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The dynamic behavior of electro-mechanical gyrostat system subjected to external
disturbance is studied in this paper. By applying numerical results, phase diagrams, power
spectrum, Period-T maps, and Lyapunov exponents are presented to observe periodic and
chaotic motions. The effect of the parameters changed in the system can be found in the
bifurcation and parametric diagrams. Several methods, the delayed feedback control,
adaptive control algorithm (ACA) control are used to control chaos effectively. Anticontrol
of chaos destroyed the periodic motions and replaced by chaotic motion effectively by
adding constant motor torque and adding periodic motor torque. Finally, synchronization
of chaos in the electro-mechanical gyrostat system is studied.

# 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

During the past one and a half decades, a large number of studies have shown that
chaotic phenomena are observed in many physical systems that possess non-linearity [1, 2].
It was also reported that chaotic motion occurred in many non-linear control systems [3,
4]. Mechatronic integration [5, 7] is interesting research to study in recent years. The
advantages of the electro-mechanical system are that it can make the traditional
mechanical system easier to be controlled and used. In this paper, continued from
reference [8], there are three rotors which are orthogonalized with each other in the
gyrostat. The angular momentum of one of the rotors is disturbed by a sinusoidal
ripple. Besides, the current of the control-motor in the gyrostat is considered as a state
variable. The control-motor can provide a torque which controls the gyrostat to
satisfy a purpose we require. The non-linear dynamics, chaotic control and
synchronization of this electro-mechanical gyrostat system will be studied in this
paper.

A number of modern techniques are used in analyzing the deterministic non-linear
system behavior. Computational methods are employed to obtain the characteristics of the
non-linear system. By applying numerical results, phase diagrams, power spectrum,
period-T maps and Lyapunov exponents are presented to observe periodic and chaotic
motions. The effect of the parameters changed in the system can be found in the
bifurcation and parametric diagrams. Attention is shifted to the controlling chaos. For
this purpose, the delayed feedback control and adaptive control algorithm (ACA) control
are used to control chaos. Anticontrol of chaos is used to control the regular motions to
chaotic motion. Finally, chaos synchronization [9–11] in the electro -mechanical gyrostat
system is studied.
0022-460X/02/$35.00 # 2002 Elsevier Science Ltd. All rights reserved.



Figure 1. System model.
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2. EQUATIONS OF MOTION

The system considered here is depicted in Figure 1. Assume that there are three rotors in
a satellite. Let OxZz be an inertia orthogonal co-ordinate system with origin at mass center
O of satellite. Let OXYZ be a rotating orthogonal co-ordinate system with satellite and
OX, OY and OZ the three principal axes of inertia respectively. ox; oy; oz are the
projection of the angular velocity on the X-, Y-, Z-axis respectively. A;B;C are the
principal moments of inertia. The angular moments of rotors h1; h2; h3 are located at OX,
OY, OZ. The angular moment of rotor h3 is presented by a constant and harmonic term
h3ð1þ f coso tÞ; where h3; f ; o are constants. or is the projection of the angular velocity
of the satellite on the X-, Y-, Z-axis which is designed. Add the feedback terms to control
the angular velocity ox oy oz to or: Let ox ¼ x; oy ¼ y; oz ¼ z; then the equation of
motion can be expressed as

’xx ¼ ðB � CÞ
A

yz � h3

A
ð1þ f cosotÞy þ h2

A
z þ k1

A
ðor � xÞ þ k2

A
ðo3

r � x3Þ;

’yy ¼ ðC � AÞ
B

xz � h1

B
z þ h3

B
ð1þ f cosotÞx þ k3

B
ðor � yÞ þ k4

B
ðo3

r � y3Þ;

’zz ¼ ðA � BÞ
C

xy þ h3

C
fo sinot � h2

C
x þ h1

C
y � b

C
z þ k5

C
ðor � zÞ þ k6

C
ðo3

r � z3Þ þ Tc

C
ð1Þ

equations containing non-linear feedback terms; b is the damping coefficient. A ¼ 500;
B ¼ 500;C ¼ 1000; h1 ¼ h2 ¼ 200; h3 ¼ 250; b ¼ 200; o ¼ 1�0; ki ði ¼ 1; . . . ; 6Þ ¼ 1;
or ¼ 0: Tc is the control-motor torque along the output axis of the system to balance
the corresponding gyrostat torque. The torque and electric current of the control-motor
can be modelled by the following relationship:

Tc ¼ KT I ; L ’II þ RI ¼ Kaðor � zÞ � Kbz; ð2Þ
where KT ¼ 300 denotes the torque constant of the control-motor, Kaðor � zÞ is the
electromotive force, Ka ¼ 50; Kbz is the back electromotive force, Kb=1�3, I ; R; L; are the
current, resistance and inductance of the control-motor, R ¼ 100; L ¼ 2: Combining
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equations (1) and (2), the electro-mechanical gyrostat system equations can be written as

’xx ¼ ðB � CÞ
A
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ðo3

r � x3Þ;

’yy ¼ ðC � AÞ
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’II ¼ Kaðor � zÞ
L

� Kb

L
z � R

L
I : ð3Þ

3. PHASE PORTRAITS, PERIOD-T MAP AND POWER SPECTRUM

The phase plane is the evolution of a set of trajectories emanating from various
initial conditions in the state space. When the solution reaches a stable state, the
asymptotic behavior of the phase trajectories is particularly interesting and the transient
behavior in the system is neglected. The period-T map, where T is the time period of the
forcing, is a better method for displaying the dynamics. Equation (3) is plotted in
Figure 2(a)–2(c) for f =13�6, 13�3 and 13�05 respectively. Clearly, the motion is periodic.
But Figure 2(d), for f =12�9, shows the chaotic state. The points of the period-T map
become irregular.

Another technique for the identification and characterization of the system is power
spectrum. It is often used to distinguish between periodic, quasi-periodic and chaotic
behavior for a dynamical system. Any function xðtÞ may be represented as a superposition
of different periodic components. The determination of their relative strength is called
spectral analysis. If it is periodic, the spectrum may be a linear combination of oscillations
whose frequencies are integer multiples of basic frequency. The linear combination is
called a Fourier series. If it is not periodic, the spectrum then must be in terms of
oscillations with a continuum of frequencies. Such a representation of the spectrum is
called the Fourier integral of xðtÞ. The representation is useful for dynamical analysis. The
non-autonomous system is observed by the portraits of the power spectrum in
Figure 3(a)–3(c) for periods-1T, 2T and 4T steady state vibration. Sx is the amplitude
of the component in Fourier series expansion for x: As f ¼ 12�9 chaos occurs, the
spectrum is a broad band shown and the peak is still presented at the fundamental
frequency shown in Figure 3(d). The noise-like spectrum is the characteristic of a chaotic
dynamical system.

4. BIFURCATION DIAGRAM AND PARAMETER DIAGRAM

In the previous section, the information about the dynamics of the non-linear system for
specific values of the parameters is provided. The dynamics may be viewed more
completely over a range of parameter values. As the parameter is changed, the equilibrium
points and periodic motions can be created or destroyed, or their stability can be lost. The
phenomenon of sudden change in the motion as a parameter is varied is called bifurcation,
and the parameter values at which they occur are called bifurcation points. The
bifurcation diagram of the non-linear system of equation is depicted in Figure 4.
f 2 ½12�8; 13�7	 with the incremental value of f is 0�001.



Figure 2. (a) Phase portrait and period-1T map ‘‘8’’ for f ¼ 13�6; (b) phase portrait and period-2T map ‘‘8’’ for
f ¼ 13�3; (c) phase portrait and period-4T map ‘‘8’’ for f ¼ 13�05; (d) f ¼ 12�9; phase portraits and period-T map
‘‘8’’ of chaos.
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Figure 2. Continued.
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Further, the parameter value f versus R and KT will also be varied to observe the
behaviors of bifurcation of the system. Parameter diagrams are shown in Figure 5(a)
and 5(b).



Figure 2. Continued.
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5. LYAPUNOV EXPONENT AND LYAPUNOV DIMENSION

The Lyapunov exponent may be used to measure the sensitive dependence upon initial
conditions. It is an index for chaotic behavior. Different solutions of a dynamic system,
such as fixed points, periodic motions, quasi-periodic motion and chaotic motion can be
distinguished by it. If two trajectories start close to one another in phase space, they will
move exponentially away from each other for small times on the average. Thus, if d0 is a
measure of the initial distance between the two starting points, the distance is dðtÞ ¼ d02

lt:
The symbol l is called Lyapunov exponent. The divergence of chaotic orbits can only be
locally exponential, because if the system is bounded, dðtÞ cannot grow to infinity. A
measure of this divergence of orbits is that the exponential grown at many points along a
trajectory has to be averaged. When dðtÞ is too large, a new ‘‘nearby’’ trajectory d0ðtÞ is
defined. The Lyapunov exponent can be expressed as

l ¼ 1

tN � t0

XN

k¼1

log2

dðtkÞ
d0ðtk�1Þ

: ð4Þ

The signs of the Lyapunov exponents provide a qualitative picture of a system dynamics.
The criterion is

l > 0 ðchaoticÞ; l40 ðregular motionÞ:

The periodic and chaotic motions can be distinguished by the bifurcation diagram, while
the quasi-periodic motion and chaotic motion may be confused. However, they can be
distinguished by the Lyapunov exponent method. The maximum Lyapunov exponent of
the non-linear dynamic system is plotted in Figure 6 as f ¼ 12�8213�7:



Figure 3. (a) Power spectrum and time history of period-1T for f ¼ 13�6; (b) power spectrum and time history
of period-2T for f ¼ 13�3; (c) power spectrum and time history of period-4T for f ¼ 13�05; (d) power spectrum
and time history of chaos for f ¼ 12�9:
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There are a number of different fractional-dimension-like indices, e.g. the information
dimension, Lyapunov dimension and correlation exponent, etc.; the difference between
them is often small. The Lyapunov dimension is a measure of the complexity of the



Figure 3. Continued.
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attractor. It has been developed [12] that the Lyapunov dimension dL is introduced as

dL ¼ j þ
Pj

i¼1 li

jljþ1j
; ð5Þ



Figure 4. Bifurcation diagram of f versus x:
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where j is defined by the condition

Xj

i¼1

li > 0 and
Xjþ1

i¼1

li50:

The Lyapunov dimension for a strange attractor is a non-integer number. The Lyapunov
dimension and the Lyapunov exponent of the non-linear system are listed in Table 1 for
different values of f :

6. CONTROLLING CHAOS

Several kinds of interesting non-linear dynamic behavior of the system are studied in
previous sections. They have shown that the forced system exhibited both regular and
chaotic motion. Usually chaos is unwanted or undesirable.

In order to improve the performance of a dynamic system or avoid the chaotic
phenomena, we need to control a chaotic system to a periodic motion which is beneficial
for working with a particular condition. It is thus of great practical importance to develop
suitable control methods. Very recently much interest has been focused on this type of
problem}controlling chaos [13–19]. For this purpose, the delayed feedback control and
ACAs are used to control chaos. Anticontrol of chaos [14, 20] is interesting, non-
traditional, and very challenging. In this section, two simple explicit formulations have
been used to study anticontol of chaos. As a result, the chaotic system can be controlled.

6.1. CONTROLLING OF CHAOS BY DELAYED FEEDBACK CONTROL

Let us consider a dynamic system which can be simulated by ordinary differential
equations. We imagine that the equations are unknown, but some scalar variable can be
measured as a system output. The idea of this method is that the difference D(t) between



Figure 5. Parameter diagram of (a) f versus R and (b) f versus KT :
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the delayed output signal zðt � tÞand the output signal z(t) is used as a control signal. In
other words, we used a perturbation of the form

FðtÞ ¼ KA½zðt � tÞ � zðtÞ	 ¼ KDðtÞ; ð6Þ

where t is delay time. Choose an appropriate weight KA and t of the feedback and one can
achieve the periodic state. If KA=20�5, 13, 9 and t ¼ 2p=o; the results are shown in
Figure 7(a)–7(c).



Figure 6. Largest Lyapunov exponents for f between 12�8 and 13�7.

Table 1

Lyapunov exponents and Lyapunov dimensions of the system for different f

f l1 l2 l3 l4 dL

13.6 �0.0312 �0.0515 �0.2981 �8.8978 1 Period-1
13.3 �0.0746 �0.0809 �0.2290 �8.8978 1 Period-2
13.05 �0.0620 �0.0654 �0.2615 �8.8977 1 Period-4
12.9 0.0383 �0.1517 �0.2764 �8.8977 1.252 Chaos
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This control is achieved by the use of the output signal, which is fed back into the
system. The difference between the delayed output signal and the output signal itself is
used as a control signal. Only a simple delay line is required for this feedback control. To
achieve the periodic motion of the system, two parameters, namely, the time of delay t and
the weight KA of the feedback, should be adjusted. In this paper, the parameter t is the
value that causes the controlling gain KA a minimum value for controlling the system to
periodic motion. As a result, minimum energy is costed when other conditions are the
same.

6.2. CONTROLLING CHAOS BYACA

Huberman and Lumer [17] have suggested a simple and effective ACA which utilizes an
error signal proportional to the difference between the goal output and actual output of
the system. The error signal governs the change of parameters of the system, which



Figure 7. (a) KA ¼ 20�5; the period-1T motion of the system after delay feedback control; (b) KA ¼ 13; the
period-2T motion of the system after delay feedback control; (c) KA ¼ 9; the period-4T motion of system after
delay feedback control.
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readjusts so as to reduce the error to zero. This method can be explained briefly: the system
motion is set back to a desired state Xs by adding dynamics to the control parameter P

through the evolution equation

’PP ¼ KBGðX � XsÞ; ð7Þ

where the function G is proportional to the difference between Xs and the actual output X ;
and KB indicates the stiffness of the control. The function G could be either linear or non-
linear. In order to convert the dynamics of system (3) from chaotic motion to the desired
periodic motion Xs; the chosen parameter f is perturbed as

’ff ¼ KBðX � XsÞ: ð8Þ



Figure 7. Continued

Figure 8. Period-1T motion of the system after adaptive control.
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If KB=0�2, the system can reach the period-1T motion and is shown in Figure 8. The
parameter KB is the minimum effective value to control the chaotic motion to periodic
motion. For smaller parameters the adaptive control becomes ineffective.

In this paper, the delayed feedback control is more effective than the adaptive control.
By using the delayed feedback control, the chaotic motion of the original system can be
controlled to period-1T, Period-2T and Period-4T motions. But, by using the adaptive
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control, the chaotic motion of the original system only can be controlled to period-4T

motion. For the controlling purpose, the delayed feedback control algorithm gives better
results than the adaptive control.

6.3. ANTICONTROL OF CHAOS

Anticontrol of chaos is whether or not one can make an arbitrarily given system chaotic
or enhance the existing chaos of a chaotic system by using arbitrarily small controls. This
implies that the regular behaviors will be destroyed and replaced by chaotic behavior. In
the real world, chaotic behavior is important. Examples include liquid mixing, human
heartbeat regulations, resonance prevention in mechanical systems and secure commu-
nications. In this subsection, adding constant motor torque and adding period motor
torque methods are used to anticontrol of chaos.

6.3.1. Adding constant motor torque to anticontrol of chaos

Interestingly, one can even add just a constant term to control the regular attractor to a
chaotic one in a typical non-linear non-autonomous system. It ensures effective anticontrol
of chaos in a very simple way.

Consider the effect of the constant motor torque M added to the right-hand side of the
third equation of equation (3). If M ¼ 0�95; the bifurcation diagram of the system is
shown in Figure 9(a) and the largest Lyapunov exponent is shown in Figure 9(c).

6.3.2. Adding periodic motor torque to anticontrol of chaos

For our purpose, the periodic motor torque, N sinð$t þ fÞ; is added to the right-hand
side of the third equation of equation (3), the system can then be investigated by numerical
solution. One case to examine is the change in the dynamics of the system as N ¼10,
$ ¼1�5, f ¼ 0: Figure 9(b) and 9(d) presents the bifurcation diagram and the largest
Lyapunov exponent diagram of the system after anticontrol of chaos. Obviously, in both
methods, the regular behaviors (periods-1T, 2T, 4T) in Figure 4 disappeared and were
replaced by chaotic behavior.

The chaotic motion of this gyrostat system has practical significance. For instance, the
gyrostat system can be seen as a missile. When the defense missile is tracking the attack
missile, if the attack missile is in the chaotic motion as a result of the integration of angular
velocity components in our system, it can be hardly reached by the defense missile. Since
chaotic motion is expected in this case, the anticontrols of chaos of the gyrostat system are
also useful.

7. SYNCHRONIZATION OF CHAOS

The concept of chaos synchronization emerged much later}not until the gradual
realization of the usefulness of chaos by scientists and engineers. Chaotic signals are
usually broad band and noise-like. Because of this property, synchronized chaotic systems
can be used as cipher generators for secure communication. Several methods of
synchronization have been studied in many theoretical model equations and electrical
systems [9–11, 21], recently. In this section, chaos synchronization for the electro-
mechanical gyrostat system will be studied.

In previous researches, the studies are well known, such as Lorenz system [22, 23],
R .oossler system [22, 24] and Chua’s circuits system [25, 26], etc. with linear coupling term.
Following these researches, in this paper, the chaos synchronization of the gyrostat system



Figure 9. Bifurcation diagram after anticontrol of chaos by adding: (a) constant motor torque; (b) periodic
motor torque (the largest Lyapunov exponent diagram after anticontrol of chaos), (c) constant motor torque; and
(d) periodic motor torque.
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is studied with the linear coupling term also. Two new kinds of coupling terms (equation
(13): sinusoid feedback term, and equation (14): exponential feedback term) were created
because of their simplicity and clarity.

Equation (3) can be expressed as two identical subsystems

drive:

’xx1 ¼ f1ðx1; y1; z1Þ;
’yy1 ¼ f2ðx1; y1; z1Þ;
’zz1 ¼ f3ðx1; y1; z1; I1Þ;
’II1 ¼ f4ðz1; I1Þ;

8>>>><
>>>>:

ð9Þ

response:

’xx2 ¼ f1ðx2; y2; z2Þ;
’yy2 ¼ f2ðx2; y2; z2Þ;
’zz2 ¼ f3ðx2; y2; z2; I2Þ;
’II2 ¼ f4ðz2; I2Þ:

8>>>><
>>>>:

ð10Þ

The chaotic attractor can be obtained for the initial conditions ðx1ð0Þ; y1ð0Þ;
z1ð0Þ; I1ð0ÞÞ=(0�1, 0�2, 0�3, 0�0) and ðx2ð0Þ; y2ð0Þ; z2ð0Þ; I2ð0ÞÞ=(1, 2, 3, 0�1).
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The coupling terms are added in the response system as

response:

’xx2 ¼ f1ðx2; y2; z2Þ;
’yy2 ¼ f2ðx2; y2; z2Þ;
’zz2 ¼ f3ðx2; y2; z2; I2Þ þ Fðz1; z2Þ;
’II2 ¼ f4ðz2; I2Þ:

8>>>><
>>>>:

ð11Þ

Fðz1; z2Þ have several forms:
(A) linear feedback term

Fðz1; z2Þ ¼ eðz1 � z2Þ; ð12Þ

(B) sinusoid feedback term

Fðz1; z2Þ ¼ e sinðz1 � z2Þ; ð13Þ

(C) exponential feedback term

Fðz1; z2Þ ¼ e½expðz1 � z2Þ � 1	: ð14Þ
The coupling strength e of all methods is 0�7 and the results of synchronization are shown
in Figures 10–12.
(D) adaptive feedback synchronization

In Section 6.2, adaptive control schemes can direct a chaotic trajectory to stable orbits,
but not unstable orbits. Therefore, it is possible to combine the feedback method for chaos
synchronization [14].

In response (11), Fðz1; z2Þ ¼ eðz1 � z2Þ and take the adaptive control scheme:

’KKT ¼ kDðI1 � I2Þ; ð15Þ
where KT is the system parameter and kD is a constant adaptive control gain to design.
Figure 13 shows the results of chaos synchronization after using this method when e ¼ 0�7;
kD ¼ 1:

To study the efficacy of the synchronization strategy, was numerically computed the
value of f for which stable synchronization is achieved. For this purpose, synchronization
time (ST) [11] is considered. The error signal EðtÞ is given by

EðtÞ ¼ jx1 � x2j þ jy1 � y2j þ jz1 � z2j þ jI1 � I2j þ j ’xx1 � ’xx2j
þ j ’yy1 � ’yy2j þ j’zz1 � ’zz2j þ j ’II1 � ’II2j: ð16Þ
Figure 10. Synchronization of chaos by the linear feedback method Fðz1; z2Þ ¼ eðz1 � z2Þ: (a) relation between
z1 and z2; (b) error between z1 and z2:



Figure 11. Synchronization of chaos by the sinusoid feedback method Fðz1; z2Þ ¼ e sinðz1 � z2Þ: (a) relation
between z1 and z2; (b) error between z1 and z2:

Figure 12. Synchronization of chaos by the exponential feedback method Fðz1; z2Þ ¼ e½expðz1 � z2Þ � 1	:
(a) relation between z1 and z2; (b) error between z1 and z2:

Figure 13. Synchronization of chaos by the adaptive feedback method: (a) relation between z1 and z2; (b) error
between z1 and z2:
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ST of the system by using the above methods is shown in Figure 14. In the above four
methods, the ST of the adaptive feedback method is smaller than other methods,
obviously.



Figure 14. Synchronization time (ST) versus e for (a) linear feedback term, (b) sinusoid feedback term,
(c) exponential feedback term, and (d) adaptive feedback methods.
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8. CONCLUSIONS

The dynamic system of the electro-mechanical gyrostat system exhibits a rich variety of
non-linear behavior as certain parameters vary. Due to the effect of non-linearity, regular
or chaotic motions may occur. In this paper, computational methods have been employed
to study the dynamical behavior of the non-linear system.

The periodic and chaotic motions of the nonautonomous system are obtained by
numerical methods such as power spectrum, period-T map and Lyapunov exponents.
Many non-linear and chaotic phenomena have been displayed in bifurcation diagrams.
More information on the behavior of the periodic and the chaotic motion can be found in
parametric diagrams. The changes of parameter play a major role for the non-linear
system. Chaotic motion is the motion which has a sensitive dependence on the initial
condition in deterministic physical systems. The chaotic motion has been detected by using
Lyapunov exponents and Lyapunov dimensions. Although the results of the computer
simulation have some errors, the conclusions match the bifurcation diagrams.

The presence of chaotic behavior is generic for certain non-linearities, ranges of
parameters and external force. Also quenching of the chaos is presented, so as to improve
the performance of a dynamical system. The delayed feedback control, adaptive control
algorithm and anticontrol of chaos are presented.

Synchronization of chaos has been presented by adding linear feedback term, adding
sinusoid feedback term, adding exponential feedback term and adaptive feedback
methods.
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