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The objective of this paper is an analytical and numerical study of the dynamics of a
beam–mass system. Special attention is given to the phenomena arising due to the motion
of the attached mass and modal interactions produced by the existence of multi-
component, specifically two-component, parametric resonance under primary resonance.
The two-component parametric resonance occurs when the sums or the differences among
internal frequencies are the same, or close, as the dimensionless speed parameter of the
moving mass. The effects of two-component parametric resonance post on dynamic
condition are investigated. Resonance generated by more than two-component modes are
neglected due to its remote probability of occurrence in nature.

The mechanics of the problem is Newtonian. Based on the assumption that when the
moving mass is set in motion the mass is assumed to be rolling on the beam, the mechanics,
including the effects due to friction and convective accelerations, of the interface between
the moving mass and the beam are determined.

Based on the Bernoulli–Euler beam theory, the coupled non-linear equations of motion
of an inextensible beam with an attached moving mass are derived. By employing Galerkin
procedure, the partial differential equations which describe the motion of a beam–mass
system are reduced to an initial-value problem with finite dimensions. The method of
multiple time scales is applied to consider the solutions and the occurrence of internal
resonance of the resulting multi-degree-of-freedom beam–mass system with time dependent
coefficients.

# 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

Vibrations of flexible structures with attached moving masses have been the subject of
many studies [1–14]. In references [1, 2], the response of a simply supported finite beam
with and without elastic foundation under a moving load was studied. It shows the
existence of a truly critical speed and the impossibility of the occurrence of a steady state
when the load speed is equal to either the shear or the bar velocity.

The problem regarding the interaction between the moving mass and the supporting
structure was first considered by Ting et al. [3]. The result indicates that the convective
acceleration terms should be included if ‘‘correct’’ formulation is desired.

Recently, sophisticated effects, such as longitudinal deflections, inertia, and
non-linearities of the beam and the variation of moving masses, to the response
due to the motion of moving loads have been taken into account in references [4, 5]. The
result of reference [4] shows that the largest amplitude of response occurs in the linear
model.
0022-460X/02/$35.00 # 2002 Elsevier Science Ltd. All rights reserved.
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The phenomenon of negative deflection of a flexible structure due to the motion of
attached masses has been found in many studies, such as references [3, 8, 10]. However,
this event was generally not discussed in detail. Investigation of the occurrence and relative
conditions of the separation between flexible structures and riding masses has been done in
reference [6]. It discloses that in certain conditions, the effects of separation are of critical
importance.

In reference [7], the author discussed critical speeds and the response of a tensioned
beam on an elastic foundation to repetitive moving loads. The possibilities of the existence
and the occurrence of critical speeds and the effects of damping, beam tension, and elastic
foundation stiffness on the response of the system are studied.

A new model that includes the effect of rolling friction between the rollers of the moving
mass and the beam was established by Wang [8]. An important feature that is carried out
in the analysis is the ability to bring the mass to a halt at desired points along the beam.
The transient vibrations of an inextensible beam with a riding accelerating mass are
studied in detail.

In this study, the vibrations of a finite inextensible beam with a riding mass are
investigated. The beam rests on a uniform elastic foundation. The gravity of the beam then
is assumed to be taken by the foundation preload.

In the modelling, effects due to friction and convective accelerations of the interface
between the moving mass and the beam are considered. This results in variable velocity
and acceleration, and unknown location of the mass along the beam. The mass is able to
be accelerated by a forward force or reduces speed and brakes to a halt at desired position
on the beam by applying a reverse force to the mass and/or increasing the friction between
the mass and the beam. In the analysis, the moving mass with constant velocity is assumed
and the method of multiple time scales is employed to evaluate the dynamics of a moving
mass and obtain solutions of the analysis.

Results of the present study show that for the case of two-component resonance, new
regions of the growth of small amplitude of vibrations into large motion regime are found
for the first mode even the excitation due to the motion of the attached mass is not close to
the fundamental mode. This is due to modal interactions caused by the existence of two-
component parametric resonance.

2. BASIC FORMULAS

In this study, a finite inextensible beam rested on a uniform elastic foundation
and having a length of l is considered. The static state of the beam is obtained by
assuming that the gravity of the beam and the foundation preload are in the state of
equilibrium.

From Figures 1 and 2, the equations governing the motion of the system can be derived
from the dynamic equilibrium of forces and momenta and are given as [8]

½ðT cos y� V sin yÞiþ ðT sin yþ V cos yÞj�;s þ f ¼ mr;tt; 05s5l; t > 0; ð1Þ

EIv;sss þV ¼ 0 ð2Þ

with the inextensibility constraint r;s � r;s ¼ 1: In the above equations, T is the axial force
in the beam; V is the transverse force in the beam; y is the angle between the neutral axis of
the beam and the x-axis. The subscript s and t denote the s and t differentiation and where
m indicates the mass per unit length of the beam. E and I are Young’s modulus and the
area moment of inertia of the beam. rðs; tÞ is the Cartesian position vector of point s along



Figure 1. System configuration.
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the beam at time t and has the form

rðs; tÞ ¼ ðxðsÞ þ uðs; tÞÞiþ vðs; tÞj; ð3Þ

where uðs; tÞ and vðs; tÞ are the axial displacement and the transverse displacement of the
beam from the undeformed state respectively. The force f denotes the external forces
including the weight of the moving mass and the moving reaction of the mass upon the
beam and can be stated by

f ¼ �kvjþ ðNnþ mN #ssÞ%ddðs � %ssÞ; ð4Þ

where k; N, m, and %ddðs � %ssÞ denote the foundation stiffness per unit length, the reaction of
beam on the mass, the coefficient of friction, and the Dirac delta function respectively.

The equation of motion of the moving mass obeys (Figure 1)

MaM ¼ Mgþ fm � mN #ss � Nn; ð5Þ

where M represents the mass of the moving mass and fm ¼ Mf #ss ¼ Mf ½ð1 þ u;s Þiþ v;s j�;
g ¼ gj; t ¼ ð1 þ u;s Þiþ v;s j ¼ cos yiþ sin yj; and n ¼ �sin yiþ cos yj: Note that here it is
assumed that whenever a mass is being propelled by a force along a beam, the force on the
mass will be along the tangent to the vibrating beam. Hence, fm ¼ Mf #ss and f is a
prescribed function of time. For example, f may be a positive constant to increase speed
and a negative constant to reduce speed and to come to a halt at a desired position on the
beam.

The acceleration of the moving mass aM is obtained from

aM ¼ d2

dt2
½rð%ssðtÞ; tÞ� ¼ r;ss ð%ss;t Þ2 þ 2r;st %ss;t þr;s %ss;tt þr;tt ð6Þ

in which %ssðtÞ is the distance along the arc of the beam which represents the position of the
moving mass.

In this study, the system under consideration is a finite, simply supported, Bernoulli–
Euler beam on a uniform elastic foundation with an attached mass. Hence, the boundary
conditions are

uð0; tÞ ¼ vð0; tÞ ¼ vðl; tÞ ¼ @2vð0; tÞ
@s2

¼ @2vðl; tÞ
@s2

¼ 0; ð7Þ



Figure 2. Force equilibrium diagram.
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Hðl; tÞ ¼ Tðl; tÞð1 þ u;s Þ þ EIv;sss v;s ¼ 0; at s ¼ l: ð8Þ

Introducing the following dimensionless quantities:

t ¼
ffiffiffiffiffiffiffiffi
EI

ml4

r
t; #MM ¼ M

ml
; #TT ¼ l2

EI
T ; #ff ¼ ml3

EI
f ;

#gg ¼ ml3

EI
g; #kk ¼ kl3

EI
; Z ¼ s

l
; x ¼ %ss

l
; #vv ¼ v

l
; #uu ¼ u

l
ð9Þ

and substituting equations (3)–(6) and (9) with equation (2) into equation (1), the
equations of motion of the combined system in directions i and j yields, in dimensionless
form

½ #TTð1 þ #uu0Þ þ #vv000 #vv0�0 þ #MM #ff ð1 þ #uu0Þ
¼ .#uu#uu þ #MM½ #uu00ð’xxÞ2 þ 2’#uu#uu

0 ’xxþ ð1 þ #uu0Þ.xxþ .#uu#uu�dðZ� xÞ; 05Z51; t > 0; ð10Þ

½ #TT #vv0 � #vv000ð1 þ #uu0Þ�0 þ #MMð #ff #vv0 þ #ggÞdðZ� xÞ
¼ .#vv#vv þ #kk #vv þ #MM½#vv00ð’xxÞ2 þ 2’#vv#vv

0 ’xxþ #vv0 .xxþ .#vv#vv�dðZ� xÞ; 05Z51; t > 0: ð11Þ

Similarly, considering the equation of motion of the moving mass, equation (5), one has

ð1 þ #uu02Þ.xx� ½m#vv00 � #vv0 #vv00 � #uu00 þ mð #uu0 #vv00 � #uu00 #vv0Þ�ð’xxÞ2

� 2½m’#vv#vv0 � ’#vv#vv
0
#vv0 � ’#uu#uu

0 þ mð #uu0 ’#vv#vv
0 � ’#uu#uu

0
#vv0Þ�’xx

¼ #gg½#vv0 � mð1 þ #uu0Þ� þ #ff fð1 þ #uu0Þ½m#vv0 þ ð1 þ #uu0Þ� þ #vv0½#vv0 � mð1 þ #uu0Þ�g
� .#vv#vv½#vv0 � mð1 þ #uu0Þ� � .#uu#uu½m#vv0 þ ð1 þ #uu0Þ�; Z ¼ x; t > 0; ð12Þ

where superposed prime and dot denote the Z and t differentiation. It is mentioned here
that equation (12) is obtained by eliminating the normal reaction force of the beam on the
mass, N; between the two equations in directions i and j of equation (5), respectively, and
using the inextensibility constraint. Therefore, equations (10)–(12) with the inextensibility
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constraint account for #uuðZ; tÞ; #vvðZ; tÞ; #TT and x when #MM; m; #gg and the boundary conditions
are specified, equations (7) and (8).

The axial force #TT can be determined by the assumption that the variation of axial force
is assumed to remain continuous at Z ¼ xðtÞ: Integrating equation (10) and using the
boundary condition, equation (8), yields

#TTðZ; tÞ ¼ �1

1 þ #uu0 #vv000 #vv0 þ
Z 1

Z

.#uu#uu dZ
� �

; 05Z51; t > 0: ð13Þ

Now, the condition of small deformations is assumed. For this, one neglects the non-
linear terms when compares these terms with the linear term of #vvðZ; tÞ and unity. The
equation of motion of the beam, equation (11), then can be simplified as

.#vv#vv þ #vv0000 þ #kk #vv þ #MM½#vv00ð’xxÞ2 þ 2’#vv#vv
0 ’xxþ #vv0 .xxþ .#vv#vv � #ff #vv0�dðZ� xÞ ¼ #MM #ggdðZ� xÞ; 05Z51; t > 0;

ð14Þ

while the equation of motion of the moving mass, equation (12), becomes

.xx� m#vv00ð’xxÞ2 � 2m’#vv#vv
0 ’xx ¼ #ff � m #gg þ #gg#vv0 þ m.#vv#vv; Z ¼ x; t > 0: ð15Þ

In the following, the condition that the attached mass is assumed to move along the
beam with constant velocity is considered. Therefore, substitution of equation (15) into
equation (14) and neglect of non-linear terms yields

.#vv#vv þ #vv0000 þ #kk #vv ¼ #MM½ð1 þ m#vv0Þ #gg � ð#vv00ð’xxÞ2 þ 2’#vv#vv
0 ’xxþ .#vv#vvÞ�dðZ� xÞ; 05Z51; t > 0; ð16Þ

Examination of the dynamics governed by equation (16) is the main purpose in this study.
Representing #vv as a continuous function and letting

#vv ¼
X1
n¼1

AnðtÞsin npZ; 05Z51; t > 0; ð17Þ

hence, the boundary condition, equation (7), is satisfied. The approximate solution of the
beam–mass system is to be obtained by employing Galerkin‘s method. Using Galerkin’s
procedure for minimizing error, one obtains

.AAjðtÞ þ o2
j AjðtÞ ¼ 2 #MM #gg #SSjðxÞ þ m #gg

X1
n¼1

RjnðxÞAnðtÞ
(

�
X1
n¼1

½ #SSjnðxÞ .AAnðtÞ þ 2’xxRjnðxÞ ’AAnðtÞ � ð’xxÞ2SjnðxÞAnðtÞ�
)
;

05Z51; t > 0; ð18Þ

where o2
j ¼ ðð jpÞ4 þ #kkÞ; RjnðxÞ ¼ ðnpÞcos npx sin jpx; #SSjnðxÞ ¼ sin npx sin jpx; SjnðxÞ ¼

ðnpÞ2 #SSjnðxÞ and #SSnðxÞ ¼ sin npx:
To analyze the system governed by equation (18), one allows the response of the system

to be small but finite. Thus, the method of multiple time scales can be used to predict the
responses of the system. According to this method, it is assumed that the amplitude,
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AjðtÞ; has the expansion [14]

Ajðt; eÞ ¼ eA1jðt0; t1; t2; . . .Þ þ e2A2jðt0; t1; t2; . . .Þ þ e3A3jðt0; t1; t2; . . .Þ þ � � � ;
tn ¼ ent; n ¼ 0; 1; 2; . . . ;

d

dt
¼ @

@t0
þ e

@

@t1
þ e2

@

@t2
þ � � � 
 D0 þ eD1 þ e2D2 þ � � � ;

d2

dt2

 D2

0 þ 2eD0D1 þ e2ðD2
1 þ 2D0D2Þ þ � � � ; ð19Þ

where e is a measure of the amplitude of the response and is small compared to unity.
For the purpose of studying the parametric resonance of the non-auto-

nomous differential equations, one sets #MM ¼ e %MM and ’xx ¼ Vx: After manipulating these
equations and then equating coefficients of equal power of e; one obtains order one and
two:

e1 : D2
0A1j þ o2

j A1j ¼ 2 %MM #gg #SSj ¼ 2 %MM #gg sinð jpVxt0Þ; ð20Þ

e2 : D2
0A2j þ o2

j A2j ¼ � 2D0D1A1j þ 2m %MM #gg
X1
n¼1

RjnAn

� 2 %MM
X1
n¼1

½ #SSjnD2
0A1n þ 2VxRjnD0A1n � V 2

x A1n�: ð21Þ

It is shown in equation (20) that unbounded oscillation occurs when the frequency oj is
near ð jpVxÞ: Hence, in the following, the conditions considered are related to the cases
when the natural frequency oj is away from ðjpVxÞ and the coefficient of friction m is set to
be zero.

From equation (20), it is seen that the amplitude, A1j ; is harmonic in t0; and its solution
can be represented as

A1j ¼ aj cosðojt0 þ fjÞ þ
2 %MM #gg

ðo2
j � ð jpVxÞ2Þ

sin jpVxt0


 aj cos bj þ 2 %MMLj sin jpVxt0; ð22Þ

where aj ¼ ajðt1; t2; . . .Þ is the amplitude of response; fj ¼ fjðt1; t2; . . .Þ is the phase angle
and Lj ¼ #gg=ðo2

j � ð jpVxÞ2Þ: Here, for convenience, rewriting equation (22) as

A1j ¼Hjðt1; t2; . . .Þexpð#iiojt0Þ þ %HHjðt1; t2; . . .Þexpð�#iiojt0Þ
� #ii %MMLjðexpð#iijpVxt0Þ � expð�#iijpVxt0ÞÞ; j ¼ 1; 2; 3; . . . ; ð23Þ

where #ii ¼
ffiffiffiffiffiffiffi
�1

p
and %HHj is the complex conjugate of Hj : Hj ¼ 1

2 aj expð#iifjÞ; j ¼ 1; 2; 3; . . . ;
with fj being the phase of the jth mode.

To seek the solution of A2j defined by equation (21), one substitutes equation (22) into
equation (21) and obtains

D2
0A2j þ o2

j A2j ¼ 2oj½ðD1ajÞsin bj þ ajðD1fjÞcos bj�

þ 1

2
%MM
X1
n¼1

fo2
nan½ðcos b�þ

nj þ cos b��
nj Þ � ðcos bþþ

nj þ cos bþ�
nj Þ� ð24Þ
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þ %MMVx

X1
n¼1

ðnpÞonan½ðcos bþ�
nj � cos bþþ

nj Þ � ðcos b��
nj � cos b�þ

nj Þ�

þ 1

2
%MMV2

x

X1
n¼1

ðnpÞ2an½ðcos b�þ
nj þ cos b��

nj Þ � ðcos bþþ
nj þ cos bþ�

nj Þ�

þ 4 %MM
2 X1

n¼1

ðnpVxÞ2Ln½sinð2n � jÞpVxt0 � sinð2n þ jÞpVxt0�;

where

bþþ
nj ¼ bn þ ðn þ jÞpVxt0 ¼ ðon þ ðn þ jÞpVxÞt0 þ fn;

bþ�
nj ¼ bn � ðn þ jÞpVxt0 ¼ ðon � ðn þ jÞpVxÞt0 þ fn;

b�þ
nj ¼ bn þ ðn � jÞpVxt0 ¼ ðon þ ðn � jÞpVxÞt0 þ fn;

b��
nj ¼ bn � ðn � jÞpVxt0 ¼ ðon � ðn � jÞpVxÞt0 þ fn:

It is known that a multi-degree-of-freedom dynamic system with parametric excitation
experiences multi-component parametric resonance when two or more internal frequencies
and the excitation frequency are commensurable or nearly commensurable. For a dynamic
system with finite degrees of freedom similar to that defined by equation (24), parametric
resonance under primary resonance may exist when

(1) ok � O ¼ rpVx; r ¼ 1; 2; . . . ; and oq � op � ðq þ pÞpVx with k ¼ p; q and q > p;
(2) ok � O ¼ rpVx; r ¼ 1; 2; . . . ; and oq � op � ðq � pÞpVx with k ¼ p; q and q > p;
where ok is the dimensionless internal frequency of the kth mode of vibration and O is the
frequency of excitation.

For the purpose of studying the effects of multi-component parametric resonance to the
motion of the beam–mass system, the set of oq � O and oq � op � ðq þ pÞpVxðq > pÞ is
selected so that the two-component parametric resonance defined by equation (24) exists.
The resonant phenomena produced by other sets of possibilities can be obtained by similar
ways.

In order to express the commensurable relations of oq � O and oq � op to ðq þ pÞpVx;
the detuning parameters spq and sq are introduced:

O ¼ rpVx ¼ oq þ esq; ð25Þ

ðq þ pÞpVx ¼ oq � op þ espq; ð26Þ

where op ¼ Kpqoq with Kpq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððppÞ4 þ #kkÞ=ðqpÞ4 þ #kk

q
: The relationship between sq and

spq can be determined from equations (25) and (26) which yields

espq ¼ Kpq � 1 þ q þ p

r


 �
oq þ

q þ p

r
esq 
 #KKpqoq þ #vvpqesq: ð27Þ

Therefore, Ot0 ¼ ðoqt0 þ fqÞ þ ðsqt1 � fqÞ 
 bq þ dq and for the differences of the
arguments of the cosine and sine functions of unequal and equal arguments one has

b��
pp ¼ ðop � ðp � pÞpVxÞt0 þ fp ¼ bp;

b�þ
pp ¼ ðop þ ðp � pÞpVxÞt0 þ fp ¼ bp;
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b��
qq ¼ ðoq � ðq � qÞpVxÞt0 þ fq ¼ ðoqt0 þ fqÞ 
 bq;

b�þ
qq ¼ ðoq þ ðq � qÞpVxÞt0 þ fq ¼ bq;

bþ�
qp ¼ ðoq � ðq þ pÞpVxÞt0 þ fq ¼ ðopt0 þ fpÞ � ðspqt1 þ fp � fqÞ 
 bp � dpq;

bþþ
pq ¼ ðop þ ðq þ pÞpVxÞt0 þ fp ¼ bq þ dpq;

where dq ¼ sqt1 � fq and dpq ¼ spqt1 þ fp � fq: Therefore, dq ¼ dqðt1; t2; . . .Þ and dpq ¼
dpqðt1; t2; . . .Þ are two new phase angles. From the definition of sq and spq one has

D1fq ¼ sq � D1dq and D1dpq ¼ spq þ D1fp � D1fq: ð28Þ

Returning to equation (24) the solvability conditions are the vanishing of the secular
terms. These are respectively:

4op
#iiðD1Hp þ #ii 1

2
%MMa�pHpÞ þ %MML�

qHq expð�#iispqt1Þ ¼ 0; ð29Þ

4oq
#iiðD1Hq þ #ii 1

2
%MMa�qHqÞ þ %MML�

pHp expð#iispqt1Þ ¼ 4#ii %MM
2
Fkme

#iisqt1 ; ð30Þ

where a�p ¼ ½o2
p þ ðppVxÞ2�; a�q ¼ ½o2

q þ ðqpVxÞ2�; L�
p ¼ ðop þ ppVxÞ2; L�

q ¼ ðoq � qpVxÞ2
and Fkm ¼ ½ðkpVxÞ2Lk

%ddð2kþpÞr � ðmpVxÞ2Lm
%ddð2m�pÞr� with k; m ¼ 1; 2; . . . ; and %ddmn being

the Dirac delta symbol. The main purpose of equations (29) and (30) is to study the
response of the motion.

To determine the solutions and correspondingly the local stability of the two-
component parametric resonance, we follow the procedures outlined in reference [14] and
let

Hk ¼ 1
2
ðxk � #iizkÞexpð#iiykt1Þ; k ¼ p; q: ð31Þ

Here xk and zk are real and yk ¼ dfk=dt1:
For the resonant case, one substitutes equation (31) into the resonant equations defined

by equations (29) and (30) and separates the real and imaginary parts. The result yields

x0
p þ yp þ

%MM

2op

a�p

� 

zp �

%MML�
q

4op

zq ¼ 0; ð32Þ

z0p � yp þ
%MM

2op

a�p

� 

xp þ

%MML�
q

4op

xq ¼ 0; ð33Þ

x0
q þ yq þ

%MM

2oq

a�q

� 

zq �

%MML�
p

4oq

zp ¼ 2
%MM

2

oq

Fkm; ð34Þ

z0q � yq þ
%MM

2oq

a�q

� 

xq þ

%MML�
p

4oq

xp ¼ 0; ð35Þ

where ð Þ0 ¼ d=dt1: The solutions of the two-component resonance with the excitation
frequency being near the lower resonant frequency op then can be obtained by setting
x0

k ¼ z0k ¼ 0 and x2
k þ z2

k ¼ a2
k; k ¼ p; q. This gives

ap ¼
%MML�

q=4op

½ðsq � spqÞ þ ð %MM=2opÞa�p�
aq ¼

e %MML�
q=4op

½� #KKpqoq þ ð1 � #vvpqÞesq þ ðe %MM=2opÞa�p�
aq; ð36Þ
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aq ¼
ð2 %MM

2
=oqÞFkmððsq � spqÞ þ ð %MM=2opÞa�pÞ

ðsq þ ð %MM=2oqÞa�qÞððsq � spqÞ þ ð %MM=2opÞa�pÞ � %MM
2
L�

pL
�
q=16opoq



ð2e %MM

2
=oqÞFkm½� #KKpqoq þ ð1 � #vvpqÞesq þ ðe %MM=2opÞa�p�

D
; ð37Þ

where

D ¼ e2 sq þ
%MM

2oq

a�q

� 

ðsq � spqÞ þ

%MM

2op

a�p

� 

�

%MM
2
L�

pL
�
q

16opoq

" #

¼ esq þ
e %MM

2oq

a�q

� 

� #KKpqoq þ ð1 � #vvpqÞesq þ

e %MM

2op

a�p

� 

�
ðe %MMÞ2L�

pL
�
q

16opoq

:

As shown in equation (37), unbounded solutions exist if D ¼ 0: In other words, the
growth of small amplitude of vibrations into large amplitude regime occurs if
the denominator D is close to zero and unbounded solutions exist if D ¼ 0: Note
that for the case of single resonant mode, one-component resonance, the solution
reduces to

aq ¼ ð2e %MM
2
=oqÞ Fkm

ðesq þ ðe %MM=2oqÞa�qÞ
: ð38Þ

Therefore, in the case of one-component resonance, the occurrences of unbounded
solutions and the growth of response do not exist.

The local stability of a fixed point with respect to a small perturbation for
each resonant case, hence, can be determined by the eigenvalues l which are given by the
zero of the determinant of the perturbation equations. For this, a small perturbation is
superimposed on xk and zk (k ¼ p; q) and we have

xk ¼ x0
k þ #xxk and zk ¼ z0

k þ #zzk: ð39Þ

Here x0
k; z0

k; #xxk and #zzk are the fixed points and the disturbances respectively. The
determinant then can be obtained by substituting equation (39) into equations (32)–(35).
The result yields

l yp þ
%MM

2op

a�p 0 �
%MML�

q

4op

� yp þ
%MM

2op

a�p

� 

l

%MML�
q

4op

0

0 �
%MML�

p

4oq

l yq þ
%MM

2oq

a�q

%MML�
p

4oq

0 � yq þ
%MM

2oq

a�q

� 

l

��������������������

��������������������

¼ 0; ð40Þ
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where yp ¼ D1fp ¼ sp and yq ¼ D1fq ¼ spq þ sp: Thus, the characteristic equation of
equation (40) has the form

l4 þ r1l
2 þ r22 ¼ 0; ð41Þ

where

r1 ¼ sq þ
%MM

2oq

a�q

� 
2

þ ðsq � spqÞ þ
%MM

2op

a�p

� 
2

þ
%MM

2

2opoq

L�
pL

�
q

" #
;

r22 ¼ sq þ
%MM

2oq

a�q

� 

ðsq � spqÞ þ

%MM

2op

a�p

� 

�

%MM
2

16opoq

L�
pL

�
q

" #2

:

Note that from equations (37) and (41), it is found that r2 has the same form as D defined by
equation (37) and since r1 and r22 are always greater than zero, the solutions are stable
(bounded solutions) except r2 ¼ 0 (unbounded solutions).

3. NUMERICAL RESULTS AND DISCUSSIONS

Numerical results refer to an assumed model wherein a finite inextensible beam rests on
a uniform elastic foundation and carries a mass rolling on it with constant velocity. The
accuracy of the model is verified by numerically integrating equation (18), by the Runge–
Kutta method with sixth order accuracy. The existence and validity of perturbation
solutions are also proved by numerically integrating the modulation equations, equations
(29)–(30), by the Runge–Kutta method.

Figure 3 shows the trajectories of the moving mass with two different constant velocities
versus the position of the mass along the beam. The parameters used in this figure are
exactly the same as those used in reference [3]. The parameters used are #vvst ¼ #MM #gg=48 and
#MM ¼ 0�5 with two different constant velocities ’xx ¼ 0�75p (top plot) and ’xx ¼ 0�5p (bottom

plot). The accuracy of the model then was tested by comparison of its results with the
Figure 3. The trajectory of mass versus the position of the mass along the beam with the same parameters as
used in reference [3] for ’xx ¼ 0�75p and ’xx ¼ 0�5p:
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results reported by Ting et al. [3]. It is known that the last is in agreement with
experimental observations. It is mentioned here that in order to retain for sufficient
accuracy, the dimension n used in equation (18) was 30.

Without loss of generality and considering the commensurable relations among
frequencies and the probability of occurrence in nature, the following set of commensur-
able relations of vibrating modes to determine the basic characteristics of the occurrence of
two-component parametric resonance was selected. For the case of O ¼ rpVx � oq and
ðq þ pÞpVx � oq � op one chose p ¼ 1 (fundamental mode), q ¼ 2 (second mode) and
r ¼ 4 to present the occurrence of two-component parametric resonance. It is recalled that
Vx is the dimensionless velocity of the attached mass moving along the beam; oj is the

dimensionless natural frequency and is defined by oj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð jpÞ4 þ #kk

q
where #kk is the

foundation stiffness.
In addition to the stability analysis, as mentioned previously, the existence and validity

of perturbation solutions is verified by numerically integrating the modulation equations.
From equation (37), it is found that unbounded solutions exist if D ¼ 0 and the growth

of small amplitude of vibrations into large motion regime occurs if D is near zero. Hence,
boundaries of the unbounded solutions, as functions of the velocity of the mass Vx; must
Figure 4. The curves of unbounded solutions in the e %MM � Vx plane for #gg ¼ 1 and #kk ¼ 0 (lower plot) and
#kk ¼ 10 (upper plot).
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be determined. One recalls

D ¼ esq þ
e %MM

2oq

a�q

� 

� #KKpqoq þ ð1 � #vvpqÞesq þ

e %MM

2op

a�p

� 

�
ðe %MMÞ2L�

pL
�
q

16opoq

ð42Þ

¼ 1

16opoq

ð4a�pa�q � L�
pL

�
qÞ

� �
ðe %MMÞ2 þ �1

2
a�q #KKpq þ esq ð1 � #vvpqÞ

a�q
2oq

��

þ
a�p
2op


�
ðe %MMÞ þ ½� #KKpqoqðesqÞ þ ð1 � #vvpqÞðesqÞ2�:

In the above equation, e %MM is the mass and has to be no less than zero. Therefore, the
positive roots of equation (42) of e %MM imply the existence of unbounded solutions.

Figure 4 shows the variations of the mass e %MM with the dimensionless speed of the mass,
Vx; for #gg ¼ 1 and #kk ¼ 0 (lower plot) and #kk ¼ 10 (upper plot). In this figure, solid lines
denote the values of the corresponding parameters such that the unstable motion
(unbounded solutions) occurs. This figure indicates that there exist two possibilities of
occurrence of unbounded solutions and correspondingly the growth of response for small
values of e %MM: However, only one possibility exists if e %MM is not small. As an example, if #kk
Figure 5. The amplitude a1 versus the speed of the sass Vx for #gg ¼ 1; #kk ¼ 0 and e %MM=0�1 (bottom plot) and
e %MM=0�25 (top plot).



Figure 6. The amplitude a1 versus the speed of the mass Vx for #gg ¼ 1; #kk ¼ 10 and e %MM=0�1 (lower plot) and
e %MM=0�25 (upper plot).
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and e %MM are chosen to be 0�0 and 0�1, respectively, then unbounded solutions of the system
exist when Vx is near either 2�811 or 2�992. If e %MM is set to be 0�25 unbounded solution
occurs only when Vx is close to 2�792. This is verified in Figure 5. In this figure, the lower
plot is related to the case for e %MM=0�1 and the upper plot to that for e %MM=0�25.

Figure 6 illustrates the same manner as does Figure 5, except #kk ¼ 10: From Figures 5
and 6, one found that the width of the regions of the occurrence of large motions increases
as the mass e %MM increases. However, it decreases with the increase of the foundation
stiffness #kk: In addition, the occurrence of large amplitude of vibrations shifts to larger
values of speed of mass as foundation stiffness shifts to higher values.

Figure 7 presents the long-time behavior of the amplitude a1 for e %MM=0�25, #gg ¼ 1; and
#kk ¼ 0 with two different values of Vx; Vx=2�95 (bottom plot) and 2�82 (top plot). Figure 8
illustrates similar information to that shown in Figure 6 except that in this figure, e %MM=0�1
and the speed of the mass Vx is set to be 2�82 (lower one) and 2�975 (upper one). The
results of these figures clearly show that in certain conditions, the growth of small
amplitude of vibrations into large motion regime does occur.

4. CONCLUSIONS

In this study, the weak form of the occurrence of two-component parametric resonance
is obtained under a primary resonance. The mechanics of a beam–mass system and the



Figure 7. Time history of the amplitude a1 for e %MM=0�25, #gg ¼ 1; and #kk ¼ 0 with two different values of Vx;
Vx=2�95 (bottom plot) and 2�82 (top plot).
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phenomena produced by the existence of the two-component parametric resonance are
studied.

Results of the study show that for the case of two-component resonance, new regions of
the growth of small amplitude of vibrations into large motion regime for the first mode are
found even if the excitation is not close to the fundamental mode. This is due to the
occurrence of modal interactions caused by the existence of a two-component parametric
resonance. However, this phenomenon, the growth of response for the fundamental mode
of the beam, could not be found in the case of single resonant mode if the excitation due to
the motion of attached mass is not near the first mode.
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Figure 8. Time history of the amplitude a1 for e %MM=0�1, #gg ¼ 1; and #kk ¼ 0 with two different values of Vx;
Vx=2�82 (lower one) and 2�975 (upper one).
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APPENDIX A: NOMENCLATURE

E Young’s modulus of the beam
H the horizontal component of the tension in the beam
I the area moment of inertia of the beam
M; #MM the mass and the dimensionless mass of the moving mass

#MM ¼ M

ml
¼ e %MM

� 

N the reaction of beam on the mass
Rjn ð¼ ðnpÞcos npx sin jpxÞ
Sjn ð¼ ðnpÞ2 sin npx sin jpx ¼ ðnpÞ2 #SSjnÞ
#SSn ð¼ sin npxÞ
T ; #TT the axial force and dimensionless axial force in the beam respectively
V the transverse force in the beam
Vx dimensionless velocity of the moving mass
aj the amplitude of response of the jth mode
aM acceleration of the moving mass
f external force
fm tangential propelling force with f being a prescribed function of time ð¼ Mf #ssÞ
g acceleration due to gravity (¼ gj)

#gg ¼ ml3

EI
g

� 


Hj
1
2

aj expð#iifjÞ
%HHj complex conjugate of Hj

#ii ð¼
ffiffiffiffiffiffiffi
�1

p
Þ

i unit vector of the horizontal co-ordinate (x-axis) for the beam
j unit vector of the transverse co-ordinate (y-axis) for the beam, positive downward
k; #kk foundation stiffness per unit length and dimensionless foundation stiffness respectively
l length of span
m the mass per unit length of the beam
n unit normal vector to the beam configuration
r ððx þ uÞ; vÞT position vector and components at time t
s; %ssðtÞ the arc length and the position of the moving mass along the beam respectively
#vv dimensionless transverse displacement
#ss unit tangent vector to the beam configuration
y the angle between the neutral axis of the beam and the x-axis
t dimensionless time
m coefficient of friction
Z dimensionless arc
x dimensionless position of the moving mass along the beam
oj the jth dimensionless natural frequency of the beam
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fj the phase angle of the jth mode of vibration
di; dij phase angles
%ddðs � %ssÞ Dirac delta function
%ddij Dirac delta symbol
sj the detuning parameter between the excitation frequency and the frequency of the jth

mode of vibration
sij the detuning parameter between the frequencies of the ith and the jth modes.
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