86

0-15 [11] 70-41 263-93 544-08 878-87
[111] (2-44) (8-58) (16:24) (23-90)

material coincides with the longitudinal axis of the beam. On the other hand, in the case of
laminate (c), the shear effect is negligible. This behavior is due to the fact that beams with
laminate (c) present a higher shear rigidity than beams with laminates (a) and (b). A way
to show this fact is by considering the ratio G*/E*, which takes the values 0-03, 0-05 and 1
for cases (a), (b) and (c) respectively.

Tables 1-6 show that the shear effect increases with the increase of /1/L (decrease of the
slenderness of the beam) and with the increase of the mode number. It should be observed
that, for the case of laminate (a), the shear effect is important even for the first frequency
corresponding to slender beams. For example, in the case of the symmetric vibration of the
U beam with /1/L = 0-05, the decrease of the first frequency is 10%, approximately.

It is interesting to notice that the torsional modes of the rectangular section beams
(Table 5) are practically unaffected by the shear flexibility. Differently, the torsional
vibration of I beams is noticeably influenced by the shear effect. This discrepancy is due to
the fact that, for the closed section, the torsional motion is governed by the Saint—Venant
behavior (pure torsion), while for the open section case, the torsional motion is dominated
by warping and therefore the shear warping is significant. The warping effect may be
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TABLE 4

Flexural frequencies (Hz) of rectangular section beams in the xy plane: [1] neglecting shear
Sexibility, [11] including shear flexibility, [111] percentage difference: |100(f;—fm)/fim|

Laminate H/L Model N 1 15 fa

1 14-69 5877 132:24 235-09

0-05 [11] 13-48 44.42 80-67 117-60

[111] (8-24) (24-42) (39-00) (49-98)

(1] 5877 235-09 528-94 940-34

{0/0/0/0} 0-10 (1] 44.42 117-60 190-17 261-09
[111] (24-42) (49-98) (64-05) (72:24)

[1] 132-24 528-94 1190-12 211577

0-15 [11] 80-67 190-17 296-14 400-34
[111] (38:99) (64-05) (75-12) (81-08)

1 10-73 42:92 9657 171-68

0-05 [11] 10-23 36-24 70-00 106-41
[111] (4-69) (15-55) (27-51) (38-02)

(1] 42.92 171-68 386-29 686-73

{0/90/90/0} 0-10 [11] 3624 106-41 180-12 25258
[111] (15-55) (38-02) (53-37) (63-22)

1 96-57 38629 869-14 1545-14

0-15 [11] 70-00 180-12 288-31 39411
(1] (27-51) (53-37) (66-83) (74-49)

il 475 18-99 42.73 75.98

0-05 [11] 4.74 18-87 42-11 74-04
[111] (0-17) (0-66) (1-47) (2:55)

(1] 18-99 75-97 170-94 303-91

(45/—45/—45/45) 0-10 [11] 18-87 7403 161-68 27672
[111] (0-66) (2-55) (5-42) (8-95)

[1] 4273 170-94 384-61 683-79

0-15 [11] 42-11 161-68 342.85 568-56
[111] (1-47) (5-42) (10-86) (16:85)

appreciated in Table 7. This table shows torsional frequencies obtained by means of: (1)
the present model, (2) the Vlasov’s model, i.e. neglecting shear flexibility, and (3) the
Saint—Venant model, i.e., neglecting shear and warping effects (C,, = 0). As it may be seen,
for the closed section beam the warping effect is negligible. Conversely, for the I-section
beam, this effect is very important.

From Figure 3, it is possible to appreciate that the effect of an axial compressive force is
to decrease the fundamental frequency with respect to the unloaded case. Moreover, this
decrease is more pronounced when the shear flexibility is included in the analysis. Similar
observations can be established for the case of a beam pre-loaded with a bending moment
as shown in Figure 4.

Figure 5 shows the first two modal shapes corresponding to the unloaded U beam with
the cross-sectional characteristics reported in Figure 2 and with A4/L =0-05. It is
interesting to note that the first modes corresponding to laminates (a) and (b) are
dominated by torsion. In fact the ratio (¢),,,./ (W), i of the order of 5. Differently, for
the case of laminate (c) the behavior of the first mode has a flexural-torsional character. In
this last case, the ratio (¢),,../(W),... takes a value of 1.4, approximately. The second

max
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TABLE 5

Torsional frequencies (Hz) of rectangular section beams: [1] neglecting shear flexibility,
[11] including shear flexibility, [111] percentage difference: [100(fim—f)/fim

Laminate h/L Model N f S5 fa

(1] 55-50 111-74 169-43 22929

0-05 [11] 5549 111-60 168-60 226-43

[111] (0-02) (0-13) (0-49) (1.25)

(1] 111-74 229-29 357-99 502-39

{0/0/0/0} 0-10 [11] 111-60 22643 343-65 46176
[111] (0-13) (1.25) (4-01) (8-09)

[n 16943 35799 581-64 85193

0-15 [11] 168-60 343.-65 52091 698-31
[111] (0-49) 4-01) (10-44) (18-03)

[ 55.44 111-28 167-90 22569

0-05 [11] 5544 111-23 167-60 224-63
[111] (0-00) (0-04) (0-18) (0-47)

(1 111-28 225-69 346-22 475-60

£0/90/90/0} 0-10 [11] 111-23 224-63 34043 457.74
[111] (0-04) (0-47) (1-67) (376)

1 167-90 346-22 544.37 770-16

0-15 [11] 167-60 340-43 516-69 694-00
[111] (0-18) (1-67) (5-08) (9-89)

1 166-75 333.53 500-36 66727

0-05 [11] 166-74 333.47 500-17 666-84
[111] (0-01) (0-02) (0-04) (0-06)

(1 333.53 667-27 1001-43 1336-22

(45/—45/—45/45) 0-10 [11] 333.47 666-84 1000-02 1332:90
[111] (0-02) (0-06) (0-14) (0-25)

1 500-36 1001-43 150391 2008-52

0-15 [I1] 500-17 1000-02 1499-19 1997-34
[111] (0-04) (0-14) (0-31) (0-56)

mode behavior is the same for all the laminates, from a qualitative point of view
(Figure 6).

4.2. BUCKLING PROBLEMS

Critical values of 4 are obtained for the cases of (I) an initial longitudinal force N° and
(I1) an initial bending moment M}. The adopted reference values are N,(,)ef =—1x10°N
and M) - = 1 x 10° N'm respectively. Tables 8 and 9 show the values of 2 = Ny, /N}, - and
A= ]\4? C;/M}(?ref, respectively, for the three types of cross-sectional shapes taken into
account. In these tables, it is possible to observe that, for both situations and all the cross-
sectional shapes, the shear effect is very important for laminates (a) and (b), while it is
negligible for laminate (c). For example, in the case of laminate (a) when i2/L = 0-1, the
percentage differences of A = Ng. /N?ef among the present results and those obtained by
neglecting the shear effect are 26, 25 and 43% for the U, I and rectangular sections
respectively. On the other hand, the corresponding values for the case of laminate (c) are 2,

1 and 1%.
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TABLE 6

Torsional frequencies (Hz) of I-beams: [1] neglecting shear flexibility, [11] including shear
fexibility, [T11] percentage difference: |100(f;;; — fin)/fun|

Laminate h/L Model A f S5 fa

1 16-24 6335 141-86 25176

0-05 [11] 15-64 55-00 107-55 165-41

[111] (3-69) (13-18) (24-19) (34-30)

(1 63-35 251-76 565-78 1005-40

{0/0/0/0} 0-10 [11] 55-00 165-41 284-29 401-86
[I11] (13-18) (34-30) (49.75) (60-03)

(1] 141-86 565-78 1272-31 2261-46

0-15 [11] 107-55 284-29 459-86 631-49
[111] (24-19) (49-75) (63-86) (72-08)

N 12:19 46-61 103-95 184-21

0-05 [11] 11-96 43.02 87-94 140-98
[111] (1-89) (7-70) (15-40) (23-47)

(1] 46-61 184-21 413-54 734-59

£0/90/90/0} 0-10 [11] 43.02 140-98 257-02 375.94
[111] (7-70) (23-47) (37-85) (48-82)

(1] 103-95 413-54 929-52 1651-89

0-15 [11] 87-94 257-02 435-12 610-43
[111] (15-40) (37-85) (53-19) (63-05)

[ 10-98 28:11 54.18 89.99

0-05 [I1] 10-96 27-98 53-61 88-35
[111] (0-15) (0-49) (1-05) (1-83)

(1] 28-11 89-99 191-65 333.74

(45/—45/—45/45) 0-10 [11] 2798 88-34 184-14 31175
[111] (0-49) (1-83) (3-92) (6-59)

1 5418 191-65 419-94 739-46

0-15 [11] 53-61 184-14 386-03 644-07
[T11] (1-05) (3-92) (8-07) (12:90)

TABLE 7

Torsional frequencies (Hz) of rectangular and H section beams: [1] neglecting shear
fexibility, [11] neglecting shear flexibility and warping, [111] including shear flexibility;
material: graphite-epoxy 0/90/90/0, h/L = 0.1

Model N S S Ja
H section

1] 46-61 184-21 413-54 734-59
[11] 8-30 16-61 2491 33.21
[111] 43.02 140-98 257-02 375-94
Rectangular section

1] 111-28 225-69 346-22 475-60
(1] 110-75 221-51 332-29 443-09

[I11] 11123 224.63 340-43 457.74
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Figure 5. Mode shape corresponding to first frequency: (a) laminate {0/0/0/0}, (b) laminate {0/90/90/0},
(c) laminate {45/—45/—45/45}: A, uy, %, v;, R, 0-; O, w; O, 0,; %, ¢; X, 0.

5. CONCLUSIONS

® A theoretical model was developed for vibration analysis of composite thin-walled
beams accounting for shear deformability.
® The theory is applicable to both open and closed cross-sections.
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Figure 6. Mode shape corresponding to second frequency. (a) laminate {0/0/0/0}, (b) laminate {0/90/90/0},
(c) laminate {45/—45/—45/45}: A, ug, %, v, B, 05,0, w; O, 0y 4, ¢; X, 0.

® The model considers the existence of initial shell stress resultants N° and M° .
Therefore, it is possible to analyze buckling problems.

® The numerical results demonstrate that the shear flexibility has a remarkable effect on
the natural frequencies and critical loads, especially when one of the material axes
coincides with the longitudinal axis of the beam.

® The warping shear may be of great influence on the vibration and stability behavior for
open section beams, although it is negligible for closed section beams.
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TABLE 8

Coefficients . = N°/ N?L)f of critical loading for point load at both ends: [1] neglecting shear
Sexibility, [11] including shear flexibility, [111] percentage difference: |100(f;—fm)/fim|

Laminate h/L Model U profile I profile Rect. profile
1 4-16 10-67 9:33
0-05 [11] 3-84 9-83 7-86
[rm (7-86) (7-89) (15-75)
[ 16-12 42-69 37-31
{0/0/0/0} 0-10 [11] 11.94 31-79 21-34
[111] (25-89) (25-53) (42-79)
[1] 36-04 96-05 83-94
0-15 [11] 20-12 54.22 31-29
[ (44-16) (43-55) (62-72)
[mn 2-30 5-69 4.97
0-05 [11] 2:21 5-44 4.52
[111] (4-26) (4-37) (9-07)
[ 8-68 2277 19-90
{0/90/90/0} 0-10 [11] 7-32 19-25 14.22
[11T] (15-61) (15-46) (28-51)
[mn 19-30 5123 44.77
0-15 [11] 13-59 36-29 23-59
[m (29-58) (29-15) (47-30)
(1] 123 1-11 0-97
0-05 [11] 1-23 1-11 0-97
[rm (0-24) (0-33) (0-12)
1 2-60 4.45 3-89
{45/—45/—45/45} 0-10 [11] 2:59 4.32 3-86
1084 (0-38) (2-92) (0-74)
[ 4.71 10-01 8-75
0-15 [11] 4.67 992 8-59
[111] (0-85) (0-92) (1-82)

It is interesting to point out that the shear effect may be even more important for other
end conditions such as clamped—clamped in analogy with the isotropic case. A numerical
study of this situation by means of a finite element based on the present theory is on
course.

ACKNOWLEDGMENTS

The present study was sponsored by the Secretaria de Ciencia y Tecnologia de la
Universidad Tecnoloégica Nacional and by CONICET.

REFERENCES

1. E.J. BARBERO 1999 Introduction to Composite Material Design. London: Taylor & Francis Inc.
2. V. Virasov 1961 Thin Walled Elastic Beams. Jerusalem: Israel Program for Scientific
Translation.



COMPOSITE THIN-WALLED BEAMS 721

TABLE 9

Coefficients A = MJ(? / M;) ref of critical loading for moments applied at both ends [1]
neglecting shear flexibility, [11] including shear flexibility, [111] percentage difference:
1100(fi —/in) /fim |

Laminate h/L Model U profile I profile Rect. profile
[ 5-54 3-31 9-15
0-05 [11] 4.82 3-06 8-40
[ (12:95) (7-51) (8-22)
I 2175 12:91 18-43
{0/0/0/0} 0-10 [11] 13-60 9-69 13.92
[111] (37-48) (24-96) (24-44)
[n 48-78 2891 27-94
0-15 [11] 20-79 16-50 16-98
(11 (57-:37) (42:92) (39-23)
[m 3.01 1-81 6-68
0-05 [11] 279 1-74 6-37
[ (7-26) (4-05) (4-64)
[1 11-66 6-94 13-40
{0/90/90/0} 0-10 [11] 8-84 5-90 11-33
[111] (24-21) (14-98) (15-48)
1 26-08 15-47 20-22
0-15 [11] 15-17 11-05 14-66
[ (41-83) (28-56) (27-52)
[mn 1-07 0-72 8-86
0-05 [11] 1-06 0-72 8-85
[ (0-09) (0-14) (0-11)
[ 2-89 1-85 17-73
{45/—45/—45/45} 0-10 [ 2-87 1-84 17-65
[1171] (0-69) (0-54) (0-45)
[m 575 3-56 26-60
0-15 [11] 5-67 3-54 26-34
[rm (1-39) (0-56) (0-98)
3. N. R. Baurp Jr and L. S. TzenG 1984 International Journal of Solids and Structures 20,

277-297. A Vlasov theory for fiber-reinforced beams with thin-walled open cross sections.

A. GHORBANPOOR and B. OMIDVAR 1996 Journal of Structural Engineering 122, 1379-1383.

Simplified analysis of thin-walled composite members.

J. C. Massa and E. J. BARBERO 1998 Journal of Composite Materials 32, 1560-1594. A strength

of materials formulation for thin-walled composite beams with torsion.

. G. D. PoLLoCK, A. R. ZAak, H. H. HiLTON and M. F. AEMAD 1995 Structural Engineering and

Mechanics 3, 91-103. Shear center for elastic thin-walled composite beams.

E. EsTIVALEZES and J.-J. BARRAU 1998 Composites 29B, 371-376. Analytical theory for an

approach calculation of composite box beams subjected to tension and bending.

V. H. CortinEz and R. E. Ross1 1998 Revista Internacional de Métodos Numéricos para Calculo

y Disefio en Ingenieria 14, 293-316. Dynamics of shear deformable thin-walled open beams

subjected to initial stresses (in spanish).

V. H. CortinEZ, M. T. PiovaN and R. E. Ross1 1999 Structural Engineering and Mechanics 8,

257-272. Out-of-plane vibrations of thin-walled curved beams considering shear flexibility.

. V. H. CortiNEZ, M. T. PiovaN and R. E. Ross1 1999 Journal of Sound and Vibration 224,
375-378. Comments on coupled flexural-torsional vibrations of Timoshenko beams.



722 V. H. CORTINEZ AND M. T. PIOVAN

11. A. N. SHERBOURNE and M. Z. KABIR 1995 Journal of Engineering Mechanics 121, 640-647.
Shear strains effects in lateral stability of thin-walled fibrous composite beams.

12. L. A. Gopoy, E. J. BARBERO and I. RAFTOYIANNIS 1995 Journal of Composite Materials 29,
591-613.Interactive buckling analysis of fiber-reinforced thin-walled columns.

13. B. OMIDVAR 1996 Journal of Composites for Construction 2, 46-56. Shear coefficient in
orthotropic thin-walled composite beams.

14. E. C. SmitH and 1. CHOPRA 1991 Journal of the American Helicopter Society 36, 33-35.
Formulation and evaluation of an analytical model for composite box-beams.

15. O. SoNG and L. LiBREscU 1993 Journal of Sound and Vibration 167, 129—147. Free vibration of
anisotropic composite thin-walled beams of closed cross-section contour.

16. O. SoNG and L. LiBREscU 1997 Journal of the American Helicopter Society 42, 358-369.
Structural modeling and free vibration analysis of rotating composite thin-walled beams.

17. O. SoNG and L. LiBrREscU 1997 Journal of Sound and Vibration 204, 495-504. Anisotropy and
structural coupling on vibration and instability of spinning thin-walled beams.

18. K. BHASKAR and L. LiBREScU 1995 International Journal of Engineering Sciences 33, 1331-1344.
A Geometrically non-linear theory for laminated anisotropic thin-walled beams.

19. X. X. Wu and C. T. SuN 1990 American Institute of Aeronautics and Astronautics Journal 29,
736-742. Vibration analysis of laminated composite thin-walled beams using finite elements.

20. K. WasHizuU 1968. Variational Methods in Elasticity and Plasticity. New York: Pergamon Press.

21. S. KrReNk and O. GUNNESKoV 1981 International Journal for Numerical Methods in Engineering
17, 1407-1426. Statics of thin-walled pretwisted beams.

22. V. H. CortiNEz, M. T. ProvaN and R. E. Rosst 1999 Structural Engineering and Mechanics 7,
527-530. A Consistent derivation of the Timoshenko’s beam theory.

APPENDIX A: CONSTITUTIVE EQUATIONS OF SYMMETRICALLY BALANCED
LAMINATES

The constitutive equations of symmetrically balanced laminates may be expressed in
terms of shell stress resultants in the following form [1]:

T4, 0 0 0

N ) 0 ek,
Nao=1]0 o 42 o o [{ (A1)

M 0O 0 0 D, 0 |]|ru

_ L

Ms) Lo 0 0 0 Dl \Fs

with
- 4, - A3 ) (45D)
A=Ay — 212 Age = Age — 226, A4 = AU T4 ) A2a—c
11 1= A 6~ 1, A5 55 AE;T ( )
D? D3

Dy =Dy — D_127 Des = Dgs — (A.2d,e)
2

—7
Dy

where 4, Dy and Af-jH) are plate stiffness coefficients defined according to the lamination
theory presented in reference [1, Chapter 6]. The coefficient D¢ has been neglected because
of its low value for the considered laminate stacking sequence.
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APPENDIX B: MATRIX ELEMENTS
Elements of matrix equation (28) are
KV =qgs,r2 kY =-6s,r, KkWY=qs,.r2
Ky =-G's,.I,, K\Y=6"S,,? K\ =-6S,,I,
KY =6'S, + E'LI?, K\) = —G*S,.I,, K.} =G*S,.,
K =—-GS,,I,, K =G*S,,, KL =¢GS.I?

zz4
K;l;) = _G*Szzrna Ké? = G*Szwrﬁa Kg;) = _G*Szwrna
K\ =GS..+ ELI? K\ =-GS.,I,, K\ =GS.,,

KS(;) = (G*Sww + G**J)F%” KS(é) = _G*Swwrn,
KY = 6w+ EGIE K =N'T K =NT,

K3 = (N + MOI2,

K = (N°L/A + BB + p, M) + p.MO)I2,
K = —(N'z + M1,
My = M33 = pA, Ms=—pAzy, Mszs=pAyy, Mx»n =pl,
My = pl,, Mss = pl;, Mg = pC,,
My =Mz =My = M= My = My= Mys= My;= M3 = M3g = Mys
= Mys = Mss =0,

where I', = nn/L, and Kj(l-k) :Ki(jk), k=1,2andij=1,...,6.
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