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1. INTRODUCTION

In most researches on Helmholtz resonators [1–8], the main flow of works has focused on
effective sound absorption in a pipe or duct by means of more accurate prediction of their
resonant frequencies. It may be said that these sound absorbers may not be efficient when
it is shaped for suppressing a cavity resonance at a particular frequency identical to one of
the resonance frequencies of an enclosed acoustic cavity. The reason may be that the
opening of the absorber perforated through a boundary surface surrounding the cavity is
relatively too small, compared with the dimensions of the boundary surface. For this
reason, most standing waves produced due to cavity resonance are reflected from the
boundary surface without being absorbed into the opening. In order to overcome the
shortcomings described above, the paper introduces a new type of sound absorber
effective in suppressing the cavity resonance of enclosed cavities, especially in low
frequencies. The sound absorber is composed by installing a flexible sheet with a thin space
below one of the boundary surfaces of a cavity. In the paper, the thin space is called the air

gap, the flexible sheet is called the partition sheet in that the main cavity and the air gap are
divided by the sheet, and the sound absorber is named the air-gap system. The air-gap
system has resonance frequencies at which acoustic resonance energy in the main cavity is
absorbed into the air gap. It should be noted in this paper that a resonance frequency
equation is obtained in a closed-form equation, which is a function of the thickness of the
gap and the surface density of the partition sheet. Furthermore, experiments show that the
resonance frequency equation is a useful guide in determining the gap thickness to
suppress the resonance of a target acoustic mode, of which the natural frequency is called
the target frequency in the paper.

2. RESONANCE FREQUENCIES OF THE AIR-GAP SYSTEM

Suppose that two partition sheets are installed below the upper boundary surface as
shown in Figure 1(a). It may be imagined that the second partition sheet plays an
0022-460X/02/$35.00 # 2002 Elsevier Science Ltd. All rights reserved.



LETTERS TO THE EDITOR210
important role when a sound generator in the main cavity is being excited with a harmonic
excitation frequency f : Especially, when the excitation frequency coincides with the
natural frequency of the vertical acoustic mode with a nodal surface normal to the vertical
direction of the cavity, the resonance of the vertical mode may be controlled by changing
the input acoustic impedance on the lower side of the second partition sheet. In order to
investigate the validity of this idea and simulate the complex air-gap system, the simple
one-dimensional model shown in Figure 1(b) is used.

2.1. CLOSE FORM OF RESONANT FREQUENCIES

The resonance frequency equation of the double-gap system can be obtained by letting
the imaginary part of the input acoustic impedance on the lower side of mass m2 be equal
to zero as follows [9]:

T1T2 %XX 1
%XX 2 � T1 %XX 1 þ TðT1T2 � 1Þ %XX 2 þ 1� T1T2 ¼ 0: ð1Þ

In equation (1), T ¼ tan pOZ; T1 ¼ tan pOZ1 and T2 ¼ tan pOZ2 are expressed in terms of
the dimensionless frequency O ¼ freso=fc1; where freso denotes the resonance frequency of
the air-gap system and fc1 denotes the natural frequency of the fundamental vertical
acoustic mode explained in Figure 1(a); the gap ratios Z ¼ DL=L; Z1 ¼ DL1=L and Z2 ¼
DL2=L; where L denotes the effective length calculated from the relationship fc1 ¼ c=ð2LÞ
when fc1 may be obtained from an acoustic experiment; %XX i ¼ pmiðO2 � O2i Þ=O is the
Figure 1. Acoustic cavity with the air-gap system and its theoretical model. (a) double-gap system installed on
the upper boundary surface of an enclosed cavity; (b) theoretical model designed from the region of interest
indicated in (a).
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dimensionless form of the imaginary part of the mechanical impedance of m1 or m2;
mi ¼ mi=ðrLSÞ; where r is the density of air and S is the area of a contact surface between
a main cavity and an air-gap system, represents the mass ratio (this parameter is associated
with the surface density of the partition sheet), and Oi ¼ f

ðmÞ
i =fc1 denotes the dimensionless

natural frequency non-dimensionalized with the fundamental vertical natural frequency fc1

(f
ðmÞ

i ¼ ð1=2pÞ
ffiffiffiffiffiffiffiffiffiffiffi
si=mi

p
is the natural frequency of m1 or m2).

Although the frequency equation, equation (1), may be numerically solved to obtain the
resonant frequencies of the air-gap system, this does not give enough information to
demonstrate the relationship between the resonant frequencies and the parameters
associated with the air-gap system. Thus, a closed- form frequency equation is extracted by
applying the long-wavelength limitation [10] to equation (1) under the special condition
that the two partition sheets used are identical in material properties: i.e., m1 ¼ m2 � ms and
O1 ¼ O2 � Os: If partition sheets with the same properties are used, a common mechanical
impedance %XX s ¼ pmsðO2 � O2s Þ=O ¼ %XX 1 ¼ %XX 2 can be used instead of %XX 1 and %XX 2: Using %XX s;
equation (1) leads to

T1T2 %XX
2

s þ ðTT1T2 � T � T1Þ %XX s þ 1� T1T2 ¼ 0; ð2Þ

which is explicitly a quadratic equation for %XX s and the roots of the equation are given
by

%XX s ¼ ðT þ T1 � TT1T2 �
ffiffiffiffi
D

p
Þ=ð2T1T2Þ; ð3Þ

where D ¼ ðTT1T2 � T � T1Þ2 � 4T1T2ð1� T1T2Þ: In the current step, an approximation
must be considered for D so that a closed-form frequency equation is extracted from
equation (3): i.e., terms having orders above OðT4Þ vanish after D is fully expanded. This
approximation may be valid, because T ¼ tan pOZ; T1 ¼ tan pOZ1; and T2 ¼ tan pOZ2
have extremely small values thanks to Z ¼ DL=L{1; Z1 ¼ DL1=L{1 and Z2 ¼ DL2=L{1:
Then, equation (3) can be written as

%XX s ¼ ðT þ T1 � TT1T2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðT þ T1Þ2 � 4T1T2

q
Þ=ð2T1T2Þ ð4Þ

If the long-wavelength limit is applied to equation (4): i.e. T ¼ tan pOZ 	 pOZ; T1 	 pOZ1;
and T2 	 pOZ2; and if Z2 vanishes by using Z2 ¼ Z� Z1 obtained from DL ¼ DL1 þ DL2;
equation (4) leads to

%XX s ¼ G=ðpOZÞ; ð5Þ

G ¼ 1þ g�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5g2 � 2gþ 1

p� �
= 2gð1� gÞð Þ ¼ Gð1Þ or Gð2Þ; ð6Þ

where g ¼ Z1=Z (or g ¼ DL1=DL) represents the proportion of the upper gap thickness to
the total gap thickness. Finally, substituting %XX s ¼ pmsðO2 � O2s Þ=O into equation (5) yields
the two resonant frequencies of the double-gap system

O ¼ freso=fc1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O2s þ G=ðp2msZÞ

q
; ð7Þ

where G has two different values as shown in equation (6). It may be said from equation
(7) that O ¼ 1 means that freso is tuned to fc1; i.e., freso ¼ fc1:
On the other hand, the frequency equation of the air-gap system with a single gap can be

obtained from equation (1) by letting %XX 1 be equal to zero. Then, equation (5) leads to
T %XX 2 � 1 ¼ 0; which can be, by replacing %XX 2 with %XX s for an analogy to equation (7),
written as

T %XX s � 1 ¼ 0; ð8Þ
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where the long-wavelength limit, T ¼ tan pOZ 	 pOZ; has been applied. Finally, one
obtains the resonant frequency of the single-gap system from equation (8):

O ¼ freso=fc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O2s þ 1=ðp2msZÞ

q
: ð9Þ

It may be seen from the comparison of equation (9) with equation (7) that the two
equations are identical if G ¼ 1 in equation (7). Thus, a common resonant frequency
equation for both the single-gap and double-gap systems is given by

O ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O2s þ %GG=ðp2msZÞ

q
; ð10Þ

where %GG ¼ 1 for the single-gap system and %GG ¼ G for the double-gap system.

2.2. VERIFICATION AND DISCUSSION

To show the validity and accuracy of the closed-form resonant frequency equation,
equation (10), approximate resonance frequencies obtained from equation (10) are
compared with exact ones obtained by means of plotting equations (2,8), which yield the
exact resonant frequencies for the single-gap and double-gap systems respectively. It may
be seen in Table 1 that the approximate values agree well with the exact values. In Table 1,
Os and ms are, respectively, assumed as 0
5 and 2
0, which are reasonable values because
they are based on real dimensions and real material properties considered in the next
section for experimental verification.
In equation (10), the dimensionless resonant frequency O of the air-gap system is a

function of Os; ms; Z; and g (note that %GG is a function of g for the double-gap system).
Equation (10) implies that O is always larger than Os; and that O is proportional to Os but
is inversely proportional to ms and Z: It may be said from this fact that the partition sheet
used must be designed to be soft so that its natural frequencies, which is simulated by Os;
have small values. By this way, the resonant frequency of the air-gap system can be tuned
to a lower value and, as a result, the air-gap system can control the resonance of lower
acoustic modes of enclosed cavities.
In Figure 2, equation (10) is plotted as Z is increased, when Os ¼ 0
5; ms ¼ 2
0; and

%GG ¼ 1 for the single-gap system ( %GG ¼ 3�
ffiffiffi
5

p
for the double-gap system with g ¼ 0
5). It

may be seen in the figure that a smaller gap thickness is required for the double-gap system
than for the single-gap system, because the single-gap system and the double-gap system
need Z ¼ 0
068 and 0
052 to satisfy O ¼ 1 respectively. It may therefore be said from this
Table 1

Accuracy of the approximate resonant frequency equation when Os ¼ 0
5 and ms ¼ 2
0
Double-gap system

Z Single-gap system Z1 ¼ Z=3 Z1 ¼ 2Z=3

First Second First Second

App. Exact App. Exact App. Exact App. Exact App. Exact

0
01 2
31 2
30 2
17 2
17 5
12 5
12 1
89 1
89 5
91 5
91
0
03 1
39 1
39 1
32 1
31 2
98 2
98 1
17 1
16 3
44 3
43
0
05 1
12 1
12 1
07 1
06 2
33 2
33 0
96 0
95 2
68 2
67
0
07 0
99 0
98 0
94 0
94 1
99 1
98 0
85 0
85 2
28 2
27
0
09 0
90 0
89 0
86 0
86 1
77 1
76 0
79 0
78 2
03 2
02
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fact that the double-gap system is more effective than the single-gap system in practical use
of space.
On the other hand, g ¼ DL1=DL involved in %GG influences the resonant frequencies of the

double-gap system as confirmed in Figure 3, where the first resonant frequency in the case
of g ¼ 3=4 requires the smallest value, Z ¼ 0
041; to yield O ¼ 1: Thus, it is advantageous
to design the upper gap thickness DL1 to be larger than the lower gap thickness DL2 when
the total gap thickness DL ¼ DL1 þ DL2 is fixed due to the limitation of space. Figure 4
shows the trend of change of the resonant frequencies when g is changed with Os ¼ 0
5 and
ms ¼ 2
0: Here, the first resonant frequency is constantly decreased with increasing g; but a
small amount of decrease is shown, and the second resonant frequency has a minimum
value in the vicinity of g ¼ 0
4 (a large amount of change is shown compared with the first
resonant frequency). From this fact, it is concluded that the second resonant frequency can
be more effectively tuned to a target frequency than the first resonant frequency, by means
of changing the proportion of the upper gap thickness to the lower gap thickness.

3. EXPERIMENT OF THE CAVITY-GAP COUPLING MODEL

Figure 5 shows a box-shaped acoustic cavity manufactured to verify the air-gap effect.
When no air gaps or partition sheets are installed, the resonant frequency of the lowest one
of the vertical resonant modes, of which pressure variation is formed in the direction of the
height of the cavity, can be theoretically calculated to be 184Hz by f ¼ c=ð2LzÞ: In the
paper, the lowest order vertical mode is considered as the target mode that will be
controlled by installing the air-gap system as shown in Figure 5. It should be noted that, if
an absorbent material sheet is used to suppress the resonance of the vertical mode, its
minimum thickness required ought to reach 19 cm corresponding to a quarter of the
wavelength of the vertical mode.
As shown in Figure 5, two microphones and a loud speaker for sound generation are

put on the bottom of the cavity to measure frequency responses when a partition sheet is
set. Two types of partition sheets are used and the first natural frequency and surface
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density of each sheet are given in Table 2; the natural frequencies are obtained through
vibration modal tests. In addition, the experimental resonant frequencies of the first four
vertical modes of the cavity are found to be 173, 358, 556, and 741Hz without any
partition sheet. Particular attention is given to suppressing the first resonance (173Hz),
because a gap of the largest thickness is needed in this case.

3.1. WHEN THE A-PARTITION SHEET IS USED

Figure 6 shows how the acoustic responses vary in the cavity when the gap thickness is
increased from 0
0 to 5
5 cm. When the partition sheet is directly attached to the upper



mLx 36.0=

mLz 93.0=

mLy 3.0=

L∆

Input microphone

Output Microphone

Speaker

Partition sheet

Figure 5. Experimental set-up of a box-shaped cavity for confirming the air-gap effect.

Table 2

Surface densities and natural frequencies of the partition sheets used in the experiment.

Natural frequency (Hz)

Partition sheet Surface density (kg/m2) First Second Third Fourth

A-type 1
9 72 148 170 240
B-type 2
0 58 128 142 198
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boundary of the cavity without any space (see Figure 6(a)), little change appears in the
frequency range, 50–850Hz; the higher resonant peaks above 700Hz are influenced just a
little. When the thickness is increased by 0
5 cm (see Figure 6(b)), it may be seen that the
third and fourth peaks, 556 and 741Hz, drop greatly. As the gap thickness is increased
from 1
0 to 6
0 cm, the effect of the air-gap shifts to the lower frequency range. When a
value of 3
0 cm is given for the gap thickness (see Figure 6(c)), the second resonant peak
(358Hz) is split into two peaks with almost equal levels. From this fact, the thickness of
3
0 cm may be called a reasonable gap thickness for suppressing the second resonant peak.
It may also be said from Figure 6(d) that the gap thickness of 5
5 cm is a reasonable gap
thickness for suppressing the first resonant peak.
On the other hand, the reasonable gap thickness against the first resonance of the cavity

in the experiment can be approximately predicted using equation (10). Os is given by
dividing the first natural frequency of the partition sheet by that of the cavity: i.e., Os ¼
72=173Hz ¼ 0
416: In addition, ms is given by dividing the surface density of the partition
sheet by rairLz: i.e., ms ¼ 1
9=ð1
21� 0
93Þ ¼ 1
688: In the case of predicting the reasonable



40

50

60

70

80

100 200 300 400 500 600 700 800

Rigid wall
0.0 cm-gap

S
P

L
(d

B
)

Excitation frequency (Hz)

40

50

60

70

80

100 200 300 400 500 600 700 800

Rigid wall
0.5 cm-gap

S
P

L
(d

B
)

Excitation frequency (Hz)

40

50

60

70

80

100 200 300 400 500 600 700 800

Rigid wall
3.0 cm-gap

S
P

L
(d

B
)

Excitation frequency (Hz)

40

50

60

70

80

100 200 300 400 500 600 700 800

Rigid wall
5.5 cm-gap

S
P

L
(d

B
)

Excitation frequency (Hz)

(a) (b)

(c) (d)

Figure 6. Acoustic responses as the gap thickness is increased with the A-partition sheet: (a) 0
0 cm gap,
(b) 0
5 cm gap, (c) 3
0 cm gap, (d) 5
5 cm gap.
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gap thickness for the first resonance, O is replaced by the unit value (O ¼ 1) in equation
(10), because O approaches the unit value when the resonant frequency of the air-gap
system is tuned to the first resonant frequency of the cavity. If O ¼ 1; Os ¼ 0
42; and
ms ¼ 1
69 are substituted into the corresponding parameters in equation (10), the gap ratio
for the first resonance of the cavity is obtained as Z ¼ 0
073; which can be translated to
DL ¼ 6
79 cm by multiplying Z by Lz: The predicted gap thickness shows a small difference
compared with the experimental gap thickness, 5
5 cm. This results from the approxima-
tion of the three-dimensional experimental model to the one-dimensional model. It may,
however, be said that equation (10) can be used as an important guide in designing the air-
gap system.

3.2. WHEN THE B-PARTITION SHEET IS USED

Figure 7 shows the acoustic responses when gaps of 0
0, 0
5, 2
0, and 4
5 cm are used.
The acoustic response when no gap is given (see Figure 7(a)) remains almost unchanged
compared with the acoustic response when no partition sheet is used. However, when a
very small gap of 0
5 cm is given as shown in Figure 7(b), the third and fourth peaks are
largely suppressed. This fact suggests that the current thickness, 0
5 cm, is a reasonable
thickness only for the third and fourth peaks. The second peak is completely suppressed
when the gap thickness is increased to 2
0 cm (see Figure 7(c)), which states that a value of
the reasonable thickness for the second peak is 2
0 cm. It may be said from Figure 7(d) that
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Figure 7. Acoustic responses as the gap thickness is increased with the B-partition sheet: (a) 0
0 cm gap,
(b) 0
5 cm gap, (c) 2
0 cm gap, (d) 4
5 cm gap.
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the reasonable gap thickness for the first peak is 4
5 cm. It should be noticed that this
thickness is 1
5 cm lesser than the reasonable gap thickness for the first peak required when
the A-partition sheet is used. In short, the B-partition sheet shows excellent performance
than the A-partition sheet, because the first resonant peak can be suppressed with a
smaller value when the B-partition sheet is used. The performance of the air-gap system is
associated with the first natural frequency and surface density of the partition sheet used.
It is noted in Table 2 that the first natural frequency of the B-partition sheet is
considerably lower than that of the A-partition sheet.
In the same manner as in section 3.1, a reasonable gap thickness against the first

resonance can be predicted using equation (10). In the case of the current partition sheet,
Os and ms are respectively calculated as Os ¼ 58=173 Hz ¼ 0
34 and ms ¼ 2
0=ð1
21� 0
93Þ
¼ 1
78 from Table 2. Then, a reasonable gap ratio may be calculated as Z ¼ 0
064; which is
translated to DL ¼ 5
95 cm; which is somewhat different from the experimental gap
thickness, 4
5 cm. It may, however, be said that equation (10) gives reasonable information
in designing the gap and the partition sheet, because the predicted gap thickness for the A-
partition sheet (5
95 cm) is lesser than that for the B-partition sheet (6
79 cm) in the same
manner as in the experiment.

4. CONCLUSION

The air-gap system introduced in the paper can be considered as a sound absorber with
effective performance in suppressing low-frequency acoustic resonance in an enclosed
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cavity. The closed-form frequency equation, equation (10), can be used as an effectual
means in designing the air-gap system for suppressing a target acoustic resonance. In
addition, it is shown from the experiments that the modal characteristics of the partition
sheets used play an important part in determining the high performance of the air-gap
system.
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