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Modal characteristics of a rotating cantilever plate are investigated in the present work.
A dynamic modelling method for rectangular plates undergoing prescribed overall motion
is employed to derive the equations of motion. The general equations are particularized for
the modal analysis of a rotating cantilever plate and dimensionless parameters are
identified through dimensional analysis. The effects of the dimensionless parameters on the
modal characteristics of the rotating plate are investigated. Incidentally, eigenvalue loci
veering and crossing phenomena along with the corresponding modeshape variations are
exhibited and discussed.
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1. INTRODUCTION

It is well known that the modal characteristics of flexible structures often change
significantly when the structures undergo overall motions. Radial rotating motion of a
cantilever beam, for instance, induces centrifugal inertia force which results in the
stretching of the structure and effectively increases its bending stiffness. Such phenomena,
often referred to as motion-induced stiffness variation effects, have been studied by several
researchers due to their practical importance in engineering. Examples of flexible
structures which undergo overall motions include rotating blades of helicopters, turbines,
and turbo-machines, and flexible spacecraft structures such as satellite antennae and solar
energy panels.

Rotating flexible structures have been often idealized as rotating beams since such
idealization has provided accurate dynamic characteristics for most rotating flexible
structures. Investigations on the vibration of rotating beams have been performed since
1920s. An analytical method to calculate the natural frequencies of a rotating beam was
presented by Southwell and Gough [1]. They suggested an explicit equation that relates the
natural frequency to the rotating frequency of a beam. This equation, which is frequently
called Southwell equation, has been widely used by many engineers since it is simple and
easy to use. Later, to obtain more accurate natural frequencies, a linear partial differential
equation that governs the bending vibration of a rotating beam was derived by Schilhansl
[2]. Applying Ritz method to the partial differential equation, more accurate coefficients
0022-460X/02/$35.00 # 2002 Elsevier Science Ltd. All rights reserved.
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for the analytical model of Southwell equation could be obtained. In the 1970s, owing to
the fast progress of computing technologies, a large number of papers in which numerical
methods were employed for the modal analysis of rotating structures were published. For
instance, Putter and Manor [3] applied the assumed mode approximation method for the
modal analysis of a rotating beam. Various other effects on the modal characteristics of
rotating beams were also investigated. The effect of tip mass was considered by Hoa [4]
and Wright et al. [5], elastic foundation and cross-section variation were considered by
Kuo et al. [6], shear deformation was considered by Yokoyama [7] and Du et al. [8], and
the transverse crack was considered by Wu and Huang [9]. A large number of related
papers were reviewed in some survey papers (see, for instance, references [10, 11]).

Even though many rotating structures can be successfully idealized as beams some
engineering structures (such as turbo-machine blades with low aspect ratios) behave like
plates rather than beams. Obviously, beam models are not adequate to predicting accurate
modal characteristics of plate-like structures. Therefore, the need for developing vibration
models for rotating plates is clear. In spite of this need, only a few research works on the
dynamics of rotating plates could be found in the literature survey conducted by the
authors. Dokainish and Rawtani [12] used a finite element technique to determine the
modal characteristics of rotating cantilever plates mounted on the periphery of a rotating
rigid hub. A similar approach was taken by Ramamurti and Kielb [13] to determine the
modal properties of twisted rotating plates. In these papers, a strain energy expression
which involves the steady state in-plane stress components was used for the rotating plate.
First, steady state stress components were obtained either analytically from the partial
differential equations of stretching motion or numerically from the equilibrium condition
between the centrifugal inertia forces and the steady state in-plane stress components.
Then, the linear equations of motion were derived by using the strain energy expression in
which the steady state stress components previously obtained were employed. This
approach involves unnecessary assumptions and complexities which result in a two-step
procedure to derive the equations of motion for rotating plates. Due to the complexities,
only rough descriptions of deriving equations of motion are given in the literature.

Recently, a new linear dynamic modelling method for flexible beams undergoing overall
motion was introduced (see references [14, 15]). Different from conventional linear
modelling method, this linear modelling method employs a non-Cartesian deformation
variable (stretch variable) to derive the equations of motion. It was proved that the use of
the non-Cartesian variable led to capture accurate motion-induced stiffness variation
effects. This modelling method was later successfully utilized to obtain the modal
characteristics of rotating beams (see reference [16]). The accuracy and the rigorousness of
the modelling method was well proved in the work. More recently, a linear dynamic
modelling method was introduced by Yoo and Chung [17] for flexible plates undergoing
overall motion. The dynamic modelling method for beams introduced in reference [15] is
extended for plates in this paper. The key ingredient of the modelling method is the use of
two in-plane stretch variables by which the exact in-plane strain energy can be expressed in
a quadratic form. The use of the two stretch variables enables one to derive linear
equations of motion which include proper motion-induced stiffness variation terms. The
accuracy of the modelling method was examined and verified by comparing its results with
some existing results. However, transient characteristics (instead of modal characteristics)
of rotating plates are mostly investigated with the modelling method.

The purpose of the present paper is to investigate the modal characteristics of rotating
cantilever plates. The dynamic modelling method, which was introduced in reference [17]
for flexible plates undergoing overall motion, is employed to derive the equations for the
modal analysis of a rotating rectangular plate. Dimensionless parameters are identified
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through a dimensional analysis and the effects of the dimensionless parameters on the
variations of modal characteristics are investigated. Eigenvalue loci veering and crossing
phenomena, which were not previously reported in this class of problems (vibration of
rotating structures), are discussed.

2. EQUATIONS OF MOTION

The system to be analyzed is a thin rectangular plate undergoing overall motion in
three-dimensional space. The plate is characterized by natural length a; width b; thickness
h; and material properties E (Young’s modulus), G (shear modulus), r (mass per unit
area), and n (the Poisson ratio). The Kirchhoff hypothesis for a thin plate is employed in
the present work. So the transverse shear and the rotary inertia effects are ignored to
simplify the formulation and to focus on the main issue of the present work, which is the
variation of modal characteristics of the plate undergoing overall motion. Based on the
Kirchhoff hypothesis, any straight line segments perpendicular to the mid-plane of the
plate remain perpendicular to the mid-plane during deformation. Thus, any one of them
can be used as a rigid reference frame for the plate. In this work, the straight line segment
located at one corner of the plate is employed as a reference frame (denoted as A in
Figure 1). The overall motion of the reference frame A is assumed to be prescribed in this
work. The angular velocity of A and the velocity of the reference point O (shown in
Figure 1), which represent the overall motion, can be expressed as

xA ¼ o1 #aa1 þ o2 #aa2 þ o3 #aa3; vO ¼ v1 #aa1 þ v2 #aa2 þ v3 #aa3; ð1; 2Þ
where oi and vi ði ¼ 1; 2; 3Þ are prescribed functions of time and #aa1; #aa2; and #aa3 constitute
a unit vector triad fixed to the reference frame A: As shown in Figure 2, the distances x and
y are measured, respectively, along the directions of #aa1 and #aa2 from the reference point O

to a generic point P0 (which lies on the mid-plane of the undeformed plate). When the
plate is deformed, the point P0 moves to a new position. The displacement vector from P0

to P (denoted by u) can be expressed as

u ¼ u1 #aa1 þ u2 #aa2 þ u3 #aa3: ð3Þ
The three Cartesian variables u1–u3 are conventionally approximated to obtain the
ordinary differential equations of motion. In the present work, however, two in-plane
stretch variables (s and r shown in Figure 2) along with the lateral displacement u3 are
approximated. Thus, by using the Rayleigh–Ritz method, they can be expressed as
Figure 1. Configuration of a rectangular plate and its reference frame.



Figure 2. Deformation of the mid-plane of a plane.

H. H. YOO AND C. PIERRE84
follows:

sðx; y; tÞ ¼
Xm
j¼1

f1jðx; yÞqjðtÞ; rðx; y; tÞ ¼
Xm
j¼1

f2jðx; yÞqjðtÞ; ð4; 5Þ

u3ðx; y; tÞ ¼
Xm
j¼1

f3jðx; yÞqjðtÞ; ð6Þ

where f1j; f2j; and f3j are spatial mode functions. Any compact set of admissible
functions which satisfy the geometric boundary conditions of the plate can be used as the
mode functions (see reference [18]). qj’s are generalized co-ordinates and m is the total
number of the generalized co-ordinates. For the convenience of formalism, s; r; and u3 use
the same number of co-ordinates m: However, they are not actually coupled. For instance,
f1j is not zero only if j4m1; f2j is not zero only if m15j4m1 þ m2; and f3j is not zero only
if m1 þ m25j4m1 þ m2 þ m3: In other words, m1; m2; and m3 denote the actual numbers of
generalized co-ordinates for s; r; and u3 respectively. m is the total sum of m1–m3:

The use of the two stretch variables s and r leads to the following expression of in-plane
strain energy of a rectangular plate:
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where

b1 ¼
Eh

ð1� n2Þ; b2 ¼ Gh: ð8; 9Þ

Since the stretch variables s and r are employed in equation (7), Ui represents the exact in-
plane strain energy of the plate. Now the total strain energy can be obtained as follows:

U ¼ Ui þ Ub; ð10Þ
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where Ub represents the bending strain energy which is given by

Ub ¼ 1
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where

D ¼ Eh3

12ð1� n2Þ: ð12Þ

By using the total strain energy, the generalized active forces (see reference [18]) can be
obtained as follows:

Fi ¼ �@U

@qi

ði ¼ 1; 2; . . . ; mÞ: ð13Þ

The use of s and r results in the exact in-plane strain energy which is expressed in a
quadratic form. Thus, linear generalized active forces can be obtained from the strain
energy. It, however, complicates the formulation of generalized inertia forces in the
equations of motion. The generalized inertia forces can be obtained by using the following
equation:
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where ’qqi’s are the time derivatives of the generalized co-ordinates; and vP and aP are the
velocity and the acceleration of the generic point P: By using the angular velocity of the
reference frame A and the velocity of the reference point O; the velocity of the generic
point P can be obtained as

vP ¼ ½v1 þ ’uu1 þ o2u3 � o3ðy þ u2Þ� #aa1 þ ½v2 þ ’uu2 þ o3ðx þ u1Þ � o1u3� #aa2

þ ½v3 þ ’uu3 þ o1ðy þ u2Þ � o2ðx þ u1Þ� #aa3: ð15Þ

Since u1; u2 and their derivatives (with respect to time) shown in equation (15) are not
approximated, they need to be replaced by s; r; u3; and their derivatives. For the
replacement, the following geometric relations between the in-plane stretch variables and
the Cartesian deformation variables can be utilized:

x þ s ¼
Z x

0

1þ @u1

@x

� �2

þ @u3

@x

� �2
" #1=2

dx; ð16Þ

y þ r ¼
Z y

0

1þ @u2

@Z

� �2

þ @u3

@Z

� �2
" #1=2

dZ: ð17Þ

In the present work, linear equations of motion will be derived eventually. Therefore, the
following approximated relations (which are obtained by using the binomial expansion of
equations (16) and (17)) can be employed since the final form of equations of motion is not
affected by the truncated higher degree terms.
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Differentiations of equations (18) and (19) with respect to time yield
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By using equations (20) and (21) along with equations (15) and (4)–(6), the partial
derivative of vP with respect to ’qqi can be obtained as follows:
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¼ f1i �
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Now the acceleration of point P can be obtained by simply differentiating the
velocity shown in equation (15) with respect to time. Substituting the acceleration
and the partial velocities into equation (14), the generalized inertia forces can be
obtained. By linearizing the generalized inertia forces and summing the generalized active
forces (obtained in equation (13)), the following linear equations of motion are finally
derived: Xm
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KS3
ij ¼

Z b
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Equations (23)–(25) can be used for the transient analysis of a plate undergoing overall
motion. Equations (23) and (24) govern the in-plane motions of the plate and
equation (25) governs the lateral motion of the plate. In equation (25), several motion-
induced stiffness variation terms are shown. These terms play important roles in the
vibration analysis of rotating cantilever plates. In the following sections, equation (25) is
particularized for a case of rotating cantilever plates and eigenanalyses are performed.

3. FORMULATION FOR VIBRATION ANALYSIS

The stretching motion is coupled with the bending motion in equations (23)–(25). The
coupling effect becomes negligible for thin flexible structures (see reference [16]). Thus, the
coupling effect between the stretching motion and the bending motion is assumed to be
negligible in the present work. So equation (25) is used independently for the vibration
analysis after ignoring all the coupling terms appearing in the equation.

Figure 3 shows a cantilever plate attached to a rigid hub A of radius R: The hub is
rotating with a constant angular speed O: Unit vectors #aa1; #aa2; and #aa3 fixed to the rigid hub
are parallel to the direction of the length, the width, and the thickness of the undeformed
plate respectively. The measure numbers of the velocity of O and the angular velocity of A

in the direction of #aa1; #aa2; and #aa3 are

v1 ¼ v2 ¼ 0; v3 ¼ �RO; o1 ¼ o3 ¼ 0; o2 ¼ O: ð40; 41Þ
These measure numbers are substituted into equation (25). Ignoring the gyroscopic
coupling terms (between stretching and bending) and the right-hand side terms in equation
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(25), the following equation is obtained for the free vibration analysis of the rotating
plate: Xm

j¼1

½M33
ij .qqj � O2M33

ij qj þ O2KGX2
ij qj þ RO2KGX1

ij qj þ KB
ij qj � ¼ 0: ð42Þ

It is useful to rewrite equation (42) in a non-dimensional form. For the purpose, the
following non-dimensional variables are introduced:

t ¼ t

T
; w ¼ x

a
; z ¼ y

b
; zj ¼

qj

a
; ð43246Þ

where T is given as

T ¼ rha4

D

� �1=2

: ð47Þ

Using these dimensionless variables, a non-dimensional form of equation (42) is obtained
as follows: Xm

j¼1

½ %MMij .zzj � g2 %MMijzj þ g2 %KK
GX2

ij zj þ sg2 %KK
GX1

ij zj þ %KK
B

ij zj � ¼ 0; ð48Þ

where double overdots on zj means double differentiation with respect to t and
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Z 1

0

Z 1
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cicj dw dz; ð49Þ
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1

2
ð1� w2Þci;wcj;w dw dz; ð50Þ

%KK
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ð1� wÞci;wcj;w dw dz; ð51Þ

%KK
B

ij ¼
Z 1

0

Z 1

0

½ci;wwcj;ww þ d4ci;zzcj;zz þ nd2ci;wwfj;zz

þ nd2ci;zzcj;ww þ 2ð1� nÞd2ci;wzcj;wz� dw dz: ð52Þ

The function ci shown in equations (49)–(52), which is the function of dimensionless
variables w and z; has the same numerical value as the function f3i; which is the function of
x and y: There are three parameters involved in equations (48) and (52): d; the ratio of the
plate width to its length (the aspect ratio); s; the ratio of the rigid hub radius to the plate
Figure 3. Configuration of a rotating cantilever plate.
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length; and g; the dimensionless angular speed. These parameters are given as follows:

d ¼ a

b
; s ¼ R

a
; g ¼ OT : ð53255Þ

From the non-dimensional equation (48), the free vibration eigenvalue problem of a
rotating cantilever plate can be obtained by assuming that the zi’s are harmonic functions
of t (dimensionless time). Defining a column matrix z whose elements are the zi’s, one has

z ¼ ejotZ; ð56Þ

where o is the dimensionless natural frequency which can be obtained by multiplying the
natural frequency of the rotating plate by T ; and Z is a constant vector characterizing the
deflection shape for synchronous motion. Substituting equation (56) into equation (48)
yields the following discrete eigenvalue problem:

o2MZ ¼ KZ; ð57Þ

where M and K are square matrices whose respective elements Mij and Kij are given by

Mij ¼ %MMij ; Kij ¼ %KK
B

ij zj � g2 %MMij þ g2 %KK
GX2

ij þ sg2 %KK
GX1

ij : ð58; 59Þ

4. NUMERICAL RESULTS

To solve the eigenvalue problem formulated in equation (57) for the rotating plate,
assumed mode functions are needed. In the present work, five cantilever beam mode
functions and seven free–free beam mode functions which include two rigid body mode
functions are combined (see reference [19]) to generate 35 plate mode functions. To check
the convergence of the lowest five natural frequencies, results for the three cases of
employing mode functions are given in Table 1. Fifteen mode functions are employed for
the first case, 35 mode functions are employed for the second case, and 63 mode functions
are employed for the third case. The maximal difference between the second and the third
results is less than 0�2%; which indicates the sufficient convergence. Therefore, 35 mode
functions are employed to obtain all the results in this study.

In this study, the coupling effects between the stretching and the bending equations are
assumed to be negligible. To check the validity of the assumption, numerical results
considering the coupling terms are obtained. A typical set of parameters is employed to
obtain the results. In Table 2, the results are compared with those obtained by not
considering the coupling terms. The maximal difference is less than 2% even though the
non-dimensional angular speed g is 10 and the slenderness ratio is 20. As mentioned
earlier, the coupling effects only become important for quite large non-dimensional
angular speed and small slenderness ratio. Therefore, the coupling effects, even though it
can be considered if needed, will be ignored in this study.

To prove the reliability of the modelling method presented in this paper, the results
obtained by using the present modelling method are compared to the results obtained by
using the existing method (see reference [12]). The parameters used to obtain the results are
shown in Tables 3 and 4. As shown in the tables, the results obtained by the present
modelling method are in reasonable agreement with the results obtained by the existing
method.

Figure 4 shows the variations of the lowest five dimensionless natural frequencies of
rotating square plates ðd ¼ 1Þ: The solid lines in the figures are for zero hub radius ratio
ðs ¼ 0Þ; while the dotted lines are for s ¼ 1: As expected intuitively, the dimensionless
natural frequencies increase as the angular speed ratio increases. The increasing rates



Table 1

Convergence of lowest five natural frequencies for the three cases of employing mode

functions ðd ¼ 1; s ¼ 1Þ
Non-dimensional Mode Case 1 Case 2 Case 3

angular speed x y x y x y
3 5 5 7 7 9

g ¼ 10 1 13�332 13�273 13�260
2 15�426 15�311 15�288
3 30�000 29�792 29�734
4 43�579 43�289 43�230
5 49�103 48�851 48�768

Table 2

Comparison of lowest five natural frequencies with and without the coupling effect

ðd ¼ 1; g ¼ 10; a ¼ 20Þ
Hub ratio Mode Results with no coupling Results with coupling

s ¼ 0 1 5�0491 4�9679
2 9�0322 8�9289
3 26�761 26�761
4 32�350 32�347
5 39�078 39�068

s ¼ 1 1 13�273 13�056
2 15�311 15�130
3 29�792 29�792
4 43�289 43�286
5 48�851 48�838
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(slopes of trajectories) become larger as the hub radius ratio s increases. These result from
the centrifugal inertia force which increases as the angular speed or the hub radius
increases.

An interesting phenomenon can be observed from Figure 4. The third and fourth
eigenvalue loci approach each other as the angular speed increases; however, they do not
cross, but veer away from each other. This phenomenon is referred to as eigenvalue loci
veering. Eigenvalue loci veering was first discussed in engineering systems by Leissa [20].
Later, similar veering phenomena were also observed in other engineering examples (see
references [21, 22]). In these examples in references [20–22], however, eigenvalue loci
converge toward each other very closely before veering away. Compared to the abrupt loci
veerings, those displayed in Figure 4 for the rotating cantilever plate are mild: the
eigenvalue loci, although clearly veering, are always substantially separated from each
other. Considering that the number of modal functions used in the present analysis is
sufficient to insure adequate convergence for the lowest five eigensolutions, it is clear that
the loci veering in Figure 4 do not result from numerical approximation. Indeed, the
minimum distance between the third and the fourth loci in Figure 4 did not decrease when
more assumed mode functions were employed, thereby preserving the veering.

The diminishing distance between particular eigenvalues as the angular speed increases
can be explained by examining the associated mode shapes. Since the cantilever plate is



Table 3

Comparison of lowest five natural frequencies by the present and Southwell methods

ðd ¼ 1; s ¼ 0Þ
Non-dimensional Mode Present Southwell
angular speed method method

g ¼ 1 1 3�5156 3�5136
2 8�5328 8�5282
3 21�520 21�525
4 27�353 27�402
5 31�206 31�458

g ¼ 2 1 3�5963 3�5791
2 8�5507 8�5324
3 21�865 21�894
4 27�384 27�691
5 31�477 32�113

Table 4

Comparison of lowest five natural frequencies by the present and Southwell methods ðd ¼
1; s ¼ 1Þ

Non-dimensional Mode Present Southwell
angular speed method method

g ¼ 1 1 3�7324 3�7299
2 8�6240 8�6138
3 21�706 21�710
4 27�394 27�554
5 31�350 31�760

g ¼ 2 1 4�3805 4�3676
2 8�9087 8�8699
3 22�580 22�612
4 27�557 28�288
5 32�043 33�620
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rotating about an axis (which is parallel to the vertical direction of the plate), the
eigenvalue corresponding to the mode shape with vertical nodal lines increases faster than
that with horizontal nodal lines. This is because the rotation has a greater effect on the
bending modes. For example, the third and fourth modes have primarily vertical and
horizontal nodal lines for zero speed, as shown in Figure 5. This discussion explains why
two particular eigenvalue loci converge toward each other as g increases. Thus, it seems
that the two loci should cross each other eventually. However, as shown in Figure 4, they
veer away rather than cross. Then how could they avoid crossing? The answer to this
question can be found by observing the mode shapes of the two eigenvalue loci.

Figure 6 displays the lowest five nodal line patterns for the rotating square cantilever
plate. The hub radius ratio s is equal to 0 and the non-dimensional rotating speed g is
equal to 10. Comparing these mode shapes to those of the non-rotating plate shown in
Figure 5, the third and the fourth modes seem to switch their shapes (with their nodal lines
having opposite concavities). Clearly from Figure 4, this mode switching is associated with
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Figure 4. Lowest five natural frequencies versus angular speed for rotating square cantilever plate ðd ¼ 1Þ:

Figure 5. Nodal lines of the lowest five mode shapes on non-rotating square cantilever plates.

Figure 6. Nodal lines of the lowest five mode shapes of rotating square cantilever plates ðs ¼ 0; g ¼ 10Þ:
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the mild veering (between the third and the fourth loci) which occurs continuously. Thus,
the changes of the mode shapes should be also continuous. To verify this speculation, the
nodal line patterns of the third and the fourth loci for various angular speeds are displayed
in Figures 7 and 8. Initially, the third mode has primarily vertical nodal lines while the



Figure 7. Variation of the third mode shape nodal lines versus angular speed change ðs ¼ 0Þ:

Figure 8. Variation of the fourth mode shape nodal lines versus angular speed change ðs ¼ 0Þ:

Figure 9. Superposition of the nodal lines of the third and the fourth mode shapes.
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Figure 11. Nodal lines of the lowest five mode shapes for non-rotating rectangular cantilever plate
ðd ¼ 5; s ¼ 1Þ:
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Figure 10. Lowest five natural frequencies versus angular speed for rotating rectangular cantilever plate
ðd ¼ 5; s ¼ 1Þ:
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fourth mode has horizontal ones. As the dimensionless angular speed increases (and the
two loci approach each other), the nodal lines become more and more ‘‘bi-directional’’. At
the angular speed where the two eigenvalues are closest, the two mode shapes become very
similar and their nodal lines are slanted at 458: As the angular speed increases more and
leaves the veering region, the modes return to the one-directional nodal line pattern except
that their position has changed. Since the fourth mode has the vertical nodal lines (which
characterize the third mode before the veering) after the veering, the fourth eigenvalue
locus increases faster than the third eigenvalue locus. Incidentally, it is also worth noting
that the concavity of the nodal lines of both mode shapes shown in Figure 7 changes
during the veering. Figure 9 shows the superpositions of nodal lines obtained in



Figure 12. Nodal lines of the lowest five mode shapes for rotating rectangular cantilever plate ðd ¼ 5;
s ¼ 1; g ¼ 10Þ:
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Figures 7 and 8. Observe that two points of the plate are common to all nodal lines of the
third and the fourth mode shapes. Figure 9 also exhibits that the families of nodal lines for
the two mode shapes possess the same two common points.

The effect of the aspect ratio on the variations of the natural frequencies is shown in
Figure 10. The variations of the lowest five dimensionless natural frequencies of rotating
rectangular plates with aspect ratio d ¼ 5 and hub radius ratio s ¼ 1 are shown in the
figure. It can be found from Figure 10 that the second and the third loci cross each other.
Figures 11 and 12, respectively, show the five mode shapes when the plate is stationary and
rotating (with g ¼ 10). One can clearly observe that the second and the third mode shapes
switch their position. It can be also found that the crossing occurs between symmetric and
skew-symmetric modes.

5. CONCLUSIONS

A simple and consistent formulation for deriving the linear equations of motion
governing the free vibration of rotating cantilever rectangular plates is presented. The
formulation eliminates unnecessary, complicated, and perhaps inconsistent steps involved
in other previous methods and provides an accurate modelling for the vibration analysis of
rotating plates. It is shown that the rotating plate’s natural frequencies increase with both
the angular speed and the hub radius. Some natural frequencies increase faster than others
with the angular speed, resulting in the phenomena of eigenvalue loci veering and crossing.
When two loci cross, the corresponding mode shapes remain nearly unchanged and simply
change position. When two loci veer, drastic mode shape variations occur continuously in
the veering region. It is found that the concavities of the nodal lines are reversed and there
exist two nodal points which are common to all nodal lines of the two veering loci. For the
problem presented in this paper, eigenvalue loci veering occurs between two
symmetric modes while eigenvalue crossing occurs between symmetric and skew-
symmetric modes.
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