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A stochastic optimal semi-active control strategy for randomly excited systems using
electrorheological/magnetorheological (ER/MR) dampers is proposed. A system excited by
random loading and controlled by using ER/MR dampers is modelled as a controlled,
stochastically excited and dissipated Hamiltonian system with n degrees of freedom. The
control forces produced by ER/MR dampers are split into a passive part and an active
part. The passive control force is further split into a conservative part and a dissipative
part, which are combined with the conservative force and dissipative force of the
uncontrolled system, respectively, to form a new Hamiltonian and an overall passive
dissipative force. The stochastic averaging method for quasi-Hamiltonian systems is
applied to the modified system to obtain partially completed averaged It #oo stochastic
differential equations. Then, the stochastic dynamical programming principle is applied to
the partially averaged It #oo equations to establish a dynamical programming equation. The
optimal control law is obtained from minimizing the dynamical programming equation
subject to the constraints of ER/MR damping forces, and the fully completed averaged It #oo
equations are obtained from the partially completed averaged It #oo equations by replacing
the control forces with the optimal control forces and by averaging the terms involving the
control forces. Finally, the response of semi-actively controlled system is obtained from
solving the final dynamical programming equation and the Fokker–Planck–Kolmogorov
equation associated with the fully completed averaged It #oo equations of the system. Two
examples are given to illustrate the application and effectiveness of the proposed stochastic
optimal semi-active control strategy.

# 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

Electrorheological (ER) and magnetorheological (MR) dampers are fluid dampers, the
damping forces of which can be controlled by adjusting external electric and magnetic
fields, respectively. ER and MR dampers have the capacity to provide large controllable
damping forces and several other attractive features such as simplicity, reliability and
small power requirement, etc. In the past several years, intensively theoretical and
experimental researches on the dynamic behavior and potential application in seismic
protection of structures have been made [1, 2]. ER and MR dampers are a class of semi-
active control devices. The semi-active control system is a system that utilizes the motion
0022-460X/02/$35.00 # 2002 Elsevier Science Ltd. All rights reserved.
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of a structure to develop the control force, the magnitude of which can be adjusted by
external small power source. Theoretical and experimental researches demonstrated that
the performance of a semi-active control system is highly dependent on the choice of
control strategy. One challenge in the use of semi-active control technology is to develop
non-linear control algorithm that is appropriate for implementation in full-scale
structures. A number of semi-active control strategies have been developed [3–8] and
several of them have been compared with one another for MR dampers [2].

ER and MR dampers are non-linear semi-active control devices and the dynamic
loading experienced by structures is usually random. Thus, non-linear stochastic control
algorithm would be appealing. In the past few years, a non-linear stochastic optimal active
control strategy has been developed by the present authors [9–12] based on the stochastic
averaging method for quasi-Hamiltonian systems [13–15] and the stochastic dynamical
programming principle [16–18]. The strategy has several advantages over LQG control
and has been extended to partially observable linear structural control [19] and feedback
minimization of first-passage failure [20].

In the present paper, the non-linear stochastic optimal active control strategy
previously proposed is adapted for its implementation by using ER and MR dampers.
A semi-active control system using ER/MR dampers is formulated as a controlled,
stochastically excited and dissipated Hamiltonian system. First, the stochastic
averaging method for quasi-Hamiltonian systems is applied to the system to obtain the
partially completed averaged It #oo equations. Then, the stochastic dynamical programming
principle is applied to the partially completed averaged system to establish a dynamical
programming equation. The optimal control law is obtained from the dynamical
programming equation incorporated with the characteristics of ER/MR dampers. Finally,
the response of the semi-actively controlled system is obtained by solving the final
dynamical programming equation and the Fokker–Planck–Kolmogorov (FPK) equation
associated with the fully completed averaged It #oo equations. Two examples are given to
illustrate the application and effectiveness of the proposed stochastic optimal semi-active
control strategy.

2. EQUATIONS OF CONTROLLED SYSTEMS

A system excited by random loading and controlled by using ER/MR
dampers is modelled as a controlled, stochastically excited and dissipated Hamiltonian
system with n degrees of freedom (d.o.f.). The equations of motion of the system are of
the form

’QQi ¼
@H 0

@Pi

;

’PPi ¼ �@H 0

@Qi

� c0ij
@H 0

@Pj

þ birur þ fikxkðtÞ;

i; j ¼ 1; 2; . . . ; n; r ¼ 1; 2; . . . ; s; k ¼ 1; 2; . . . ;m; ð1Þ

where Qi and Pi are the generalized displacements and momenta, respectively, H 0 ¼
H 0ðQ;PÞ is twice differentiable Hamiltonian, c0ij ¼ c0ijðQ;PÞ represent the coefficients of
inherent quasi-linear damping of the system, fik ¼ fikðQ;PÞ represent the magnitudes of
random excitations, xkðtÞ are the random excitations, ur ¼ urðQ;PÞ represent the control
forces produced by ER/MR dampers, bir are the damper placement coefficients, m and s

are the numbers of random excitations and ER/MR dampers respectively.
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The control forces ur produced by ER/MR dampers can be split into passive
components urp and active components ura; i.e.,

urðQ;PÞ ¼ urpðQ;PÞ þ uraðQ;PÞ: ð2Þ

urp are the forces produced by ER/MR dampers without external power (zero voltage)
while ura are the increments of the control forces produced by ER/MR dampers due to
external power (non-zero voltage).

For example, the dynamic behavior of ER/MR dampers can be quite well described by
using the Bingham model [21–23]. According to this model, the control forces produced by
ER/MR dampers are

ur ¼ �cr
’XX r � Fr sgnð ’XX rÞ; ð3Þ

where ’XX r are the relative velocities of the two ends of ER/MR dampers; cr are
viscous damping coefficients. �cr

’XX r are the damping forces of the dampers with zero
voltage and thus they are passive control force components. �Fr sgnð ’XX rÞ are the
increments in damping forces due to external voltage and thus they are active control force
components. For system (1), one end of each ER or MR damper is assumed to be fixed,
independent of the motion of the system. So, ’XX r is the velocity of the system at the
location where the rth ER/MR damper is mounted, i.e., ’XX r ¼ bir

’QQi: Therefore, equation
(3) can be rewritten as

urðQ;PÞ ¼ �crbir
’QQi � Fr sgnðbir

’QQiÞ; ð4Þ

where there is no summation over r in the first term. Fr are functions of
external voltage Vre: A simple relationship between Fr and Vre proposed by Gavin et al.
[21] is

Fr ¼ CraVar
re ; ð5Þ

where Cra and ar are the positive constants. Note that an ER or MR damper
can only produce the damping force in the opposite direction of the velocity and thus
Fr50:

In more general case, urp can further be split into a conservative part and a dissipative
part and combined with �@H 0=@Qi and �c0ij@H 0=@Pj respectively. Then, equation (1) can
be rewritten as

’QQi ¼
@H 00

@Pi

;

’PPi ¼ �@H 00

@Qi

� c00ij
@H 00

@Pj

þ birura þ fikxkðtÞ;

i; j ¼ 1; 2; . . . ; n; r ¼ 1; 2; . . . ; s; k ¼ 1; 2; . . . ;m; ð6Þ

where H 00 ¼ H 00ðQ;PÞ and c00ij ¼ c00ijðQ;PÞ are the Hamiltonian and damping coefficients
modified by the conservative part and dissipative part of the passive control forces of
ER/MR dampers respectively.

If xkðtÞ are Gaussian white noises in the sense of Stratonovich with intensities 2Dkl ;
equation (6) can be modelled as Stratonovich stochastic differential equations. It can be
converted into It #oo stochastic differential equations by adding the Wong–Zakai correction
terms Dklfjl@fik=@Pj: These terms can also be split into a conservative part and a dissipative
part and then combined with �@H 00=@Qi and �c00ij@H 00=@Pj; respectively, to form overall
conservative forces �@H=@Qi with a modified Hamiltonian H and @H=@Pi ¼ @H 00=@Pi and
overall dissipative forces �cij@H=@Pj: With these accomplished, equation (6)
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becomes

dQi ¼
@H

@Pi

dt;

dPi ¼ � @H

@Qi

þ cij
@H

@Pj

� birura

� �
dt þ %ssik dBkðtÞ;

i; j ¼ 1; 2; . . . ; n; r ¼ 1; 2; . . . ; s; k ¼ 1; 2; . . . ;m; ð7Þ

where %rr %rrT ¼ 2fDfT and BkðtÞ are independent unit Wiener processes.

3. PARTIALLY AVERAGED SYSTEMS

The n-d.o.f. Hamiltonian system with Hamiltonian H associated with controlled system
(7) can be non-integrable, integrable or partially integrable. In the integrable and partially
integrable cases, the Hamiltonian system can be further identified as non-resonant or
resonant. The stochastic averaging method for quasi-Hamiltonian systems has been
developed for all these five cases [13–15]. Due to the limitation of length, here only non-
integrable and non-resonant integrable cases are considered. Applying the stochastic
averaging method for quasi-Hamiltonian systems to equation (7) we obtain

dH ¼ mðHÞ þ @H

@Pi

birura

� �� �
dt þ sðHÞ dBðtÞ; ð8Þ

where

mðHÞ ¼ 1

TðHÞVO1

Z
O

�cij
@H

@pi

@H

@pj

þ 1

2
%ssik %ssjk

@2H

@pi@pj

� ��
@H

@p1

� �
dq1 � � � dqn dp2 � � � dpn;

s2ðHÞ ¼ 1

TðHÞVO1

Z
O

%ssik %ssjk

@H

@pi

@H

@pj

�
@H

@p1

� �
dq1 � � � dqn dp2 � � � dpn;

TðHÞ ¼ 1

VO1

Z
O

1=
@H

@p1

� �
dq1 � � � dqn dp2 � � � dpn;

VO1
¼

Z
O1

dq2 � � � dqn dp2 � � � dpn;

O ¼ fðq1; . . . ; qn; p2; . . . ; pnÞ Hðq1; . . . ; qn; 0; p2; . . . ; pnÞ4Hj g;
O1 ¼ fðq2; . . . ; qn; p2; . . . ; pnÞ Hð0; q2; . . . ; qn; 0; p2; . . . ; pnÞ4Hj g: ð9Þ

for non-integrable case, or

dHa ¼ maðHÞ þ @Ha

@Pi

birura

� �� �
dt þ sakðHÞ dBkðtÞ;

a ¼ 1; 2; . . . ; n; k ¼ 1; 2; . . . ;m; ð10Þ

where H ¼ ½H1;H2; . . . ;Hn�; Ha are first integrals,

maðHÞ ¼ �cij
@H

@pj

@Ha

@pi

þ 1

2
%ssik %ssjk

@2Ha

@pi@pj

� �
t

;

sakðHÞsbkðHÞ ¼ %ssik %ssjk

@Ha

@pi

@Hb

@pj

� �
t

ð11Þ

for non-resonant integrable case. In equations (8) and (10), h i denote the averaging
defined by the first equations of equations (9) and (11) respectively. In equation (11), h � it

denotes the time averaging [14].
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4. OPTIMAL CONTROL LAW

Equations (8) and (10) imply that in non-integrable case, Hamiltonian H is a one-
dimensional controlled diffusion process and in non-resonant integrable case H is an n-
dimensional vector of controlled diffusion processes respectively. The optimal control law
depends on the objective of system control, which is expressed in terms of performance
index. Here we consider the response control in finite and in infinite time intervals. In the
case of finite time interval control, the performance index is assumed to be of the Boltz
type, i.e.,

J ¼ E

Z tf

0

LðHðtÞ; huaðtÞiÞ dtþCðHðtf ÞÞ
� �

ð12Þ

for system (8), or

J ¼ E

Z tf

0

LðHðtÞ; huaðtÞiÞ dtþCðHðtf ÞÞ
� �

ð13Þ

for system (10). In equations (12) and (13), ua ¼ ½u1a; u2a; . . . ;usa�T; L is the cost function, tf

is the final time of control and Cðtf Þ is the final cost. In the case of infinite time interval
control, the performance index is usually of average type, i.e.,

J ¼ lim
T!1

1

T

Z T

0

LðHðtÞ; huaðtÞiÞ dt ð14Þ

for system (8), or

J ¼ lim
T!1

1

T

Z T

0

LðHðtÞ; huaðtÞiÞ dt ð15Þ

for system (10). The control of system (8) or (10) with performance index (14) or (15) is
called the ergodic control.

Here, some physical interpretations are relevant. For most dynamical systems, H is the
total energy of a system. So, cost function LðH; uaÞ is a function of total system energy and
the active components of control forces produced by ER/MR dampers. For linear
Hamiltonian systems, H is a quadratic function of displacements and velocities. In this
case, L is a quadratic function of system state, which is similar to that used in the usual
LQR or LQG control. H is a vector of conservative quantities of the Hamiltonian
(conservative) system associated with equation (7). Thus, cost function LðH; uaÞ is a
function of these conservative quantities and the active components of control forces
produced by ER/MR dampers. The objective of the stochastic optimal semi-active control
is to minimize the performance index J in one of equations (12)–(15) by properly designing
the control law for ua:

Based on the stochastic dynamical programming principle [16–18], a dynamical
programming equation can be set up. It is

@V

@t
¼ �min

ua

LðH; huaiÞ þ mðHÞ þ@H

@pi

birura

� �� �
@V

@H
þ s2ðHÞ

2

@2V

@H2

	 

ð16Þ

for controlled system (8) with performance index (12), or

@V

@t
¼ �min

ua

LðH; huaiÞ þ maðHÞ þ @Ha

@pi

birura

� �� �
@V

@Ha
þ 1

2
sakðHÞsbkðHÞ @2V

@Ha@Hb

	 

ð17Þ

for controlled system (10) with performance index (13). In equations (16) and (17), V ¼
VðH; tÞ and VðH; tÞ are called value functions. For ergodic control of systems (8) and (10),
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the dynamical programming equations are

l ¼ min
ua

LðH; huaiÞ þ mðHÞ þ @H

@pi

birura

� �� �
@V

@H
þ s2ðHÞ

2

@2V

@H2

	 

ð18Þ

and

l ¼ min
ua

LðH; huaiÞ þ maðHÞ þ @Ha

@pi

birura

� �� �
@V

@Ha
þ 1

2
sakðHÞsbkðHÞ @2V

@Ha@Hb

	 

ð19Þ

respectively.
The optimal control law for system (8) is obtained from minimizing the right-hand side

of equation (16) or (18), i.e.,

@

@ura

LðH; huaiÞ þ
@H

@pi

birura

� �
@V

@H

� �
¼ 0: ð20Þ

Suppose that the cost function is of the form

LðH; huaiÞ ¼ gðHÞ þ huTaRuai; ð21Þ

where gðHÞ50 and R is a positive-definite symmetric matrix. Then the optimal control
law is of the form

u�
ra ¼ �1

2
R�1

rs

@V

@H
bis

@H

@Pi

¼ �1

2
R�1

rs

@V

@H
bis

’QQi; ð22Þ

which can be rewritten as

u�
ra ¼ �F�

ra sgnðbir
’QQiÞ ð23Þ

with

F�
ra ¼ 1

2
R�1

rs bis
’QQi sgnðbjr

’QQjÞ
@V

@H
: ð24Þ

Note that u�
ra in equation (22) or equations (23) and (24) are the optimal control forces

required by system (8). On the other hand, the active control forces produced by ER/MR
dampers are of the form of the second term in equation (4) with positive Fr: It is seen that
the necessary optimal control forces u�

ra can be produced by ER/MR dampers with
sufficient capacity if F �

ra50: In fact, letting F*
ra be equal to Fr in equation (5) yields the

regulation law for external voltage Vre; i.e., Vre ¼ ðF�
ra=CraÞ�ar : However, if F�

ra50; the
desired optimal control forces u�

ra cannot be produced by ER/MR dampers. In this case,
the external voltage is set to be zero, i.e., active control is clipped. Obviously, the longer
the time for F�

ra50 is, the more effective the ER/MR dampers are. For example, suppose
that R is taken to be positive-definite diagonal matrix and gðHÞ and l are selected so that
@V=@H50: In this case equation (22) becomes

u�
ra ¼ � 1

2Rrr

@V

@H
bir

’QQi ¼ � 1

2Rrr

@V

@H
jbir

’QQij sgnðbir
’QQiÞ ð25Þ

and the dampers may produce exactly the necessary optimal control forces all the time.
For system (10), the optimal control law can be obtained similarly and equations

(20)–(25) are replaced by

@

@ura

LðH; huaiÞ þ
@Ha

@pi

birura

� �
@V

@Ha

� �
¼ 0; ð26Þ

LðH; huaiÞ ¼ gðHÞ þ huTaRuai; ð27Þ
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u�
ra ¼ �1

2
R�1

rs bis

@V

@Ha

@Ha

@Pi

; u�
ra ¼ �F�

ra sgnðbir
’QQiÞ; ð28; 29Þ

F �
ra ¼ 1

2
R�1

rs bis

@V

@Ha

@Ha

@Pi

sgnðbjr
’QQjÞ; ð30Þ

u�
ra ¼ � 1

2Rrr

@V

@Hi

bir
’QQi ¼ � 1

2Rrr

@V

@Hi

jbir
’QQij sgnðbir

’QQiÞ ð31Þ

respectively.

5. RESPONSE PREDICTION

Substituting the optimal control forces ura
* into dynamical programming equations

(16)–(19) and averaging the terms involving active control forces yield the final dynamical
programming equations. Associated with equations (16)–(19), they are

@V

@t
þ LðH; hu�aiÞ þ mðHÞ þ @H

@Pi

biru
�
ra

� �� �
@V

@H
þ s2ðHÞ

2

@2V

@H2
¼ 0; ð32Þ

@V

@t
þ LðH; hu�aiÞ þ maðHÞ þ @Ha

@Pi

biru
�
ra

� �� �
@V

@Ha
þ 1

2
sakðHÞsbkðHÞ @2V

@Ha@Hb
¼ 0; ð33Þ

l ¼ LðH; hu�aiÞ þ mðHÞ þ @H

@Pi

biru
�
ra

� �� �
@V

@H
þ s2ðHÞ

2

@2V

@H2
; ð34Þ

l ¼ LðH; hu�aiÞ þ maðHÞ þ @Ha

@Pi

biru
�
ra

� �� �
@V

@Ha
þ 1

2
sakðHÞsbkðHÞ @2V

@Ha@Hb
ð35Þ

respectively.
On the other hand, substituting optimal control forces u�

ra into partially averaged It #oo
equations (8) and (10) and averaging the terms involving active control forces lead to fully
averaged It #oo equations. Associated with equations (8) and (10), they are

dH ¼ %mmðHÞ dt þ sðHÞ dBðtÞ; ð36Þ
where

%mmðHÞ ¼ mðHÞ þ @H

@Pi

biru
�
ra

� �
ð37Þ

and

dHa ¼ %mmaðHÞ dt þ sakðHÞ dBkðtÞ; ð38Þ
where

%mmaðHÞ ¼ maðHÞ þ @Ha

@Pi

biru
�
ra

� �
t

: ð39Þ

Note that %mmðHÞ and %mmaðHÞ involve unknown @V=@H and @V=@Ha; which are obtained
by solving equations (32) or (34), and (33) or (35) respectively.

Solving the FPK equations associated with It #oo equations (36) and (38), we obtain the
response of semi-actively controlled system. The response of passively controlled system
can be obtained from solving the FPK equations without active control forces. The
statistics of active control force components can be obtained by the probability density of
the response of semi-actively controlled system and equation (22) or (28).
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To evaluate a semi-active control strategy, two measures are introduced. One is the
percentage reduction in the root-mean-square displacement due to the active control force
components produced by ER/MR dampers, i.e., effectiveness of a semi-active control
strategy, which is defined as

Ks ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
E½X 2

p �
q

�
ffiffiffiffiffiffiffiffiffiffiffiffi
E½X 2

s �
p

ffiffiffiffiffiffiffiffiffiffiffiffi
E½X 2

p �
q � 100%; ð40Þ

where E½X 2
s � and E½X 2

p � denote the mean square displacements of semi-actively and
passively controlled systems respectively. The other measure is the efficiency of a semi-
active control strategy, which is defined as the ratio of the percentage reduction Ks to the
normalized sum of the root-mean-square active control force components produced by
ER/MR dampers, i.e.,

ms ¼
KsPs

r¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
E½u�2

ra �
p

=
Pm

k¼1

ffiffiffiffiffiffiffiffiffiffi
2Dkk

p ; ð41Þ

where E½u�2
ra � are the mean square values of active control force components produced by

ER/MR dampers. Note that u�
ra in ms imply external input voltage V�

re since ura ¼
�Fr sgnðbir

’QQiÞ and Fr ¼ CraVar
re [see equations (4) and (5)]. The larger the Ks and ms are,

the better the semi-active control strategy is.

6. EXAMPLE 1

As a simple example, consider a Duffing oscillator subject to Gaussian white-noise
excitation and controlled by an ER or MR damper. The equation of motion of the system
is

.XX þ c0 ’XX þ aX þ bX 3 ¼ xðtÞ þ u; ð42Þ

where c0; a and b are the constants, and xðtÞ is a Gaussian white noise with intensity D:
The control force u is produced by an ER or MR damper. The passive control force �c1 ’XX

of the ER or MR damper can be combined with inherent damping force �c0 ’XX to form
�c ’XX : Thus, equation (42) becomes

.XX þ c ’XX þ aX þ bX 3 ¼ xðtÞ þ ua; ð43Þ

which can be rewritten as

’QQ ¼ P; ’PP ¼ �cP � aQ � bQ3 þ ua þ xðtÞ: ð44Þ

Using the stochastic averaging method of energy envelope [24], the partially completed
averaged It #oo equation can be obtained as follows:

dH ¼ mðHÞ þ @H

@P
ua

� �
dt þ sðHÞ dBðtÞ; ð45Þ
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where

H ¼ P2=2þ aQ2=2þ bQ4=4;

mðHÞ ¼ D=2� cGðHÞ; s2ðHÞ ¼ DGðHÞ;

GðHÞ ¼ 4

TðHÞ

Z A

0

ð2H � aq2 � bq4=2Þ1=2 dq;

TðHÞ ¼ 4

Z A

0

ð2H � aq2 � bq4=2Þ�1=2 dq;

A ¼ f½ða2 þ 4bHÞ1=2 � a�=bg1=2: ð46Þ

Let the cost function be quadratic in ua and polynomial in H; i.e.,

L ¼ gðHÞ þ Rhu2
ai; ð47Þ

where R is a positive constant and

gðHÞ ¼ s0 þ s1H þ s2H2 þ s3H3: ð48Þ

Following equation (23), the optimal control force is

u�
a ¼ �F�

a sgnð ’QQÞ; F �
a50; ð49Þ

where

F �
a ¼ 1

2R

dV

dH

@H

@P
sgnð ’QQÞ ¼ 1

2R

dV

dH
j ’QQj: ð50Þ

For ergodic control, dV=dH is obtained from solving the following final dynamical
programming equation:

l ¼ gðHÞ þ mðHÞ dV

dH
� 1

4R
GðHÞ dV

dH

� �2

þ1

2
s2ðHÞ d

2V

dH2
: ð51Þ

There exists a relationship s0 ¼ l� ðD=2Þ dV=dH when H ¼ 0: It is always possible to
select s0; s1; s2; s3; R and l so that dV=dH50: In this case, the damper produces the
necessary optimal control force all the time only if the damper has sufficient capacity.

Solving equation (51) yields dV=dH and substituting it into equations (49) and (50)
yields u�

a: Substituting u�
a into equation (45) to replace ua and averaging ð@H=@PÞu�

a lead to
the fully averaged It #oo equation for H: The stationary probability density of total energy of
the semi-actively controlled system is then obtained from solving the reduced FPK
equation associated with the fully completed averaged It #oo equation. It is

psðHÞ ¼ Cs exp �
Z H

0

�2mðyÞ þ GðyÞ
R

dV

dy
þ ds2ðyÞ

dy

� ��
s2ðyÞ

� �
dy

	 

: ð52Þ

The stationary probability density of total energy of the passively controlled system is
obtained from equation (52) by making the active-control-induced term vanishing, i.e.,

ppðHÞ ¼ Cp exp �
Z H

0

�2mðyÞ þ ds2ðyÞ
dy

� ��
s2ðyÞ

� �
dy

	 

: ð53Þ

The mean square displacements of semi-actively and passively controlled systems can be
obtained from equations (52) and (53), respectively, as follows:

E½X 2
s � ¼ Cs

Z 1

0

psðHÞ
TðHÞ dH

Z A

0

4q2 dq

ð2H � aq2 � bq4=2Þ1=2
; ð54Þ
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E½X 2
p � ¼ Cp

Z 1

0

ppðHÞ
TðHÞ dH

Z A

0

4q2 dq

ð2H � aq2 � bq4=2Þ1=2
; ð55Þ

while the mean square active control force component is obtained from equations (49),
(50) and (52) as follows:

E½u�2
a � ¼ Cs

Z 1

0

GðHÞ
4R

dV

dH

� �2

psðHÞ dH: ð56Þ

To see the merit of the proposed stochastic optimal semi-active control strategy, system
(42) is restudied by using the clipped LQG control. For this purpose, equation (43) is first
linearized by using the statistical linearization method. The linearized equation is

.XX þ c ’XX þ ða þ 3bE½X 2�ÞX ¼ xðtÞ þ ua ð57Þ

and it can be rewritten as

dX=dt ¼ ’XX ; d ’XX=dt ¼ �c ’XX � ða þ 3bE½X 2�ÞX þ ua þ xðtÞ: ð58Þ

Let the cost function be

L ¼ YTSYþ uTRu; ð59Þ

where

Y ¼
X

’XX

" #
; S ¼

s11 0

0 s22

" #
; u ¼

0

ua

" #
; R ¼

0 0

0 R

" #
: ð60Þ

The dynamical programming equation for ergodic control is of the form

l ¼ min
ua

L þ ’XX
@V

@X
þ ½�c ’XX � ða þ 3bE½X 2�ÞX þ ua�

@V

@ ’XX
þ D

2

@2V

@ ’XX
2

	 

: ð61Þ

The required optimal control force is obtained from minimizing the right-hand side of
equation (61) as follows:

u�
a ¼ � 1

2R

@V

@ ’XX
: ð62Þ

The solution of equation (61) is of the form

V ¼ YTPY; ð63Þ

where

P ¼
P11 P12

P12 P22

" #
ð64Þ

can be obtained from solving the following Riccati equation

Sþ PAþ ATP� PR�1P ¼ 0; ð65Þ

in which

A ¼
0 1

�ða þ 3bE½X 2�Þ �c

" #
; R�1 ¼

0 0

0 1=R

" #
: ð66Þ
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Substituting equation (63) into equation (62) yields the necessary optimal control force

u�
a ¼ �1

R
ðP12X þ P22

’XX Þ: ð67Þ

As noted previously, an ER or MR damper can only produce active control force

ua ¼ �F sgnð ’XX Þ: ð68Þ

So, the damper produces active control force only when

1

R
ðP12X þ P22

’XXÞ sgnð ’XX Þ50 ð69Þ

If condition (69) is satisfied, then the input external voltage is determined for example, by
equation (5). If condition (69) is not satisfied, u�

a should vanish. In this case, the response
of semi-actively controlled system can be calculated numerically. Note that the clipped
LQG control strategy here is different from that in reference [2]. In the special case where
s11 ¼ 0; P12 ¼ 0; equation (69) will be satisfied all the time if P22 > 0: The semi-actively
controlled system is of the form

.XX þ ðc þ %PP22=RÞ ’XX þ ða þ 3bE½X 2� þ %PP12=RÞX ¼ xðtÞ; ð70Þ

where %PP12 and %PP22 are the coefficients of linearized control force corresponding to P12 and
P22 respectively. Denote

W ¼
E½X 2� E½X ’XX �

E½ ’XXX � E½ ’XX 2�

" #
: ð71Þ

Covariance matrix W satisfies the following Lyapunov equation:

%AAWþW %AA
T ¼ �D; ð72Þ

where

%AA ¼
0 1

�ða þ 3bE½X 2� þ %PP12=RÞ �ðc þ %PP22=RÞ

" #
; D ¼

0 0

0 D

" #
: ð73Þ

The clipped LQG control force u�
a and the response of semi-actively controlled system can

be obtained by solving equations (65) and (72) simultaneously.
The numerical results for the example system (42) have been obtained by using the

proposed stochastic optimal semi-active control strategy and the clipped LQG control
strategy. In Figures 1–4, a ¼ 1�0; c ¼ 0�18; for the proposed control strategy, R ¼ 1�0;
s1 ¼ s3 ¼ 0; s2 ¼ 1�0; dV=dHjH¼0 ¼ 2�5; for the clipped LQG control strategy, R ¼ 1�0;
s11 ¼ 6�0; s22 ¼ 0: It is seen from these figures that the proposed stochastic optimal semi-
active control strategy is much better than the clipped LQG control strategy in terms of
both measures Ks and ms:

7. EXAMPLE 2

As a more complicated example, consider a hysteretic column subject to both horizontal
and vertical random ground acceleration excitations and controlled by an ER or MR
damper. The equation of motion of the system is

.XX þ 2z0 ’XX þ ½a� k1 � k2ZðtÞ�X þ ð1� aÞZ ¼ xðtÞ þ u; ð74Þ

where X denotes non-dimensional displacement, z0 is the viscous damping ratio, a is the
ratio of stiffness after yield to stiffness before yield, and k1 and k2 are the constants. xðtÞ
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Figure 1. Percentage reduction in root-mean-square displacement versus non-linear stiffness for system (42)
(D ¼ 0�3).
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Figure 2. Control efficiency versus non-linear stiffness for system (42) (D ¼ 0�3).
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and ZðtÞ are horizontal and vertical random ground acceleration excitations that act as
external and parametric excitations and, for simplicity, are idealized as Gaussian white
noises with intensities 2D1 and 2D2 respectively. Z represents the hysteretic component of
the restoring force and is herein modelled by a non-linear differential equation [25, 26]:

’ZZ ¼ A ’XX � b ’XX jZjn � gj ’XX jZjZjn�1; ð75Þ

where A; b; g and n are the hysteresis parameters. The optimal non-linear stochastic
control of hysteretic column has been studied [11]. Here, the control force u is produced by
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Figure 3. Percentage reduction in root-mean-square displacement versus excitation intensity for system (42)
(b ¼ 0�3).
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Figure 4. Control efficiency versus excitation intensity for system (42) (b ¼ 0�3).
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an ER or MR damper and the stochastic optimal semi-active control of the hysteretic
column is studied.

Combining the passive control force �c1 ’XX of the ER or MR damper with the viscous
damping force �2z0 ’XX of the system, equation (74) can be rewritten as

.XX þ 2z ’XX þ ½a� k1 � k2ZðtÞ�X þ ð1� aÞZ ¼ xðtÞ þ ua: ð76Þ

By using the stochastic averaging method [24], the partially completed averaged It #oo
equation is obtained as follows:

dH ¼ mðHÞ þ @H

@P
u

� �� �
dt þ sðHÞ dBðtÞ; ð77Þ
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where

H ¼ ’xx2=2þ UðxÞ;

mðHÞ ¼ 1

TðHÞ �Ar � 4z
Z a

�a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2H � 2UðxÞ

p
dx þ 2k2

2D2

Z a

�a

x2 dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2H � 2UðxÞ

p
" #

þ D1;

s2ðHÞ ¼ 2

TðHÞ

Z a

�a

ð2D1 þ 2k2
2D2x2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2H � 2UðxÞ

p
dx;

TðHÞ ¼ 2

Z a

�a

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2H � 2UðxÞ

p : ð78Þ

U is the equivalent potential energy of the system, Ar is the area of hysteresis loop and a is
the amplitude of displacement and related to H by H ¼ Uð�aÞ: They all depend on
hysteresis parameters. In the case n ¼ A ¼ 1; the expressions for UðxÞ; Ar and a are given
in Appendix A.

Assume that the cost function is of the form of that in equations (47) and (48). Then, the
optimal control force u�

a is still of the form of that in equations (49) and (50). For ergodic
control, dV=dH is also governed by the final dynamical programming equation (51) but
with

GðHÞ ¼ 2

TðHÞ

Z a

�a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2H � 2UðxÞ

p
dx; ð79Þ

where TðHÞ is given in equation (78). Set the parameters s0; s1; s2; s3 in equation (48) and
R in equation (47) so that dV=dH50: Then the ER or MR damper will produce the
optimal control force u�

a all the time.
Solving equation (51) and substituting the resultant dV=dH into equation (49) yield u�

a:
Then, substituting u�

a into equation (77) to replace ua and averaging ð@H=@PÞu�
a lead to the

fully averaged It #oo equation for H: The stationary probability density of H and the mean
square displacement of the semi-actively controlled hysteretic column, and the mean
square active control force component can be obtained by using equations (52), (54) and
(56) respectively. Some numerical result is obtained for z ¼ 0�025; k1 ¼ 0�04; k2 ¼ 0�1;
a ¼ b ¼ g ¼ 0�5; A ¼ n ¼ 1; D2 ¼ 0�1; R ¼ 1; s1 ¼ s3 ¼ 0; s2 ¼ 1�0; dV=dHjH¼0 ¼ 3�5 and
is shown in Figure 5. It is seen from the comparison of this figure with Figures 3 and 4 that
the effectiveness and efficiency of the proposed stochastic optimal semi-active control
strategy can be even better for this more complicated system.

8. CONCLUSIONS

In the present paper, a stochastic optimal semi-active control strategy for ER/MR
dampers has been proposed. The strategy is developed from the non-linear stochastic
optimal control strategy previously proposed by present authors based on the stochastic
averaging method for quasi-Hamiltonian systems and the stochastic dynamical program-
ming principle. The major advantage of the proposed stochastic optimal semi-active
control strategy is that it is possible to implement the non-linear stochastic optimal active
control strategy using ER/MR dampers without clipping even for non-linear stochastic
systems with m.d.o.f. In this case, the responses of semi-actively and passively controlled
systems can be predicted analytically and compared with each other. However, using the
semi-active control strategy based on LQG, the desired optimal control forces cannot
always be produced by ER/MR dampers and clipping is usually necessary, especially for
linear stochastic systems with m.d.o.f. Therefore, the effectiveness and efficiency of the
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Figure 5. Effectiveness Ks and efficiency ms of the proposed semi-active control strategy versus excitation
intensity for system (74).
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proposed stochastic optimal semi-active control strategy are usually higher than those of
the clipped LQG control strategy. This has been illustrated with the numerical results for
randomly excited Duffing oscillator.
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APPENDIX A: EXPRESSIONS FOR U(X), AR AND a

In the case n ¼ A ¼ 1; the expressions for UðxÞ and Ar are

UðxÞ ¼

1

2
ða� k1Þx2 þ 1� a

g� b

	
x þ x0

þ 1

g� b
½e�ðg�bÞðxþx0Þ � 1�



; �a4x4� x0; g=� b;

1

2
ða� k1Þx2 þ 1� a

g2 � b2

	
1� e�ðg�bÞðxþx0Þ

�gþ b
g� b

ln 1þ gþ b
g� b

ð1� e�ðg�bÞðxþx0ÞÞ
� �


; �x04x4a; g=� b;

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ðA1Þ



SEMI-ACTIVE CONTROL STRATEGY FOR ER/MR DAMPERS 61
UðxÞ ¼
1
2
ða� k1Þx2 þ 1

2
ð1� aÞðx þ x0Þ2; �a4x4� x0; g ¼ b;

1
2ða� k1Þx2 þ 1

8g2ð1� aÞ½1� e�2gðxþx0Þ�2; �x04x4a; g ¼ b;

(
ðA2Þ

UðxÞ ¼

1

2
ða� k1Þx2 þ 1� a

2g
ðx þ x0Þ þ

1� a
4g2

½e�2gðxþx0Þ � 1�; �a4x4� x0; g ¼ �b;

1

2
ða� k1Þx2 þ 1� a

2g
x þ x0 �

1

2g
ln½1þ 2gðx þ x0Þ�

� �
; �x04x4a; g ¼ �b;

8>><
>>: ðA3Þ

Ar ¼
4

g2 � b2
ð1� aÞ ga � bx0 þ

g
gþ b

½e�ðgþbÞðaþx0Þ � 1�
	 


; g=� b; ðA4Þ

Ar ¼ ð1� aÞ½2x0=g� ða � x0Þ2�; g ¼ b; ðA5Þ

Ar ¼ ð1� aÞ½�2x0=gþ ða � x0Þ2�; g ¼ �b; ðA6Þ
where x0 is the residual hysteresis displacement. The quantities a and x0 can be obtained
for given H by solving the following equations:

ðgþ bÞeðg�bÞða�x0Þ þ ðg� bÞe�ðgþbÞðaþx0Þ ¼ 2g; g=� b; ðA7Þ

2gða � x0Þ ¼ 1� e�2gðaþx0Þ; g ¼ b; ðA8Þ

2gða þ x0Þ ¼ �1þ e2gða�x0Þ; g ¼ �b ðA9Þ
and

2H � ða� k1Þa2 ¼ ð1� aÞ½�a þ x0 þ ðe�ðg�bÞða�x0Þ � 1Þ=ðg� bÞ�=ðg� bÞ; g=� b;

ðA10Þ

2H � ða� k1Þa2 ¼ ð1� aÞða � x0Þ2; g ¼ b; ðA11Þ

2H � ða� k1Þa2 ¼ �ð1� aÞða � x0Þ=2gþ ð1� aÞ½e2gða�x0Þ � 1�=4g2; g ¼ �b: ðA12Þ

APPENDIX B: NOMENCLATURE

A displacement amplitude or hysteresis parameter
A coefficient matrix of state equation
Ar area of hysteresis loop
a linear stiffness or displacement amplitude
b non-linear stiffness
bir damper placement coefficients
Cp normalization constant
Cs normalization constant
Cra positive constants of ER/MR models
cij damping coefficients
D intensity matrix of random excitations
Dkl intensities of Gaussian white noises
E expectation
Fr absolute values of active control force components
Fik excitation magnitudes
G function of system energy
g energy function in cost function
H Hamiltonian or total system energy
H Hamiltonian vector
J performance index
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L cost function
m number of random excitations
mðHÞ drift coefficient
n degree of freedom of system or hysteresis parameter
P generalized momentum vector or constant matrix in value function
pp probability density of passively controlled system
ps probability density of semi-actively controlled system
Q generalized displacement vector
R weight matrix in cost function
S weight matrix in cost function
s number of ER/MR dampers
s0 weight in cost function
s1 weight in cost function
s2 weight in cost function
s3 weight in cost function
T quasi-period
tf final time
U equivalent potential energy
ur control forces of ER/MR dampers
ura active control force components of ER/MR dampers due to external power
urp passive control force components of ER/MR dampers without external power
u�ra optimal control forces
ua control force vector
V value function
Vre external voltages
W covariance matrix
X displacement
Y state vector
Z hysteretic force
a stiffness ratio
ar positive constants of ER/MR models
b hysteresis parameter
BkðtÞ unit Wiener processes
g hysteresis parameter
ZðtÞ vertical ground acceleration excitation
Ks percentage reduction of root-mean-square responses
l optimal average cost
ms control efficiency
sðHÞ diffusion coefficient
xðtÞ Gaussian white noise or horizontal ground acceleration excitation
xkðtÞ random excitations
C final cost
z viscous damping ratio.
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