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A linearized algorithm for solving inverse sensitivity equations of non-defective systems
is presented. It is based on the orthonormal decomposition of the first order directional
derivatives and directional continuity along t of the t — 4 base. The least-squares methods
which minimize the trace of eigenmode matrix suggested by Pesek and Lallement,
respectively, for self-adjoint systems are extended to general non-defective systems in this
paper. Moreover, the new algorithm has intuitive simple geometrical significance and is
consistent with the first order Taylor expansion of the T — A base. The numerical results
calculated from the aforementioned three methods are compared, respectively, with the
exact solution using two simulation examples. It demonstrates that the results of the
proposed algorithm are the nearest to the exact solution.

© 2002 Elsevier Science Ltd. All rights reserved.

1. INTRODUCTION

Various updating techniques have been proposed for structural dynamics system
identification by reconciling finite element models of structures with modal parameters
identified from dynamic testing [1-5]. The inverse sensitivity method, a kind of parameter
correction methods, using first order Taylor expansions of the eigenpairs was first
extended to systems with repeated eigenvalues by Pesek [1] and then generalized to non-
defective systems by Chen et al. [2]. This updating method constructs the governing inverse
sensitivity equations J(p,t)-Ap = AE for the unknown parameter correction vector Ap
from the eigendifference AE [1]. The correction parameters Ap; (k=1,2,...,n) are
usually unknown. It leads to a set of non-linear equations for the design parametric
corrections Apy because the coefficient Jacobian matrix J(p,t) depends on the direction t
of the unknown correction vector Ap which is essentially due to the non-differentiability of
the repeated roots with respect to the parametric vector p. It is difficult to solve
analytically. Therefore, a linearized procedure is desirable.

It is well known that at a given point P(p) in the n-dimensional parametric space, the
orthonormal eigenvector matrix X, corresponding to a repeated eigenvalue A (abbr. A-
base) is termed degenerate and its derivatives with respect to design parameters are
singular. That is to say, there is an infinite number of A-base at P(p). There also exists
distinct derivable A-base Z,(t) (abbr. T — 1 base) and there are different directional
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derivatives Z,,, along different directions [6]. Usually, the t—/ base Z,(t) can be expressed
in terms of an arbitrary A-base X, by the transformation matrix I',(X,,t) which is
contained in the Jacobian matrix J(p, t). Hence, J(p, t) depends on the direction t. If the
parameter correction vector Ap is known, the transformation matrix can be uniquely
determined by solving an eigenproblem of a certain matrix with respect to direction t [7—
9]. However, in the inverse sensitivity method, the correction parameters Apy
(k=1,2,...,n) are required and of course, the direction t is unknown. It is impossible
to determine the transformation matrix by solving the eigenproblem of an unknown
matrix. Therefore, the key for linearization is to determine the transformation matrix
I',(X,, 1) first. The method by minimizing the trace of a certain matrix in the sense of least
squares is most often used to determine a priori the unknown parametric transformation
matrix. For example, see reference [1]. Lallement and Kozanek [10] evaluated the
transformation matrix using the trace of a certain matrix in the sense of least squares
under an orthogonal condition. However, most researches have been limited to self-
adjoint systems.

This paper will first generalize the method of PeSek and Lallement to general non-
defective systems. Then a new method to determine the transformation matrix for
multivariable non-defective systems will be proposed. This is based on the first order
Taylor expansion of the t—/A base Z,(t) via the orthonormal decomposition of the
directional derivatives Z,,.. The new expressions have intuitively simple geometric
significance and are consistent with the first order Taylor expansion of the eigensolution in
mathematical form. Finally, two simulation examples are given using the three methods
respectively. Comparing the numerical results with the exact solution, one finds that the
proposed algorithm is the nearest to the exact one.

2. THEORETICAL BACKGROUND

This section will first outline the inverse sensitivity method for parameter correction for
repeated eigenvalues with multivariable. Consider the following non-defective generalized
eigenvalue problem:

K(p)®r(p) = M(p)®r(p)Q2(p), K'(p)®.(p) =M"(p)®.(p)2(p), (1,2)

®! (p)M(p)®r(p) = Iy, R, (PYM(P)dr;(p) = 1, (3,4)

where the mass matrix M(p) and the stiffness matrix K(p) of an N degrees of freedom
discrete vibration system are single-valued limited functions and have continuous partial
derivatives of all orders with respect to multiple design parameters p = (p1,p2, ..., p,,)T.
K(p), M(p) are real matrices and M(p) is positive definite. For general non-defective
systems, an eigenvector of equations (1), (2) and the biorthonormal condition (3) is
undetermined up to a non-zero constant multiplier. An additional gauge condition
(4)—every column g (p) (i=1,2,...,N) in right eigenvector matrix ®g(p) is normal-
ized according to the mass matrix M(p), should be imposed to result in unique
eigenvectors [11]. In some special cases, for example, when M(p) is skew-symmetric,
condition (4) may fail even if M(p) is real, then an alternative condition may be adopted
[12]. As M(p) is positive definite in this text, condition (4) will always be valid.

It is assumed that at the computed point p = p, the eigenvalue problem has / repeated
eigenvalues A = AI,. Let Z,(t) (¢ = R, L) denote the t—4 base, where

T = (p]’pz,...,pn)T/ ZL](PI)2~
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The eigenproblem corresponding to T—2A base Z,(t) can be written as

KZz(t) = IMZg(t), K'Z.(t) = M"Z.(7), (5,6)

Z]I(t)MZg(t) =1,  zp(t)Mzg(t) = 1. (7,8)

There exist transforms I',(X;,t) (t = R, L) between Z,(t) and the arbitrary A base X, (1 =
R, L), such that

ZR(‘C) = XRFR(XI, 17)7 ZL(‘C) = XLFL(X[,‘E), (9, 10)
where T',(X;, 1) (1 = R,L) can be determined by an / order eigenvalue problem of the
matrix

def

A(X;, 1) = X} (K,e — M, )XR (11)

and is biorthogonal, i.e.,
FI(XH T)FR(XM T) = Ih~ (12)

Taking the derivative of equation (5) along direction t, one can obtain the sensitivity
governing equations of the repeated roots in the eigensolutions. The solution set of the first
order governing equations has the following orthonormal decomposition expression [13]:

ZR,T:W};(‘E)—FZR(‘E)DR, (13)

where (,;) denotes the directional derivative with respect to direction t, Dy is the

coefficient matrix and Wip(t) = {Wk, (1), Wko(T),...,Wg,(t) is the special particular

solution given by the “‘restrictive’ generalized 1-inverse [14] set of the matrix k = K — /M.
Evaluating

t=¢=(0,...,1,...,00" (i=1,2,...,n),

ith

where e; is the ith canonical vector, leads to the partial derivatives of the repeated
eigenvalue and the corresponding eigenvectors with respect to p;

ZR(e,-) = XRFR(Xt,e,-), ZL(e,-) = XLI‘L(Xt,e,-), (147 15)
where I',(X,, e;) (t = R, L) can be determined obviously by the eigenvalue problem of the
matrix

AX, )

XE(KM&; _/"“Mae,' )XRa <l6>
1.e.,

A(Xhei)rR(Xlaei) = FR(Xl7ei)A7ei (17)

AT(X, e)Tr(Xe) =Tr(Xp,e)A,,  TL(X,,e)Tr(Xe) =1,  (18,19)

in which A, =diag(Z,} 4.2 ,..., 2,0 ). There exist transformations @(t,e;) = [07] (1 =

R, L) between Z,(t) and Z,(e;) (t = R, L) such that
Zr(e;)) = Zr(1)Or(1,€;), Zi(e) =Z1(t)Or(t,€). (20,21)
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Using equations (9), (10), (12), (14), (15), one has
®R(T’ei) = FI(XIJI)FR(XHei)a (22)

@L(T, e,») = F%(X[, ‘E)FL(XI, e,»), @I(‘E, e,')(‘)R(’Ii7 ei) = lh. (23, 24)

The aim of the inverse sensitivity method for the parameter correction is to find the
unknown changes of parameters Ap; (k = 1,2,...,n) which reflect the difference between
the experimental modal data and the analytical ones. This is based on the first order
Taylor expansion in the Tt — A bases

A—A=A_ 41, Z — 7Zx(1) = Zg, A1, (25,26)

where A = diag(41, 42, ..., 4n) and Z = {Z,,%,,...,Z,} denote the test modal data of the
structural model. Azt is given by the unknown correction vector p = p + 4p such that

At = |4p| = ZLI(A]J,»)Z.

The repeated eigenvalues and the corresponding eigenvectors for multivariable non-
defective systems are not differentiable in general, although their directional derivatives
exist and have been given as follows [2]

n
A= Z Or(t,€)A, 0{(1:7 €;)COS Ure; (27)
i=1

i=

n
ZR,= Z W(e;)O] (1, €;)coS e, + Zr(T)Dr, (28)
p

where cos o, means the angle between the direction t and the canonical vector e; (i =
1,2,...,n). Substituting equation (27) into expansion (25), one has

n
A— A=) Og(te)A Of(r,e)4p;. (29)
i=1

Then one takes the advantage of the projection operator P; which has the following
properties [15]:

P/Zr(t) =0, P Wk(1) = Wh(1). (30,31)
Left-multiplying equation (26) by P{ in order to reject the homogeneous solution part,

substituting equation (28) and using properties (30) and (31) one has

P/Z = Z Wi (e))O] (t,e;)4p;. (32)
=1

An inverse sensitivity equation results

where J(p, 1) = [j} is the generalized Jacobian matrix [2], J; = [ti], J. = [v’;f],
h h
ti = Zey,;-x,gkeg, v = ijmke/g (G=12,....h k=12,..n)
s= s=

and AE = [4/] is the known eigendifference, where 44 = (11 — 2), (A2 — 4),..., (k= A)"
and 4z = (P}7;,P]z,,...,P}7,)". Solving equation (33) in the sense of least squares, one
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can obtain the unknown parameter correction vector
Ap = J(pa T>+'AE7 (34)

where J(p, )" is the Moore-Penrose generalized inverse of matrix J(p, t).

This is the whole procedure of the inverse sensitivity method for parameter correction
with repeated eigenvalues. Obviously, in view of equations (22) and (23), the generalized
Jacobian matrix J(p, ) involves the transformation matrix @,(t,e;) of equations (29) and
(32) which depends on the transformation matrix I',(X,,t). The parameter correction
vector Ap is to be determined with its direction T not yet known. It is impossible to
determine the transformation matrix I',(X;,t) by solving the eigenvalue problem of an
unknown matrix A(X,,t). Hence, in order to solve the unknown correction vector Ap
linearly, the transformation matrix I',(X,, t) must be found first.

3. EXTENSION OF THE METHOD OF PESEK AND LALLEMENT

IN 1993, Lallement and Kozanek [10] presented the formula for evaluating I'(X, 1) to
minimise the trace of (XI'(X,t) — Z) (XI'(X,1) — Z) in the sense of least squares under
the constraint I'" (X, t)I'(X, t) = I,. This formula is

r(X,7)=UZ'X)", (35)
where
V=B=X"ZZ'X (36)

and B is a positive-definite matrix in R”** U is a square root of B. It can be shown with
eigenvalue theory that a positive-definite matrix has a unique symmetric positive-definite
square root.

In 1995, also for self-adjoint systems, PeSek [1] gave another formulae for the evaluation
of T'(X, t). It was assumed in equation (26) that in the t—1 base, Z(t) nicely approximates
the corresponding test modes Z. Thus, one can create Z = XI'(X, t). ['(X, 1) can be found
by minimizing the trace of the matrix (Z — Z(t))"(Z — Z(r)) in the sense of least squares.
Then I'(X, 1) can be expressed as

rx, ) =X"X)"'X"Z. (37)

Since the constraint equation I''(X,t)['(X,t) =1, was not taken into account in
the last formulae, the matrix Z(tr) must be orthonormalized in additional to the
matrix M.

Now one can extend formula (35) presented by Lallement to general non-defective
systems. Denote

U2 =Bz =X'Z Z'Xz, U=B,=XZZ'X, (38,39)

It can be shown that B = B} yields Uz = U] . In order to satisfy the biorthonormal
condition (12), one may consider

Mr(X,,1) = Up(Z' Xz)™', Tu(X,1)=U(Z'X,)™"! (40,41)
to get
IT(X, )Tr(X,, 1) = (XIZ) 'UTUR(Z Xp) ' = (XTZ) 'URUR(Z Xp) !
= (X'Z)XIZZ'XR(Z'Xp) ' = 1. (42)
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Similarly, one can extend formula (37) of PeSek to non-defective systems. It may be
considered approximately

Z = XgI'r(X;, 7). (43)
Premultiplying by XE, one has
Cr(X, 1) = (X]Xr) X} Z. (44)
Similarly, 'y (X;, t) may be determined by the biorthonormal condition (12).

4. NEW ALGORITHM

A new method to evaluate the transformation matrix I'g(X,, t) will be presented in this
section. This is based on the orthonormal decomposition of the firstorder directional
derivatives in the T—1 base Zg(t) as equation (13).

The particular solution Wi(t) € Cg(k), Cr(k) is the complementary space of the kernel
of k. The first-order Taylor expansion of the t—/4 base Zg(t) along direction t is similar to
equation (26). Substituting equation (13) into equation (26) one has

Z — Zx(t) = Wi(t)-At + Zg(t)Dg-A1. (45)
Using the left projection
P,=1-M'X; X} =1-M"Z,Z. (46)
Pre-multiplying equation (45) by P{ and substituting equations (30) and (31) one has
P/Z = Wi(1)-41. (47)
Substituting equations (9) (47) into equation (45) gives
XzIr(X;,1) = Z — P} Z — Zg(t)Dg-A1. (48)
Premultiplying by X; and then by (XEXR)fl, one obtains
Tr(X,7) = (X;Xz) ' X[(Z - PZ) — (X[ Xg) "' X[ Zg(t)Dg-Ar. (49)
Denote
Tr = (XIXR) 'XHZ - PIZ), Tr=—-XXg) 'XIZr(t)Dr.  (50,51)
Equation (49) can be rewritten as
I'r(X;,t) =g + Tro-Ar. (52)
Transposing equation (23) and then substituting equation (52), one has
O/ (t,e;) =T[(X;,e)Tr(X;, 1) = T} (X, e)Tr + T} (X, ) rp-Ar. (53)

Substituting equation (53) into equation (28), one obtains

Zr- _ZW* e)[TT(X;,e)Tri + T'L(X;, )T ra-AT|cOS ttee, + Z (1) D
= ZW* e[} (X,,e)T r1cOS 0y, + Zr(T)Dg

+ZW* ()1 (X,, &)L gy COS tge,-AT. (54)

In the first order Taylor expansion (26) of the t—/ base Zg(t), the second and higher
order small quantity terms are neglected. Substituting equation (54) into the expansion
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(26), one finds that the part including I'g, yields a second order term. Neglecting the first
order small quantity term of the T'zr(X;, 1) in expression (52) means the neglection of the
second-order term of Taylor’s expansion and will not introduce additional approximation.
Therefore, when At is a small quantity, one can neglect the term including I'y, and
consider

Tr(X,,1) = (X;Xz)'XN(Z - PIZ) (55)

and I'.(X,, t) can be determined by biorthonormal condition (12).

The new algorithm (55) for T'r(X,,t) is found by the orthonormal decomposition
expression (13) of the first order directional derivatives Zg,, of the t— 1 base Zg(t) and by
neglecting the small component Zg(t)Dg-47 in the space of the kernel of k. Therefore, it
has intuitively simple geometric significance. On the other hand, neglecting the first order
small quantity term of equation (52) yields the new algorithm (55). It is consistent with the
first order Taylor expansion of the t—A base mathematically.

5. NUMERICAL EXAMPLES

In this section two simulation examples (symmetric and asymmetric) are given to
demonstrate the procedure of calculating the transformation matrix I'r(X;, t). The results
by the three methods are compared, respectively, with the exact solution. All results are
obtained by using Mathematic 3.0.

Example 1. Suppose that an asymmetric system is given as follows:

1+ p? 10 3
Mp)=|—1+¢ l+p+(1+p)’+(1+p) 4|,
0 4 2
L+p+(1+p’+1+p) 38 17
K(p) = (1+¢)° 44p+22+p)°+2+p) 20 :
4 16 24 (14p)°
where p = (p, q)T are the design parameters and at p = p, = (1, I)T, the original system

2 10 3 14 38 17
M=|0 14 4|, K=1]8 50 20
0 4 2 4 16 10

has a set of complete eigenvalues
Q = diag(3,3,6),
which includes a two-fold eigenvalue
A = I, = diag(3, 3),
whose arbitrary biorthonormalized right and left 4 base are, respectively,

—1 —0-408248 —0-333333 0
Xp=| 0 0408248 |, X, = 0 0-408248
1 0 0-666667 —0-816497
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The left project matrix of the repeated eigenvalue is
0-333333 0 0-666667
P, = 10333333 0 0-666667
0-333333 0 0-666667

Another mechanical system to be considered is distinguished from the original analytical
system by changing the physical parameters p = p, + 4p. Here, one uses the simulated
measured (exact) data that can exclude measure errors. On the assumption that for p =
(1-14, 0-857171)", then the two-fold eigenvalue 4 =/, =4=3 is split into two
unrepeated eigenvalues 41 = 4-21654, A, = 2:95525, the corresponding biorthonormalized
eigenvectors (simulated measurement data) are

—0-553176  —0-236044
Z=|—-0-161349 0-32302
0-615619  —0-0688866

By expressions (40), (44) and (55), one can obtain the transformation matrix I'z(X,, 1),
denoted as I'r(Lallement), I'r(Pesek) and I'g(new), respectively,

0-760578 —0~0849182]

I'r(Lallement) = [ —0-689491  1.04651

a(Peiek) 06354  —0.0725046
ese =
R 0298315 077351 |’

0-681556  —0-0809465
I'r(new) =

—0:395222 0791234

In order to verify the efficiency of the mentioned methods, one can calculate the exact
solution of T'r(X;,t) denoted as I'r(exact) by solving an eigenproblem. Here, for p =
(1-14, 0~857171)T yields t = (0-7, — 0-71415). Along this direction, one can solve

_ [ 0-827076 —0-100849]

P /) =
rlexact) =1 0 <6209 0994902

The correlations between the transformation matrix of Tr(exact) (d:ef[)?l 7,]) and

I r(Lallement), T gr(PeSek), I'r(new) (d:ef[yl 7,]) can be evaluated by the modal
assurance criterion (mac)

L Sy - 5 ’
(> 70) (Fis 72)

where (y;,7;) is the inner product of vectors y; and y~;. Then denote

u = Y(mac, + mac,).

It is easy to have u(Lallement) = 0990131, u(Pesek) = 0-987598 and u(new) = 0-997454. 1t
should be noted that the closer u value is to 1 the better is the correlation between matrices.
The cases for the other three arbitrary parameters are calculated and shown in Table 1.

The algorithm presented in this paper virtually includes all previously developed
methods for self-adjoint systems as special cases. Here, a numerical example for self-
adjoint system will be given to demonstrate the application.
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Comparison of transformation matrix T'r(X,,t) (asymmetric system)

B, = (09,1.17321)"

P, = (1.012,1:19964)"

Py = (1:06,1.08)"

I'r(exact)
—0-877672  0-106402 —0-04013  0-47258
0-479261  —0-994323 0-999194 —0-881288
I g(new) - :
—0:936683 0-127603 —0-0286746  0-411942
0350165  —1-5098 1-11584 —0-78684
I'r(Pesek) - - .
—0-907228 0-214871 —0-0737974  0-399497
0288324  —1-69303 121058  —0-76071
I'r(Lallement) _ ,
—0-761369 0-117847 0-1973 0-715055
0629473  —1.07923 0-783804 —0-904482
u(exact) 1
u(new) 0-997454 0-999846
u(Pesek) 0-987598 0-999748
u(Lallement) 0-990131 0-944547

[ 0697465 —0.0853097 |
0716619 0-996354
[ 0613586 —0.0733859 ]
—0-549818  0-926896
[ 0579243  —0.0831492 |
0477711 0-947395
[ 0754951 —0.0118732]
—0750794  0-991761
0-997651
0-994047
0-997175

Example 2. Suppose one is given the following symmetric system:

1 0 0 3 -2 -1
Mp)=[0 4 0|, Kp)=|-2 2+8+2¢ -2q9 |,
00 1 ~1 ~2¢ 1+ 2g

where p = (p,¢)" are the design parameters and at p =

po = (1, I)T, the original system

1 00 3 =2 -1
M=|0 4 0|, K=|-2 12 -2
0 0 1 -1 -2 3

has a set of complete eigenvalues
Q = diag(1,4,4),
which includes a two-fold eigenvalue
A =1, = diag(4,4),

whose arbitrary biorthonormalized right and left A base are as following, respectively,

0707107  0-408248
Xr =X = 0 —0-408248
—0-707107  0-408248
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TABLE 2

Comparison of transformation matrix T'(X, 1) (symmetric system)

P, = (088,1-16)" P, = (1.02,0-801)" Py = (1-14,1.14283)"
I'(exact) _ ,
0799171 0601103 —0-676021 0-736883 —045877 0-888555
—0-601103  0-799171 0736883  0-676021 0-888555  0-45877
T'(new) _ - _ :
0789638  0-613343 —0.676468 0.735769 —0.457101 0.889181
—0-61156  0-788969 0.734532  0.677211 0.889367  0.456718
I'(Pesek) _ - - - _ -
0789638  0-613343 —0-676468 0-735769 —0457101  0-889181
—0-646678  0-814835 0-696756 0673357 0882845 0437164
I'(Lallement) - , - -
0787551  0-616249 —0-682777 0730626 —0-45277 0891627
—0-616249 0787551 0730626  0-682777 0891627  0-45277
u(exact) 1 1 1
u(new) 0-999774 0-999997 0-999996
u( Pesek) 0-999147 0-9996 0-999806
u( Lallement) 0-999636 0-999915 0-999955

The project matrix of the repeated eigenvalue is

0-333333 0-166667 0-333333
P, =Pr = | 0666667 0-333333 0:666667
0-333333 0-166667 0-333333

Similarly, the cases of three arbitrary parameters for p;,p,, p; are calculated and the
comparison of the transformation matrix I'(X, t) is shown in Table 2.

6. CONCLUSIONS

This paper gives a new algorithm to determine the transformation matrices from 4 bases
to T—4 base for non-defective multivariable systems. The proposed method is a key for
linearization to solving the inverse sensitivity equation, which has obvious geometrical and
mathematical significance. Two simulation examples illustrate the performance of the
proposed method and their numerical results are compared. The result of the proposed
algorithm is the nearest to the exact solution. The procedure of the method shows its
potential in correcting model parameters and detecting structural damage of general non-
defective systems [16].
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APPENDIXA: NOMENCLATURE

ith canonical vector of n-dimension parametric space
multiplicity of the eigenvalue considered
h order identity matrix

K,K(p) structural real stiffness matrix
M, M(p) structural real positive-definite mass matrix

projection matrix
n-dimension vector of structural design parameters

P(p) computed point of the analytical model
X, arbitrary M-biorthonormalized eigenvector matrix with respect to /A-fold

eigenvalue A (abbr. J-base)

Z,(1) derivable J-base along direction t passing computed point P(p) in the n-

dimension parametric space (abbr. T — 4 base)
test mode matrix of structural model corresponding to Zg(t)
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4p

AE

A

A

A

1

r,(X,n)
O(r,e;)
Superscripts
T
Subscripts

t

A. Y. T. LEUNG ET AL.

parameter correction vector

the differences between test modal data and computed eigensolutions, the
so-called eigendifference

h-fold computed eigenvalue

Al diagonal matrix of /-fold computed eigenvalue

diagonal matrix of test eigenvalues of structural model corresponding to A
unit vector of an arbitrary direction in n-dimension parametric space, or
unit vector along correction vector Ap

transformation matrix from X, to Z,(t)

transformation matrix from Z,(t) to Z,(e;)

transpose of matrix ( ) (not Hermitian transpose)

“R” or “L” denote right or left

90)

ot P=po
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