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A linearized algorithm for solving inverse sensitivity equations of non-defective systems
is presented. It is based on the orthonormal decomposition of the first order directional
derivatives and directional continuity along s of the s � l base. The least-squares methods
which minimize the trace of eigenmode matrix suggested by Pe$ssek and Lallement,
respectively, for self-adjoint systems are extended to general non-defective systems in this
paper. Moreover, the new algorithm has intuitive simple geometrical significance and is
consistent with the first order Taylor expansion of the s � l base. The numerical results
calculated from the aforementioned three methods are compared, respectively, with the
exact solution using two simulation examples. It demonstrates that the results of the
proposed algorithm are the nearest to the exact solution.

# 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

Various updating techniques have been proposed for structural dynamics system
identification by reconciling finite element models of structures with modal parameters
identified from dynamic testing [1–5]. The inverse sensitivity method, a kind of parameter
correction methods, using first order Taylor expansions of the eigenpairs was first
extended to systems with repeated eigenvalues by Pe$ssek [1] and then generalized to non-
defective systems by Chen et al. [2]. This updating method constructs the governing inverse
sensitivity equations Jðp; sÞ�Dp ¼ DE for the unknown parameter correction vector Dp
from the eigendifference DE [1]. The correction parameters Dpk (k ¼ 1; 2; . . . ; n) are
usually unknown. It leads to a set of non-linear equations for the design parametric
corrections Dpk because the coefficient Jacobian matrix Jðp; sÞ depends on the direction s
of the unknown correction vector Dp which is essentially due to the non-differentiability of
the repeated roots with respect to the parametric vector p: It is difficult to solve
analytically. Therefore, a linearized procedure is desirable.

It is well known that at a given point PðpÞ in the n-dimensional parametric space, the
orthonormal eigenvector matrix Xt corresponding to a repeated eigenvalue l (abbr. l-
base) is termed degenerate and its derivatives with respect to design parameters are
singular. That is to say, there is an infinite number of l-base at PðpÞ: There also exists
distinct derivable l-base ZtðsÞ (abbr. s � l base) and there are different directional
0022-460X/02/$35.00 # 2002 Elsevier Science Ltd. All rights reserved.
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derivatives Zt;s along different directions [6]. Usually, the s2l base ZtðsÞ can be expressed
in terms of an arbitrary l-base Xt by the transformation matrix CtðXt; sÞ which is
contained in the Jacobian matrix Jðp; sÞ: Hence, Jðp; sÞ depends on the direction s: If the
parameter correction vector Dp is known, the transformation matrix can be uniquely
determined by solving an eigenproblem of a certain matrix with respect to direction s [7–
9]. However, in the inverse sensitivity method, the correction parameters Dpk

(k ¼ 1; 2; . . . ; n) are required and of course, the direction s is unknown. It is impossible
to determine the transformation matrix by solving the eigenproblem of an unknown
matrix. Therefore, the key for linearization is to determine the transformation matrix
CtðXt; sÞ first. The method by minimizing the trace of a certain matrix in the sense of least
squares is most often used to determine a priori the unknown parametric transformation
matrix. For example, see reference [1]. Lallement and Kozanek [10] evaluated the
transformation matrix using the trace of a certain matrix in the sense of least squares
under an orthogonal condition. However, most researches have been limited to self-
adjoint systems.

This paper will first generalize the method of Pe$ssek and Lallement to general non-
defective systems. Then a new method to determine the transformation matrix for
multivariable non-defective systems will be proposed. This is based on the first order
Taylor expansion of the s2l base ZtðsÞ via the orthonormal decomposition of the
directional derivatives Zt;s : The new expressions have intuitively simple geometric
significance and are consistent with the first order Taylor expansion of the eigensolution in
mathematical form. Finally, two simulation examples are given using the three methods
respectively. Comparing the numerical results with the exact solution, one finds that the
proposed algorithm is the nearest to the exact one.

2. THEORETICAL BACKGROUND

This section will first outline the inverse sensitivity method for parameter correction for
repeated eigenvalues with multivariable. Consider the following non-defective generalized
eigenvalue problem:

KðpÞURðpÞ ¼ MðpÞURðpÞXðpÞ; KTðpÞULðpÞ ¼ MTðpÞULðpÞXðpÞ; ð1; 2Þ

UT
LðpÞMðpÞURðpÞ ¼ IN ; /T

RiðpÞMðpÞ/RiðpÞ ¼ 1; ð3; 4Þ

where the mass matrix MðpÞ and the stiffness matrix KðpÞ of an N degrees of freedom
discrete vibration system are single-valued limited functions and have continuous partial
derivatives of all orders with respect to multiple design parameters p ¼ ðp1; p2; . . . ; pnÞT:
KðpÞ; MðpÞ are real matrices and MðpÞ is positive definite. For general non-defective
systems, an eigenvector of equations (1), (2) and the biorthonormal condition (3) is
undetermined up to a non-zero constant multiplier. An additional gauge condition
(4)}every column /RiðpÞ ði ¼ 1; 2; . . . ;NÞ in right eigenvector matrix URðpÞ is normal-
ized according to the mass matrix MðpÞ; should be imposed to result in unique
eigenvectors [11]. In some special cases, for example, when MðpÞ is skew-symmetric,
condition (4) may fail even if MðpÞ is real, then an alternative condition may be adopted
[12]. As MðpÞ is positive definite in this text, condition (4) will always be valid.

It is assumed that at the computed point p ¼ p0 the eigenvalue problem has h repeated
eigenvalues K ¼ lIh: Let ZtðsÞ ðt ¼ R;LÞ denote the s2l base, where

s ¼ ðp1; p2; . . . ; pnÞT=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
ðpiÞ2

q
:
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The eigenproblem corresponding to s2l base ZtðsÞ can be written as

KZRðsÞ ¼ lMZRðsÞ; KTZLðsÞ ¼ lMTZLðsÞ; ð5; 6Þ

ZT
LðsÞMZRðsÞ ¼ Ih; zTRðsÞMzRðsÞ ¼ 1: ð7; 8Þ

There exist transforms CtðXt; sÞ ðt ¼ R;LÞ between ZtðsÞ and the arbitrary l base Xt ðt ¼
R;LÞ; such that

ZRðsÞ ¼ XRCRðXt; sÞ; ZLðsÞ ¼ XLCLðXt; sÞ; ð9; 10Þ

where CtðXt; sÞ ðt ¼ R;LÞ can be determined by an h order eigenvalue problem of the
matrix

AðXt; sÞ ¼def XT
LðK;s �lM;s ÞXR ð11Þ

and is biorthogonal, i.e.,

CT
LðXt; sÞCRðXt; sÞ ¼ Ih: ð12Þ

Taking the derivative of equation (5) along direction s, one can obtain the sensitivity
governing equations of the repeated roots in the eigensolutions. The solution set of the first
order governing equations has the following orthonormal decomposition expression [13]:

ZR;s ¼ W�
RðsÞ þ ZRðsÞDR; ð13Þ

where ð;s Þ denotes the directional derivative with respect to direction s, DR is the
coefficient matrix and W�

RðsÞ ¼ fw�
R1ðsÞ;w�

R2ðsÞ; . . . ;w�
RhðsÞ is the special particular

solution given by the ‘‘restrictive’’ generalized 1-inverse [14] set of the matrix j ¼ K� lM:
Evaluating

s ¼ ei ¼ ð0; . . . ; 1
*
ith

; . . . ; 0ÞT ði ¼ 1; 2; . . . ; nÞ;

where ei is the ith canonical vector, leads to the partial derivatives of the repeated
eigenvalue and the corresponding eigenvectors with respect to pi

ZRðeiÞ ¼ XRCRðXt; eiÞ; ZLðeiÞ ¼ XLCLðXt; eiÞ; ð14; 15Þ

where CtðXt; eiÞ ðt ¼ R;LÞ can be determined obviously by the eigenvalue problem of the
matrix

AðXt; eiÞ ¼
def

XT
LðK;ei

�lM;ei
ÞXR; ð16Þ

i.e.,

AðXt; eiÞCRðXt; eiÞ ¼ CRðXt; eiÞK;ei
ð17Þ

ATðXt; eiÞCLðXt; eiÞ ¼ CLðXt; eiÞK;ei
; CT

LðXt; eiÞCRðXt; eiÞ ¼ Ih; ð18; 19Þ

in which K;ei
¼ diagðl;1ei

; l;2ei
; . . . ; l;hei

Þ: There exist transformations Htðs; eiÞ ¼ ½yij
t � ðt ¼

R;LÞ between ZtðsÞ and ZtðeiÞ ðt ¼ R;LÞ such that

ZRðeiÞ ¼ ZRðsÞHRðs; eiÞ; ZLðeiÞ ¼ ZLðsÞHLðs; eiÞ: ð20; 21Þ
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Using equations (9), (10), (12), (14), (15), one has

HRðs; eiÞ ¼ CT
LðXt; sÞCRðXt; eiÞ; ð22Þ

HLðs; eiÞ ¼ CT
RðXt; sÞCLðXt; eiÞ; HT

Lðs; eiÞHRðs; eiÞ ¼ Ih: ð23; 24Þ

The aim of the inverse sensitivity method for the parameter correction is to find the
unknown changes of parameters Dpk (k ¼ 1; 2; . . . ; n) which reflect the difference between
the experimental modal data and the analytical ones. This is based on the first order
Taylor expansion in the s � l bases

%KK � K ¼ K;s �Dt; %ZZ� ZRðsÞ ¼ ZR;s�Dt; ð25; 26Þ

where %KK ¼ diagð%ll1; %ll2; . . . ; %llmÞ and %ZZ ¼ f%zz1; %zz2; . . . ; %zzmg denote the test modal data of the
structural model. Dt is given by the unknown correction vector %pp ¼ pþ Dp such that

Dt ¼ jDpj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
ðDpiÞ2:

q
The repeated eigenvalues and the corresponding eigenvectors for multivariable non-
defective systems are not differentiable in general, although their directional derivatives
exist and have been given as follows [2]

K;t ¼
Xn

i¼1

HRðs; eiÞK;ei
HT

Lðs; eiÞcos atei
; ð27Þ

ZR;s ¼
Xn

i¼1

Wn

RðeiÞHT
Lðs; eiÞcos asei

þ ZRðsÞDR; ð28Þ

where cos asei
means the angle between the direction s and the canonical vector ei ði ¼

1; 2; . . . ; nÞ: Substituting equation (27) into expansion (25), one has

%KK � K ¼
Xn

i¼1

HRðs; eiÞK;ei
HT

Lðs; eiÞDpi: ð29Þ

Then one takes the advantage of the projection operator PL which has the following
properties [15]:

PT
LZRðsÞ ¼ 0; PT

LW
n

RðsÞ ¼ Wn

RðsÞ: ð30; 31Þ

Left-multiplying equation (26) by PT
L in order to reject the homogeneous solution part,

substituting equation (28) and using properties (30) and (31) one has

PT
LZ ¼

Xn

i¼1

Wn

RðeiÞHT
Lðs; eiÞDpi: ð32Þ

An inverse sensitivity equation results

Jðp; sÞ�Dp ¼ DE; ð33Þ

where Jðp; sÞ ¼ ½JlJz
� is the generalized Jacobian matrix [2], Jl ¼ ½tjk�; Jz ¼ ½vjk

R �;

tjk ¼
Xh

s¼1

yjs
R�l;sek

�yjs
L; v

jk
R ¼

Xh

s¼1

wRs;ek
�yjs

L ðj ¼ 1; 2; . . . ; h; k ¼ 1; 2; . . . ; nÞ

and DE ¼ ½DlD%zz � is the known eigendifference, where Dl ¼ ðð%ll1 � lÞ; ð%ll2 � lÞ; . . . ; ð%llh � lÞÞT
and D%zz ¼ ðPT

L %zz1;P
T
L %zz2; . . . ;P

T
L %zzhÞT: Solving equation (33) in the sense of least squares, one
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can obtain the unknown parameter correction vector

Dp ¼ Jðp; sÞþ�DE; ð34Þ

where Jðp; sÞþ is the Moore–Penrose generalized inverse of matrix Jðp; sÞ:
This is the whole procedure of the inverse sensitivity method for parameter correction

with repeated eigenvalues. Obviously, in view of equations (22) and (23), the generalized
Jacobian matrix Jðp; sÞ involves the transformation matrix Htðs; eiÞ of equations (29) and
(32) which depends on the transformation matrix CtðXt; sÞ: The parameter correction
vector Dp is to be determined with its direction s not yet known. It is impossible to
determine the transformation matrix CtðXt; sÞ by solving the eigenvalue problem of an
unknown matrix AðXt; sÞ: Hence, in order to solve the unknown correction vector Dp
linearly, the transformation matrix CtðXt; sÞ must be found first.

3. EXTENSION OF THE METHOD OF PE $SSEK AND LALLEMENT

IN 1993, Lallement and Kozanek [10] presented the formula for evaluating CðX; sÞ to
minimise the trace of ðXCðX; sÞ � ZÞTðXCðX; sÞ � ZÞ in the sense of least squares under
the constraint CTðX; sÞCðX; sÞ ¼ Ih: This formula is

CðX; sÞ ¼ UðZT
XÞ�1; ð35Þ

where

U2 ¼ B ¼ XTZZ
T
X ð36Þ

and B is a positive-definite matrix in Rh�h; U is a square root of B: It can be shown with
eigenvalue theory that a positive-definite matrix has a unique symmetric positive-definite
square root.

In 1995, also for self-adjoint systems, Pe$ssek [1] gave another formulae for the evaluation
of CðX; sÞ: It was assumed in equation (26) that in the s2l base, ZðsÞ nicely approximates
the corresponding test modes Z: Thus, one can create Z ¼ XCðX; sÞ: CðX; sÞ can be found
by minimizing the trace of the matrix ðZ� ZðsÞÞTðZ� ZðsÞÞ in the sense of least squares.
Then CðX; sÞ can be expressed as

CðX; sÞ ¼ ðXTXÞ�1
XTZ: ð37Þ

Since the constraint equation CTðX; sÞCðX; sÞ ¼ Ih was not taken into account in
the last formulae, the matrix ZðsÞ must be orthonormalized in additional to the
matrix M:

Now one can extend formula (35) presented by Lallement to general non-defective
systems. Denote

U2
R ¼ BR ¼ XT

LZ Z
T
XR; U2

L ¼ BL ¼ XT
RZZ

T
XL ð38; 39Þ

It can be shown that BR ¼ BT
L yields UR ¼ UT

L: In order to satisfy the biorthonormal
condition (12), one may consider

CRðXt; sÞ ¼ URðZ
T
XRÞ�1; CLðXt; sÞ ¼ ULðZ

T
XLÞ�1 ð40; 41Þ

to get

CT
LðXt; sÞCRðXt; sÞ ¼ ðXT

LZÞ
�1
UT

LURðZ
T
XRÞ�1 ¼ ðXT

LZÞ
�1
URURðZ

T
XRÞ�1

¼ ðXT
LZÞ

�1
XT

LZZ
T
XRðZ

T
XRÞ�1 ¼ Ih: ð42Þ
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Similarly, one can extend formula (37) of Pe$ssek to non-defective systems. It may be
considered approximately

Z ¼ XRCRðXt; sÞ: ð43Þ
Premultiplying by XT

L; one has

CRðXt; sÞ ¼ ðXT
LXRÞ�1

XT
LZ: ð44Þ

Similarly, CLðXt; sÞ may be determined by the biorthonormal condition (12).

4. NEW ALGORITHM

A new method to evaluate the transformation matrix CRðXt; sÞ will be presented in this
section. This is based on the orthonormal decomposition of the firstorder directional
derivatives in the s2l base ZRðsÞ as equation (13).

The particular solution W�
RðsÞ 2 CRðjÞ; CRðjÞ is the complementary space of the kernel

of j: The first-order Taylor expansion of the s2l base ZRðsÞ along direction s is similar to
equation (26). Substituting equation (13) into equation (26) one has

Z� ZRðsÞ ¼ W�
RðsÞ�Dtþ ZRðsÞDR�Dt: ð45Þ

Using the left projection

PL ¼ I�MTXLX
T
R ¼ I�MTZLZ

T
R: ð46Þ

Pre-multiplying equation (45) by PT
L and substituting equations (30) and (31) one has

PT
LZ ¼ W�

RðsÞ�Dt: ð47Þ
Substituting equations (9) (47) into equation (45) gives

XRCRðXt; sÞ ¼ Z� PT
LZ� ZRðsÞDR�Dt: ð48Þ

Premultiplying by XT
L and then by ðXT

LXRÞ�1; one obtains

CRðXt; sÞ ¼ ðXT
LXRÞ�1

XT
LðZ� PT

LZÞ � ðXT
LXRÞ�1

XT
LZRðsÞDR�Dt: ð49Þ

Denote

CR1 ¼ ðXT
LXRÞ�1

XT
LðZ� PT

LZÞ; CR2 ¼ �ðXT
LXRÞ�1

XT
LZRðsÞDR: ð50; 51Þ

Equation (49) can be rewritten as

CRðXt; sÞ ¼ CR1 þ CR2�Ds: ð52Þ
Transposing equation (23) and then substituting equation (52), one has

HT
Lðs; eiÞ ¼ CT

LðXt; eiÞCRðXt; sÞ ¼ CT
LðXt; eiÞCR1 þ CT

LðXt; eiÞCR2�Dt: ð53Þ
Substituting equation (53) into equation (28), one obtains

ZR;t ¼
Xn

i¼1

Wn

RðeiÞ½CT
LðXt; eiÞCR1 þ CT

LðXt; eiÞCR2�Dt�cos asei
þ ZRðsÞDR

¼
Xn

i¼1

Wn

RðeiÞCT
LðXt; eiÞCR1cos asei

þ ZRðsÞDR

þ
Xn

i¼1

Wn

RðeiÞCT
LðXt; eiÞCR2 cos asei

�Dt: ð54Þ

In the first order Taylor expansion (26) of the s2l base ZRðsÞ; the second and higher
order small quantity terms are neglected. Substituting equation (54) into the expansion
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(26), one finds that the part including CR2 yields a second order term. Neglecting the first
order small quantity term of the CRðXt; sÞ in expression (52) means the neglection of the
second-order term of Taylor’s expansion and will not introduce additional approximation.
Therefore, when Dt is a small quantity, one can neglect the term including CR2 and
consider

CRðXt; sÞ ¼ ðXT
LXRÞ�1

XT
LðZ� PT

LZÞ ð55Þ

and CLðXt; sÞ can be determined by biorthonormal condition (12).
The new algorithm (55) for CRðXt; sÞ is found by the orthonormal decomposition

expression (13) of the first order directional derivatives ZR;s of the s2l base ZRðsÞ and by
neglecting the small component ZRðsÞDR�Dt in the space of the kernel of j. Therefore, it
has intuitively simple geometric significance. On the other hand, neglecting the first order
small quantity term of equation (52) yields the new algorithm (55). It is consistent with the
first order Taylor expansion of the s2l base mathematically.

5. NUMERICAL EXAMPLES

In this section two simulation examples (symmetric and asymmetric) are given to
demonstrate the procedure of calculating the transformation matrix CRðXt; sÞ: The results
by the three methods are compared, respectively, with the exact solution. All results are
obtained by using Mathematic 3.0.

Example 1. Suppose that an asymmetric system is given as follows:

MðpÞ ¼
1þ p3 10 3

�1þ q2 1þ p þ ð1þ pÞ2 þ ð1þ pÞ3 4

0 4 2

2
64

3
75;

KðpÞ ¼
1þ p þ ð1þ pÞ2 þ ð1þ pÞ3 38 17

ð1þ qÞ3 4þ p þ 2ð2þ pÞ2 þ ð2þ pÞ3 20

4 16 2þ ð1þ pÞ3

2
664

3
775;

where p ¼ ðp; qÞT are the design parameters and at p ¼ p0 ¼ ð1; 1ÞT; the original system

M ¼
2 10 3

0 14 4

0 4 2

2
64

3
75; K ¼

14 38 17

8 50 20

4 16 10

2
64

3
75

has a set of complete eigenvalues

X ¼ diagð3; 3; 6Þ;

which includes a two-fold eigenvalue

K ¼ lI2 ¼ diagð3; 3Þ;

whose arbitrary biorthonormalized right and left l base are, respectively,

XR ¼
�1 �0�408248
0 0�408248
1 0

2
64

3
75; XL ¼

�0�333333 0

0 0�408248
0�666667 �0�816497

2
64

3
75:
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The left project matrix of the repeated eigenvalue is

PL ¼
0�333333 0 0�666667
0�333333 0 0�666667
0�333333 0 0�666667

2
64

3
75:

Another mechanical system to be considered is distinguished from the original analytical
system by changing the physical parameters %pp ¼ p0 þ Dp: Here, one uses the simulated
measured (exact) data that can exclude measure errors. On the assumption that for %pp ¼
ð1�14; 0�857171ÞT; then the two-fold eigenvalue l1 ¼ l2 ¼ l ¼ 3 is split into two
unrepeated eigenvalues %ll1 ¼ 4�21654; %ll2 ¼ 2�95525; the corresponding biorthonormalized
eigenvectors (simulated measurement data) are

Z ¼
�0�553176 �0�236044
�0�161349 0�32302
0�615619 �0�0688866

2
64

3
75:

By expressions (40), (44) and (55), one can obtain the transformation matrix CRðXt; sÞ;
denoted as CRðLallementÞ; CRðPe$ssekÞ and CRðnewÞ; respectively,

CRðLallementÞ ¼
0�760578 �0�0849182
�0�689491 1�04651

" #
;

CRðPe$ssekÞ ¼
0�6354 �0�0725046

�0�298315 0�77351

" #
;

CRðnewÞ ¼
0�681556 �0�0809465
�0�395222 0�791234

" #
:

In order to verify the efficiency of the mentioned methods, one can calculate the exact
solution of CRðXt; sÞ denoted as %CCRðexactÞ by solving an eigenproblem. Here, for %pp ¼
ð1�14; 0�857171ÞT yields s ¼ ð0�7; � 0�71415Þ: Along this direction, one can solve

%CCRðexactÞ ¼
0�827076 �0�100849
�0�56209 0�994902

" #
:

The correlations between the transformation matrix of %CCRðexactÞ ð¼def ½ %gg1 %gg2 �Þ and
CRðLallementÞ; CRðPe$ssekÞ; CRðnewÞ (¼def ½ g1 g2 �) can be evaluated by the modal
assurance criterion (mac)

maci ¼
ðgi; %ggiÞðgi; %ggiÞ
ðgi; giÞð%ggi; %ggiÞ

ði ¼ 1; 2Þ;

where ðgi; %ggiÞ is the inner product of vectors gi and g�i: Then denote

u ¼ 1
2
ðmac1 þ mac2Þ:

It is easy to have uðLallementÞ ¼ 0�990131; uðPe$ssekÞ ¼ 0�987598 and uðnewÞ ¼ 0�997454: It
should be noted that the closer u value is to 1 the better is the correlation between matrices.
The cases for the other three arbitrary parameters are calculated and shown in Table 1.

The algorithm presented in this paper virtually includes all previously developed
methods for self-adjoint systems as special cases. Here, a numerical example for self-
adjoint system will be given to demonstrate the application.



Table 1

Comparison of transformation matrix CRðXt; sÞ (asymmetric system)

%pp1 ¼ ð0�9; 1�17321ÞT %pp2 ¼ ð1�012; 1�19964ÞT %pp3 ¼ ð1�06; 1�08ÞT

%CCRðexactÞ
�0�877672 0�106402
0�479261 �0�994323

" #
�0�04013 0�47258
0�999194 �0�881288

" #
0�697465 �0�0853097
�0�716619 0�996354

" #

CRðnewÞ
�0�936683 0�127603
0�350165 �1�5098

" #
�0�0286746 0�411942
1�11584 �0�78684

" #
0�613586 �0�0733859
�0�549818 0�926896

" #

CRðPe$ssekÞ
�0�907228 0�214871
0�288324 �1�69303

" #
�0�0737974 0�399497
1�21058 �0�76071

" #
0�579243 �0�0831492
�0�477711 0�947395

" #

CRðLallementÞ
�0�761369 0�117847
0�629473 �1�07923

" #
0�1973 0�715055
0�783804 �0�904482

" #
0�754951 �0�0118732
�0�750794 0�991761

" #

uðexactÞ 1 1 1
uðnewÞ 0�997454 0�999846 0�997651
uðPe$ssekÞ 0�987598 0�999748 0�994047
uðLallementÞ 0�990131 0�944547 0�997175
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Example 2. Suppose one is given the following symmetric system:

MðpÞ ¼
1 0 0

0 4 0

0 0 1

2
64

3
75; KðpÞ ¼

3 �2 �1

�2 2þ 8p þ 2q �2q

�1 �2q 1þ 2q

2
64

3
75;

where p ¼ ðp; qÞT are the design parameters and at p ¼ p0 ¼ ð1; 1ÞT; the original system

M ¼
1 0 0

0 4 0

0 0 1

2
64

3
75; K ¼

3 �2 �1

�2 12 �2

�1 �2 3

2
64

3
75

has a set of complete eigenvalues

X ¼ diagð1; 4; 4Þ;

which includes a two-fold eigenvalue

K ¼ lI2 ¼ diagð4; 4Þ;

whose arbitrary biorthonormalized right and left l base are as following, respectively,

XR ¼ XL ¼
0�707107 0�408248

0 �0�408248
�0�707107 0�408248

2
64

3
75:



Table 2

Comparison of transformation matrix CðX; sÞ (symmetric system)

%pp1 ¼ ð0�88; 1�16ÞT %pp2 ¼ ð1�02; 0�801ÞT %pp3 ¼ ð1�14; 1�14283ÞT

%CCðexactÞ
0�799171 0�601103
�0�601103 0�799171

" #
�0�676021 0�736883
0�736883 0�676021

" #
�0�45877 0�888555
0�888555 0�45877

" #

CðnewÞ
0�789638 0�613343
�0�61156 0�788969

" #
�0:676468 0:735769

0:734532 0:677211

" #
�0:457101 0:889181

0:889367 0:456718

" #

CðPe$ssekÞ
0�789638 0�613343
�0�646678 0�814835

" #
�0�676468 0�735769
0�696756 0�673357

" #
�0�457101 0�889181
0�882845 0�437164

" #

CðLallementÞ
0�787551 0�616249
�0�616249 0�787551

" #
�0�682777 0�730626
0�730626 0�682777

" #
�0�45277 0�891627
0�891627 0�45277

" #

uðexactÞ 1 1 1
uðnewÞ 0�999774 0�999997 0�999996
uðPe$ssekÞ 0�999147 0�9996 0�999806
uðLallementÞ 0�999636 0�999915 0�999955
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The project matrix of the repeated eigenvalue is

PL ¼ PR ¼
0�333333 0�166667 0�333333
0�666667 0�333333 0�666667
0�333333 0�166667 0�333333

2
64

3
75:

Similarly, the cases of three arbitrary parameters for %pp1; %pp2; %pp3 are calculated and the
comparison of the transformation matrix CðX; sÞ is shown in Table 2.

6. CONCLUSIONS

This paper gives a new algorithm to determine the transformation matrices from l bases
to s2l base for non-defective multivariable systems. The proposed method is a key for
linearization to solving the inverse sensitivity equation, which has obvious geometrical and
mathematical significance. Two simulation examples illustrate the performance of the
proposed method and their numerical results are compared. The result of the proposed
algorithm is the nearest to the exact solution. The procedure of the method shows its
potential in correcting model parameters and detecting structural damage of general non-
defective systems [16].
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APPENDIXA: NOMENCLATURE

ei ith canonical vector of n-dimension parametric space
h multiplicity of the eigenvalue considered
Ih h order identity matrix
K;KðpÞ structural real stiffness matrix
M;MðpÞ structural real positive-definite mass matrix
Pt projection matrix
p n-dimension vector of structural design parameters
PðpÞ computed point of the analytical model
Xt arbitrary M-biorthonormalized eigenvector matrix with respect to h-fold

eigenvalue l (abbr. l-base)
ZtðsÞ derivable l-base along direction s passing computed point PðpÞ in the n-

dimension parametric space (abbr. s � l base)
Z test mode matrix of structural model corresponding to ZRðsÞ
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Dp parameter correction vector
DE the differences between test modal data and computed eigensolutions, the

so-called eigendifference
l h-fold computed eigenvalue
K lIh diagonal matrix of h-fold computed eigenvalue
%KK diagonal matrix of test eigenvalues of structural model corresponding to K
s unit vector of an arbitrary direction in n-dimension parametric space, or

unit vector along correction vector Dp
CtðXt; sÞ transformation matrix from Xt to ZtðsÞ
Htðs; eiÞ transformation matrix from ZtðsÞ to ZtðeiÞ

Superscripts
T transpose of matrix ( ) (not Hermitian transpose)

Subscripts
t ‘‘R’’ or ‘‘L’’ denote right or left

;s
@ð Þ
@s

����
p¼p0
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