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1. INTRODUCTION

In a recent paper by Bala Subrahmanyam and Sujith [1], a theoretical study of
axisymmetric vibrations of solid circular and annular membranes with continuously
varying density has been presented continuing the works of previous investigations [2-7].
Exact solutions are found for two families of functional dependencies of the membrane
density with respect to the cylindrical radial co-ordinate [1]. One family is for the case
where the density p, varies as

D) = pofil), i) =5+ B O, (1

while the other family corresponds to the case where the density p, varies as

: : [1+ olog(r)]”
par) = folr). folr) =B gz, )
In the present work, a quasi-analytical approach is presented so as to find
eigenfrequencies and eigensolutions (mode displacements) in the general case where the
density p(r) can be written as an infinite power series expansion in the radial co-ordinate,
i.e.,

o) = pof (D), L= S (3)
n=0

Since any C* function has a Taylor series expansion, membrane densities which are C*
functions of the radial co-ordinate are covered by the present formulation. In addition, the
most relevant density variations, if not all, can be well approximated by a polynomial/
power series expansion in the radial co-ordinate. In the latter case, the present formulation
can also be used to find membrane solutions.

2. THEORY

In the following, an exact method is described so as to obtain the displacement W (r) for
the axisymmetric vibrational modes in the case of a solid circular membrane or an annular
membrane of outer radius R and inner radius Ry. The exact power series solution method,
proposed in this letter, does not impose any requirements on the functional form of the
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membrane density except that it can be written as an infinite power series in the radial co-
ordinate r. The governing differential equation for the displacement W (r) is [1]

ew  1dw
_— = <rog<r<
RSO =0, 0<r<r<l, )
where
,D(V):,D()f(r), f(r):Zﬁllrna (576)
n=0

Ry

=", Q=oR/p/S (7.8)

and S is the tension per unit length. The coefficients f,; are not restricted but f(r = 1) =
S oo ofu must be a convergent series (>, fu1 <oo). In order to handle the problem of
annular and solid circular membranes it is convenient to introduce the variable

F=1-r 9)
and equation (4) becomes
da*w 1 dw

2
G o ae T =0 0t <L, (10)

where
FO) =N for " =3 fur" =1(). (11)
n=0 n=0
The boundary conditions for the solid circular membrane is
dw aw .
F(V =0)= —@( =1)=0, (12)
Wir=1)=Ww(F*=0)=0, (13)
while for the annular membrane, the boundary conditions become
Wr=r)=W>Fr=1-r)=0, (14)
Wr=1)=Ww(F*=0)=0. (15)

Next, the Frobenius method [§8] is employed so as to solve equation (10) and the
associated boundary conditions. The Frobenius method is based on the assumption that
W can be written as a series expansion in r*:

W(r*) =Y anr*", (16)
n=0

where k is unspecified (in general, at this point, & can be any real constant). Insertion of
equations (11) and (16) into equation (10) [after multiplying the latter equation by
(r* — 1)] and demanding that W (r* =0) = 0 as well as ay#0 gives

k=1, (17)

if terms proportional to r*¥~2 are equated (corresponding to n = 0). Again, employing the
identity principle for infinite power series to terms proportional to r*” leads to the



LETTERS TO THE EDITOR 983

following recursion formula:

_ 1
ap =1, a = 5,

a =2a; — L Q% ag foo, a3 =3ar + 5 Q% ap foo — 15 Q% (a1 for + a0 f12),

n+1 5 1 2
ay :—an+Q TN AN n—2-mJm
T2 (n+1)(n+2)mz:;) 2om
1 =
- ? mf: =>3. 18
(n+1)(n+2) mz:;)an 1 mfm2a n ( )

Next, the possible Q values must be determined by use of the second boundary condition.

In the solid membrane case, the discrete set of possible Q values are those for which
dw aw .
W(V—O)——W(V =1)=0, (19)

i.e.,
Z ay(n+1) (20)
n=0
where the last equation follows from equations (16), (17), and (19).
Similarly, in the annular membrane case, the discrete set of possible Q values are those

for which

an(1 — 1) =0, (21)

NgE

Wr=r)=W>Fr=1-r)=

Il
S

n

employing equations (14), (16), and (17). By solving equations (18) and (20) [or equation
(21)] numerically, a set of discrete Q2 values (= 2,,) are found and so a discrete set of W,
solutions have been determined. Each of the W, solutions represents a vibrational mode of
the axisymmetric membrane.

3. NUMERICAL RESULTS AND DISCUSSIONS

In this section, the Frobenius infinite power series expansion method is applied to three
different mass density profiles of the membrane.

3.1. EXAMPLE 1
Consider first the case where
fr) =1+, (22)

which has been studied in reference [1] analytically and numerically in reference [5]. In
Table 1, values of Q corresponding to the fundamental and second frequency coefficients
are given for the case a = % The agreement with references [1, 5] is excellent. The same
conclusion is reached for other o values.

3.2. EXAMPLE 2

In Table 2, data for the case
flr)= —? log(r), (23)
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TABLE 1

Calculated eigenfrequencies corresponding to the membrane density variation f (r) = 1 + or?

considered in example 1. The first column is the value ry of the inner radius for annular

membranes [ro = 0 for solid circular membranes]. The second and third columns are the
eigenfrequencies Q for the fundamental and second-vibrational mode respectively

ro/mode 1 2

0 2:2819 51412
0-1 3.0735 6:3195
0-2 3.4969 7-1061
0-3 3.9943 8:0659
0-4 4.6321 9-3186
0-5 5-5071 11-0525
0-6 6-8050 13-6366
0-7 8:9547 17-9269
0-8 13-2394 26-4893
09 26-0725 52-1498

TABLE 2

Calculated eigenfrequencies corresponding to the membrane density variation f(r) =

—r*log(r) considered in example 2. The first column is the value ry of the inner radius for

annular membranes [ry = 0 for solid circular membranes]. The second and third columns are
the eigenfrequencies Q for the fundamental and second-vibrational mode respectively

ro/mode 1 2

0 6-5809 16-6039
0-1 8:3526 18-8578
02 9-4279 20-6835
03 10-8386 23-3231
04 12-8513 272916
0-5 159230 33.5169
0-6 210259 44-0042
0-7 30-6690 639557
0-8 53.5231 111-3861
09 144-1913 299.7721

are shown. This particular example is not covered by the method proposed in reference [1].
The function f given by equation (23) can be written as an infinite power series expansion
in r* as follows:

—1’2 log(r) = — (1 — }"*)2 log(l — r*)

:Zn+1+zn+1_2zn+1' (24)

The values given in Table 2 correspond to the first two Q solutions fulfilling the relevant
boundary conditions [either equations (12) and (13) or equations (14) and (15)].
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3.3. EXAMPLE 3

Finally, consider the case

fry=1+oar+ Br* + yr, (25)
where o, B, and 7 are constants. The expression for f in terms of r* co-ordinates becomes
) =140+ p4+7y+ (—a—28—=3))r* + (B+3y)r > —yr+3. (26)

TABLE 3

Calculated eigenfrequencies corresponding to the membrane density variation f(r) =1+
ar + Br* + yr’ considered in example 3. Four cases (1)—(IV) are considered as described in
the main text. The first column is the value ry of the inner radius for annular membranes
[ro = 0 for solid circular membranes]. The second, third, fourth, and fifth columns are the
eigenfrequencies Q for the fundamental vibrational mode in cases (1), (II), (II1), and (IV)

respectively

ro/case 1 11 111 v

0 19211 1-8655 2:0607 17911
0-1 2-4955 2:4155 2:6643 2:2851
0-2 27950 27045 29703 2-5394
0-3 3.1459 3.0457 3.3244 2-8374
04 3.5954 3-4860 3.7747 3.2204
0-5 4.2123 4.0942 4.3902 3.7480
0-6 51277 50016 53027 4.5338
0-7 6-6451 6-5115 6-8156 5-8408
0-8 9-6717 9-5314 9-8366 8-4549
09 187424 18-5963 189008 16:3035

TABLE 4

Calculated eigenfrequencies corresponding to the membrane density variation f(r) =1+
ar + Br* +yr’ considered in example 3. Four cases (1)~(1V) are considered as described in
the main text. The first column is the value ry of the inner radius for annular membranes
[ro = 0 for solid circular membranes]. The second, third, fourth, and fifth columns are the
eigenfrequencies Q for the second vibrational mode in cases (1), (II), (III), and (IV)

respectively

ro/case 1 1I 111 v

0 4.2669 4-1704 4.5027 3.9558
0-1 51273 4.9943 54372 47065
0-2 56810 5-5249 6-0163 5-1764
0-3 6-3556 61766 6-7064 57478
0-4 7-2365 7-0352 7-5950 6-4959
0-5 84574 82346 8-8168 7-5371
0-6 10-2787 10-0360 10-6336 9.0976
0-7 13-3058 13-0450 13-6517 11-7022
0-8 19-3529 19-0761 19-6865 16:9225

09 37-4893 37-1986 37-8080 32-6129
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In Table 3, the fundamental frequency coefficient values are given for the four cases (I)
ao=1,=0,y=0L 1) a=1,=1,y=0; D) =0, p=1,y=1;,AV)a=1, f =1,
y=1.

In Table 4, the second frequency coefficient values of Q are given for the same four cases
(D—AV).

As expected, the natural frequency Q increases with increasing ry value in all examples
considered.

4. CONCLUSIONS

A general quasi-analytical model based on the Frobenius power series expansion
method is described so as to handle vibrations of solid circular and annular membranes
with continuously varying density. The method given in this work serves as an extension to
previous analytical works [1-7] as it can be used to handle any density variation which can
be represented as an infinite power series expansion in the radial co-ordinate. Natural
frequency results are finally computed for three examples of varying membrane density.
One of the three examples has been considered in references [1, 5] as well and excellent
agreement between the present results and references [1, 5] is obtained for this particular
example.
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