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In this paper, the insertion loss of a cavity-backed semi-cylindrical enclosure panel is
studied theoretically and experimentally. The classical approach based on Narayanan [1]
and Lee [2] is employed to the semi-cylindrical enclosure modelling. The theoretical model
considers the three-dimensional acoustic modes of the semi-cylindrical cavity and the noise
source vibration mode shape. The experimental result agrees reasonably with the
theoretical prediction. It is found that the higher structural resonance in the semi-
cylindrical can significantly deteriorate the insertion loss performance while only the (1,1)
mode structural resonance in the rectangular models is the important one. The noise source
panel vibrating in the (3,1) mode shape induces higher air pressure on the semi-cylindrical
panel through the air cavity than the (1,1) mode shape.

# 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

In the past, many researchers such as Narayanan [1], Lee [2–7], Lyon [8], Pretlove [9],
Jackson [10], Guy [11], Dowell [12] and Oldham [13, 14] developed their models to predict
the insertion loss performance or transmission loss performance of a cavity-backed
rectangular enclosure panel. Their predictions have clearly indicated that the (1,1) mode
structural resonance is much more important than others on the noise reduction
performance

Although the rectangular enclosure models [1–14] and the present enclosure model are
simplified and different from a practical close-fitting enclosure which has more than one
panel and boundary conditions are more complicated, the theoretical predictions provide
a close look at the importance of the acoustical and structural resonance. In many
practical cases, it has been found that the measured insertion loss is lower than the
predicted insertion loss which is calculated by conventional formulas. This phenomenon
provides evidence to show that the acoustical resonance, higher order structural
resonance, and noise source vibration mode shape play important roles in insertion loss
prediction.

In references [1–13], the authors adopted the classical plate theory, and the series
solution approach or Fourier transform technique for solving the equation of motion of
the enclosure panel and the sound wave differential equation of the rectangular cavity
respectively. In this paper, the theoretical approach based on references [1, 2] is employed
to the entire semi-cylindrical enclosure modelling. The study of insertion loss of a cavity-
backed semi-cylindrical enclosure panel is presented. The effects of noise source vibration
mode shape, enclosure panel dimension, acoustic resonance and structural resonance on
0022-460X/02/$35.00 # 2002 Elsevier Science Ltd. All rights reserved.
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the insertion loss, are studied. The comparison between numerical and experimental
results shows the validity of the theoretical model.

2. ACOUSTIC VELOCITY POTENTIAL

The semi-cylindrical enclosure model to be considered is shown in Figure 1 and consists
of an acoustically hardwalled at z ¼ 0 and L: The other two flexible vibrating plates are at
(y ¼ 0 and p; r ¼ R). The vibrating flat panel is used as a noise source while the semi-
cylindrical panel is used to reduce the noise induced. The acoustic velocity potential inside
the semi-cylindrical cavity is given by the following wave equation:

r2O� 1

C2
a

@2O
@t2

¼ 0; ð1Þ

where the operator ‘‘r’’ is in the cylindical form, i.e., ~rr@=@r þ~yy@=r@yþ~zz@=@z and Ca is
the sound speed.

The vibration velocities in the radial, tangential, and longitudinal directions and
pressures within the air cavity can be derived from following equations:

’rr ¼ @O
@r

; ’yy ¼ @O
r@y

; ’zz ¼ @O
@z

; P ¼ �ra

@O
@t

; ð2a; b; c; dÞ

where ra is the air density.
Here, r; y; and Z are taken to be the radial, tangential and longitudinal displacements of

air cavity at corresponding co-ordinates, so that their velocities are marked with dot sign.
It is assumed that (P;Q) is the dominant mode of the semi-cylindrical panel, the flat source
panel is forced to vibrate in (S;T) mode shape with constant velocity. P and S are odd
numbers. Then the boundary conditions of the semi-cylindrical model to be satisfied are:
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Figure 1. Semi-cylindrical enclosure model.
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where wPQ
cy is the (P;Q) modal displacement amplitude of the semi-cylindrical panel, wST

sou

the (S;T) modal displacement amplitude of the source panel and i is the complex numberffiffiffiffiffiffiffi
�1

p
:

The solution of the above wave equation can be solved by transformation of
homogeneous differential equation with non-homogeneous boundary conditions into a
non-homogeneous differential equation with homogenous boundary conditions [15]. It
can be regarded as O ¼ fþ c where f is the general solution, and c is the particular
solution. Now c is chosen to satisfy the boundary conditions in equations (3a–d) is shown
below:

c ¼
X
W¼0

X
n¼1

GnW eiot sin½ð2n � 1Þy	sin npr

2R

� �
cos

Wpz

L

� �

þ
X
W¼0

X
N¼1

KNW eiotcosðNyÞsin pr

R

� �
cos

Wpz

L

� �
; ð4Þ

where n and N are the numbers of circumferential waves for the particular solution c; W

the number of axial half-waves, and GnW and KNW are the coefficients to be determined.
By using the boundary conditions in equations (3a–c), the two coefficients GnW and

KNW can be determined. Substituting c into the boundary conditions y ¼ 0 and p; gives

1
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By multiplying cosine and sine on both sides and integrating across the panel surface,
GnW can be found by

GnW ¼ wST
sougsou; ð6Þ

where

gsou ¼ 1

R=2 L=2

io
ð2n � 1Þ
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Similarly, substituting c into the boundary condition r ¼ R gives
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By using the orthogonal property of sine and cosine again and substituting equation (6)
into equation (7), KNW can be found by

KNW ¼ wST
souksou þ wPQ

cy kcy; ð8Þ
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where

ksou ¼
X
n¼1

iogsouððnp=2RÞcosðnp=2ÞÞ
ðp=RÞðp=2ÞðL=2Þ

Z L

0

Z p

0

sinðð2n � 1ÞyÞ


 cosðNyÞ dy cos
Wp
L

z

� �
cos

Wp
L

z

� �
dz;

kcy ¼ � io
ðp=RÞðp=2ÞðL=2Þ

Z L

0

Z p

0

sinðPyÞcosðNyÞ dy sin
Qp
L

z

� �
cos

Wp
L

z

� �
dz:

Then the wave equation is expressed as a series of standard cylindrical separable functions,
cosðUyÞJuðbUV rÞcosðWpz=LÞ: Let F UVW is the modal coefficients,X

U¼0

X
V¼0

X
W¼0

FUVW eiotcosðUyÞJuðbUV rÞcos Wp
L

z

� �
¼ �r2cþ 1

C2
a

@2c
@t2
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where JuðbuvrÞ is the Bessel function, Ju0ðbuvRÞ ¼ 0; U the number of circumferential
waves for the general solution f; and V is the counting number for the sequence U of
zeros of Ju0ðbuvRÞ ¼ 0:

Due to the orthogonality of Bessel function and cosine function, F UVW can be found by
multiplying both sides of equation (10) with r cosðUyÞJuðbUV rÞ and integrating across the
enclosed volume:
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It is necessary to express F UVW in terms of the modal amplitudes of the source plate and
the cylindrical plate. Let fsou and fcy are the modal coefficients which precede the terms of
the modal amplitudes. Then,

F UVW ¼ ðwST
sou fsou þ wPQ

cy fcyÞ; ð11Þ

where
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The general solution f must satisfy the homogenous boundary conditions:
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Then, f is chosen and given by

f ¼
X
U¼0

X
V¼0

X
W¼0
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L

� �
eiot; ð13Þ

where BUVW is the coefficient to be determined.
By substituting O ¼ fþ c into equation (1). It gives
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Finally, by substituting equations (9) and (13) into equation (14), BUVW can be found by
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where

oUVW ¼ Ca
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To include the effect of acoustic damping, one may introduce a complex term,
2ZUVWoUVWoi (where ZUVW is the acoustic damping ratio of the (U ;V ;W ) mode),
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BUVW
sou and BUVW

cy can be rewritten as
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3. STRUCTURAL VIBRATION

Consider the air pressure at the face r ¼ R; which is induced by the constant vibration
motion of the source panel. The natural frequencies of a semi-cylindrical plate, which four
edges are simply supported, can be calculated by the following equation [16]:

oPQ ¼
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2ð1� n

!1=2
; ð17Þ

where oPQ is the natural frequency, E is Young’s modulus, n the Poisson ratio, h the panel
thickness, r0 the panel density, L the longitudinal length, a the circumferential length =
pR and R is the radius of semi-cylindrical panel.

Consider the modal forced and damped motion of the semi-cylindrical panel due to air
pressure force at r ¼ R;

�r0ho2wPQ
cy � 2r0hxPQoPQowPQ

cy i þ DPQwPQ
cy ¼ �P

PQ
R ; ð18Þ

where DPQ is the (P;Q) mode rigidity = r0ho2
PQ; xPQ the (P;Q) mode structural damping

ratio

P
PQ
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R L

0

R p
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where �PR is the air pressure at r ¼ R and x ¼ Ry:
From equation (2d), the air pressure at r ¼ R can be found by
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Substituting equation (19) into equation (18), we can find out the ratio of the source
panel and the semi-cylindrical panel vibrating amplitudes,
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cy

wST
sou

¼
P

U¼0

P
V¼0

P
W¼0 a

UW
PQ BUVW

sou JuðbUV RÞ þ
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where

aUW
PQ ¼

R L

0

R p
0cosðUyÞcosððWp=LÞzÞsinðPyÞsinððQp=LÞzÞ dy dz
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R L
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Using well-known Rayleigh’s formula [17] for the relation between acoustic and vibration,
we know that

SE ¼ s VE; ð21Þ

where SE is sound energy, VE is vibration energy, and s is the radiation efficiency of the
vibrating structure.

Using equations (20) and (21), the sound insertion loss is defined by

IL ¼ �10 log
SEcy

SEsou

� �
¼ �10 log

wPQ
cy

wST
sou

�����
�����
2

AcysPQ
cy

AsousST
sou

0
@

1
A; ð22Þ

where SEcy and SEsou are the sound energies radiated by the semi-cylindrical and source
panels, respectively, Asou and Acy are the source and semi-cylindrical panel surface areas,
sST

sou is the radiation efficiency of the (S;T) mode of the source panel [3, 17], and sPQ
cy is the

radiation efficiency of the (P;Q) mode of the semi-cylindrical panel [3, 18].
Consider the multi-mode response of the semi-cylindrical panel [7]. Equation (22) can be
rewritten into a more general form as

IL ¼ �10 log
X%PP

P¼1

X%QQ

Q¼1

wPQ
cy

wST
sou

�����
�����
2

AcysPQ
cy

AsousST
sou

0
@

1
A; ð23Þ

where %PP and %QQ are the structural mode numbers of the semi-cylindrical panel.

4. THEORETICAL RESULTS

In Figures 2(a–c), the theoretical insertion loss predictions for three semi-cylindrical
panels with four simply supported boundaries which measure 20 cm in radius and 40 cm in
length, 20 cm in radius and 120 cm in length, 60 cm in radius and 120 cm in length
respectively. The material properties of the steel panel are as follows: Young’s
modulus=20
 1010 Pa, density=7800 kg/m3, the Poisson ratio=0�3, damping
ratio=0�02. The (1,1), (3,1), (5,1) and (7,1) modes are used individually for representing
the modal motions of the semi-cylindrical panel (thus equation (22) is used for the
insertion loss prediction).

In the Figures 2(a–c), the source panel is assumed to vibrate only in the (1,1) mode. It
should be noted that the (1,1) mode resonance of the semi-cylindrical panel in Figure 2(a)
is outside the frequency range studied as the resonance frequency is about 3000Hz. The
(7,1) mode here has the lowest resonance frequency, 355Hz. The second and the third
lowest structural resonance frequencies are 408Hz, (5,1) mode and 910Hz, (3,1) mode
respectively.

Among the three curves in Figure 2(a), the one representing the (3,1) mode curve gives
lowest insertion loss values at the frequency range over 600Hz. The most significant cavity
resonance in the radial direction at 826Hz superimposes on the structural resonance of the
(3,1) mode. The interaction between the cavity resonance and structural resonance gives a
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Figure 2. Different vibration mode shapes of the steel semi-cylindrical panel: source panel mode shape (1,1)
mode. (a) length=0�4m, radius=0�2m; (b) length=1�2m, radius=0�2m; (c) length=1�2m, radius=0�6m. &,
structural resonance; *, cavity resonance in the longitudinal direction; n, cavity resonance in the radial; } cavity
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large and wide dip there. There is another dip around 850Hz which is due to the cavity
resonance in the longitudinal direction and affects over a very narrow frequency band.

In Figure 2(b), the (1,1) mode structural resonance and the fundamental cavity
resonance in the radial direction strongly couple with each other to deteriorate the
insertion loss at the frequency range 800–900Hz. When compared with the dip due to the
(1,1) mode structural resonance, the dips due to the (3,1) mode and the (5,1) mode weakly
coupled with the acoustical resonance around 300Hz are smaller. The curve representing
the (3,1) mode generally gives lower insertion loss values than the (5,1) mode curve.

In Figure 2c, the (3,1) mode structural resonance and the fundamental cavity resonance
strongly couple with each other to deteriorate the insertion loss at the frequency range
250–350Hz. When compared with the dip due to the (3,1) mode structural resonance at
about 300Hz, the dip at about 960Hz due to the (1,1) structural mode is much smaller.

Figure 3 shows the influence of the vibrating mode shape of the source panel on the
insertion loss. It is assumed that the semi-cylindrical panel vibrates in the (3,1) mode shape
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when the source panel is vibrating in the (3,1) or (1,1) mode shape; the semi-cylindrical
panel vibrates in the (3,2) mode shape when the source panel is vibrating in the (1,2) mode
shape. In Figure 3, the (3,1) mode shape of the source panel of the semi-cylindrical
enclosure model can result in lower insertion loss than the (1,1) mode shape. It can be seen
that the dip of the (3,1) mode curve at frequencies 800–1000Hz due to the structural
resonance coupled with the acoustic resonance is wider and bigger than that of the (1,1)
mode curve. This implies that the (3,1) mode shape of the source panel can induce higher
air pressure on the semi-cylindrical panel through the air cavity. The (0,1) mode cavity
resonance, which couples with antisymmetrical structural mode, makes another dip at
about 420Hz.

5. EXPERIMENTAL RESULTS

The measurement was carried out in the reverberant chamber in the Noise Laboratory
of the Department of Civil and Structural Engineering of The Hong Kong Polytechnic
University. In Figure 4, the model consists of a rectangular box constructed of 8 cm thick
concrete walls and bottom, measuring 60 cm
 54 cm
 54 cm. The employed enclosure
panel is a 1mm steel semi-cylindrical plate measuring 42 cm in length and 19 cm in radius.
The material properties of the steel panel are same as those in the theoretical cases. A
rectangular box made of five 18mm wooden panels and one 2mm aluminum plate which
was used as a source plate. The loudspeaker put into the wooden box and used for driving
the aluminum source plate was 30 cm in diameter to simulate a noisy machine. The size of
the loudspeaker was chosen as large as possible in order to give good performance at low
frequencies. A wide band noise of 100–1000Hz was generated from the loudspeaker. The
sound power was measured by a sound level meter. The microphone positions lay on a
hemispherical surface which enclosed the source and terminated on the reflecting plane.
According to ISO 3746, the radius of the hemisphere should be at least twice the major
source dimension. The average sound power over the hemisphere surface can be calculated
by

Lw ¼ %LLP þ 10 log
Shem

S0
¼ 10 log10

1

Nmeas

XNmeas

i¼1

10LPi=10

" #
Shem

S0
; ð24Þ



Figure 4. Experimental set-up.
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where Lw is the sound power level, %LLP the average sound pressure level, LPi the sound
pressure level at ith measurement position, Nmea the total number of measurement
positions, Shem the surface area of hemisphere, 2pr2 and S0 is the reference area 1m2.

The loudspeaker could not keep the source plate vibrating with constant velocity
amplitude. Consequently, for insertion loss measurement, error arouse due to ‘‘feedback
loading’’ effect on the loudspeaker. The approach in reference [14] was employed to
monitor the vibration amplitude of the source plate and to correct measured insertion loss
for the feedback loading effect. The correction of the measured noise reduction for the
‘‘feedback loading’’ effect on the loudspeaker is given by

LC ¼ 20 log
Au

Ae

� �
; ð25Þ

where LC is the loading correction, Au the vibration amplitude of the unenclosed source
panel and Ae the vibration amplitude of the enclosed source panel.

Then, the insertion loss can be calculated by

IL ¼ Lu � Le � LC; ð26Þ

where Lu is the sound power level of the unenclosed source panel and Le is the sound
power level of the enclosure panel.

The source plate was subject to a wide band acoustic pressure and vibrating in multi-
modes over the frequency range 100–1000Hz. Thus the insertion loss predictions of the
(1,1), (1,3) and (2,1) modes of the source plate are used to compare with the experimental
result in Figure 5. The solid line represents the prediction of the (1,1) mode; the solid line
with squares represents the prediction of the (1,3) mode; and the solid line with rhomboids
represents the prediction of the (2,1) mode. The boundary conditions are assumed simply
supported in the theoretical prediction. Since the main uncertainty remains in the
structural and acoustical damping loss factor, the prediction is somewhat different from
the experimental result especially at the acoustic and structural resonant frequencies. At
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about 350Hz, the vibrating mode shape of the semi-cylindrical panel is mainly the (5,1)
mode shape and (7,1) mode shape (it is noted that the resonant frequencies of the (5,1)
mode and (7,1) mode are 355 and 358Hz respectively). Around this frequency, the source
plate is mainly vibrating in the (1,1) mode and coupled with the (5,1) mode shape and (7,1)
mode shape of the semi-cylindrical panel. At about 450Hz, the acoustic resonance in the
longitudinal direction (the (0,1) mode) occurs and couples with the antisymmetrical mode
shapes of the semi-cylindrical panel and source plate (the (2,1) mode). At about 550Hz,
the vibrating mode shape of the semi-cylindrical panel is mainly the (9,1) mode shape (it is
noted that the resonance frequency of the (9,1) mode is 550Hz). At the frequency range,
800–900Hz, the (3,1) mode structural resonance of the semi-cylindrical panel and the
cavity resonance in the radial direction strongly couple with each other to deteriorate the
insertion loss. Over the frequency range of 550–900Hz, the source plate is manly vibrating
in the higher mode (the (3,1) mode). At about 980Hz, there is an acoustic resonance in the
radial direction coupling with the antisymmetrical mode shapes of the semi-cylindrical
panel and source plate (the (2,1) mode). It should be noted that the motions of the
antisymmetrical mode shapes of the source plate cannot excite any symmetrical responses
of the semi-cylindrical panel, which only couples with antisymmetrical mode shapes.

6. CONCLUSION

A model for predicting the insertion loss of a cavity-backed semi-cylindrical panel has
been presented. The result of the measurements made to test the validity of the model
suggests it can give a reasonable prediction. It is found that the structural resonance of the
semi-cylindrical enclosure panel other than the (1,1) mode resonance in the semi-
cylindrical model can significantly deteriorate the insertion loss performance. Also, the
noise source panel vibrating in the (3,1) mode shape induces higher air pressure on the
semi-cylindrical panel through the air cavity than the (1,1) mode.
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