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1. INTRODUCTION

The study of various vibration problems of elliptical and circular plates has a long history,
and papers for vibration of the plates were widely reviewed by Leissa [1, 2], and Yamada
and Irie [3]. Thus, the papers are not mentioned individually here. Rather, considering the
fact that most of the earlier papers treated isotropic and polar orthotropic plates, more
recent works for rectilinear orthotropic plates with an elliptical shape are mentioned here.

Irie and Yamada [4] treated circular and elliptical annular plates using the Rayleigh—
Ritz method with spline functions as the admissible functions, Tomar and Gupta [5]
studied clamped elliptical plates using the Galerkin method with two terms of admissible
functions, and Narita [6] analyzed vibration problem of free elliptical plates. Young and
Dickinson [7] studied plates with curved edges using the Rayleigh—Ritz method with
products of simple polynomials, which is basically the same approach as in the present
paper. More recently, Chakraverty and Petyt [8] studied elliptical and circular plates with
seven types of orthotropic material properties for all the classical free, simply supported
and clamped boundary conditions using the Rayleigh—Ritz method with two-dimensional
boundary characteristic orthogonal polynomials as the admissible functions. They
presented an exhaustive graphical results of the first five frequencies for various aspect
ratios. Chakraverty et al [9] also studied the orthotropic annular elliptic plates. Their
study contains results for the first eight frequency parameters for various values of aspect
ratios of the outer and inner ellipse.

In this letter, the free vibration problem of elliptical and circular plates is studied using
the Rayleigh—-Ritz method with products of simple polynomials as the admissible
functions. The functions allow one to treat the free, simply supported and clamped
boundary conditions simply taking the power of the starting polynomials as 0, 1 and 2,
and the integral involved in the analysis is calculated simply by recurrence relationships. It
may be worth noting that the generation of the function and the evaluation of the integral
are very simple. The analysis is presented for rectilinear orthotropic material and some
sample results are presented to demonstrate’ the applicability and compared with existing
results to show the accuracy. In addition, exhaustive numerical results are tabulated for
isotropic plates.

Basically, the same method was used before by the author and some of the results for
isotropic plates were presented in Korean [10]. The approach used is similar to that used
by Leissa [11], who analyzed simply supported elliptical plates and by Kim et al. [12-14]
who treated rectangular and triangular plates. In particular, the method used by Narita [6]
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for free elliptical plates can be regarded as a special case of the present approach for free,
simply supported and clamped plates.

2. ANALYSIS

Consider a thin elliptical plate which lies in the x—y plane, as shown in Figure 1. The
periphery can be expressed as (x/a)*>+ (y/b)*>=1. It is assumed that the thickness of the
plate 7 is uniform and the material is rectilinear orthotropic. The direction of the
orthotropy is assumed to be parallel to the co-ordinate axes. The boundary condition is
assumed to be uniform and then the energy of the plate should be four times that of its first
quadrant (in positive x—y plane) considering the symmetry of the plate. Therefore, the
maximum strain energy and kinetic energy of the plate due to simple harmonic vibration
with small amplitude can be written as, respectively,

b \/u 82 82 aZW
Vinax = / / (a > ) +2ny (a 5] ) < ayz >
W W\’
+Dy< P 2) +4ny <m) ‘| dy dx,

4oha? ¢ b/ 1-(x/a)’
T =2 [ ] WAy dx, @
2 0/ 0

where w is the radian natural frequency, W the deflection amplitude normal to the plate,
p the material density, and v,, and v, the Poisson ratios. When Young’s moduli in x and
y directions are written as E, and E), and shear modulus G,,, the flexural rigidities are
given as

Dy = EJi* /12(1 —vyyv,x), Dy = DyE,/Ex, Dy, = Gy,h*/12.

Introducing non-dimensional parameters ¢ = x/a and n = y/b, the deflection amplitude
W can be expressed as

w=>34; &'l (@4 -1 (3)
i

Figure 1. Orthotropic elliptical plate.



LETTERS TO THE EDITOR 735

where A4;; are constants yet undetermined, k a constant depending upon the boundary
conditions, i.e., k = 0 for free, k=1 for simply supported and k = 2 for clamped, and i and
jare 1, 2, 3, ... neglecting symmetry. When the symmetry of the plate about the
co-ordinate axes is considered, symmetrical and antisymmetrical modes can be separated
simply by taking odd numbers (1, 3, 5, ---) for symmetrical modes and even numbers
(2, 4, 6, --+) for antisymmetrical modes.

Minimizing the frequency w with respect to 4; according to the Rayleigh—Ritz method,
after substituting the non-dimensional parameters ¢ and 5, and equation (3) into energy
expressions (1) and (2), yields the eigenvalue equation

Z Z[Cljmn - QE Ug?r?O)]Amn =0,

where Q% = phw?a*/H;m,n,i,j=1,2,3,---,

Vi-g o+a)
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and H = vy, D, + 2D,,. Since the isotropic plate is a special case of the orthotropic plate,
equation (4) can be applied to the isotropic plate writing vy, = v,y =v, Dy =D, =H =D
and Dy, = (I —v)D/2. Non-trivial solution of equation (4) yields the natural frequencies
of the plate and the corresponding coefficients A4;. Then, substitution of coefficients A4
into equation (3) gives the mode shapes.

The integral values involved in equation (4) can be calculated easily as follows. Let

F(a, B,7) // E"‘ WNE+ 2 1) dy de, (5)
0‘»[)),)’2172737"'»
then

F(B,o,y) = F(a, B,7), (6)

1

o:—l ﬁ—l d d — o—1

F(a, f,1) // n n dé /Oé
L 1=y _1 1f><—11_2/f/2d. 7
TR éﬁ/oé( Y2 ag (7)

Substituting 1 and 2 into «, f§ into equation (7) yields
1 1
FoLy=[a-@) e =t raan -5 f (-2 a-5 sy
0 4 2 0 3

1 1! 5 1
FQ,1,1) =F(1,2,1) =3, F(2,2,1):§/ (1-¢) de=g. (8c,d)
0
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After some arithmetic procedure utilizing the integration by parts, the following
recurrence relationships can be obtained:

__ _ b
F(fx+2,ﬁ,l)—a+ﬂ+2F(a,ﬁ,1), F(fx,ﬁ+271)—7a+ﬁ+2F(a,ﬁ,l) (9,10)
2y

Therefore, the integral values can be calculated using these recurrence relationships upon
starting with the values in equations (8).

In addition, if the thickness of the plate is not uniform, % in kinetic energy expression (2)
should be entered into the integral. Then, the approach in this letter can be applied for the
case without any special difficulty when the variation of the thickness can be expressed as
polynomials.

3. RESULTS AND DISCUSSION

The elliptical plate treated in this letter has four kinds of modes. They are SS, SA, AS
and AA modes, where S and A denote symmetrical and antisymmetrical modes,

TABLE 1

Frequency parameters ( ph o a*/H)"? for orthotropic, clamped, elliptical plates
(E.=1-87 x 10° psi, E,=0-60 x 10° psi, v, E, = 0-073 x 10° psi, Gy,,= 0-159 x 10° psi)

No. of terms Mode type

b/a SS-1 SS-2 SS-3 SA-1  SA-2  AS-1  AS-2 AA-1 AA2

1.0 2x2 16-490 49910 76-977 28-527 78-803 39-154 78.232 53.095 109-67
3x3 16488 47-191 73.213 28.508 71-936 39-121 73-176 52987 99-356
4x4 16488 47-078 73-076 28-508 71-484 39-121 72.866 52.985 98-490
5x5 16-488 47-077 73-074 28-508 71-473 39-121 72-858 52985 98-459
6x6 16488 47-077 73-074 28-508 71-473 39-121 72.858 52.985 98-459
2x1 16:650 78-167 29-305 97-726 39-834 131-87 55208 155-58
Ix2 16:549 50-415 28-654 80-909 39-881 79-900 54-029 113-22
Reference [5] 16-534 69-682

2/3 6x6 23-439 78-044 95-890 52-035 11091 45209 116-27 76:017 154-50
Reference [5] 23-453 98-839

05 6x6 35-185 88-518 16298 86-521 147-34 56-100 131-86 111-86 192-94
Reference [5] 35-394 149-16

2/5 6x6 51-165 104-02 200-53 13097 19627 72:210 146-81 15892 24310
Reference [5] 51-931 21885

1/3 2x2 71:029 139-15 376-06 186-09 299-95 93.337 194.93 219-25 37693
3x3 70921 12599 270-65 185-16 262-86 92967 16992 216-38 31747
4x4 70919 12494 220-86 18509 256-27 92.958 167-31 216-14 305-38
5x5 70-919 12494 220-50 185-09 256-24 92958 167-31 216-14 305-31
6x6 70919 12494 220-50 185-09 256-24 92958 167-31 216-14 305-31
2x1 71.226  139-57 189-48 303-48 93-536 195-82 222.62 381-35
Ix2 73-288 388-08 19325 660-96 99-615 45570 239-09 749-30

Reference [5] 72-717 306-45
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respectively, and the first letters are for the symmetry about y-axis, while the second about
x-axis. The symmetrical and antisymmetrical modes can be obtained separately, as
mentioned before, simply taking odd or even numbers for i and j in equation (3)
respectively (i, m and j, n in frequency equation (4) respectively). When the odd and even
numbers are used together, the results become identical as a matter of course, and the odd
number terms do not contribute to the antisymmetrical modes and even number terms do
not contribute to the symmetrical modes. Hereafter, the number of terms indicated in the
text and all the tables denote the number of contributing terms in x and y directions.
Moreover, the Poisson ratio is taken as 0-3 for the isotropic plates.

In order to illustrate the applicability of the approach to the rectilinear orthotropic
plate, circular and elliptical plates with clamped periphery are considered for several
aspect ratios. The lowest three frequency parameters for the SS mode and two for each of
the other kind of modes are presented in Table 1 taking the orthotropic property used by
Tomar and Gupta [5] for comparison purpose. It may be mentifoned that the nine
frequency parameters presented are not necessary the lowest nine frequency parameters.
For instance, the frequency parameter for SA-3 mode of the circular plate (b/a = 1) is
90-278 which is lower than AA-2 mode (98-459) presented. The study for the rate of
convergence is also included in the table using an increased number of terms for aspect
ratios b/a = 1 and 1/3. It may be seen that the present results for SS-1 mode are in close

TABLE 2

Frequency parameters (pho? a*IH)'/? for orthotropic, elliptical plates (D/H = 2.0,
D,/H =05, v, =03, b/a=05)

No. of terms Mode type
SS-1 SS-2 SS-3 SA-1 SA-2 AS-1 AS-2 AA-1  AA-2

(1) Free

2x2 10-628  23.908  68-502 29-818 72.924 28.671 47-661 11-599  55-879
3x3 9-5964 20967 47989 25.581 53.974 23.830 39-109 11-547 44.633
4x4 9-5451  20-772 43-198 25266 52382 23.453 38318 11-547 43.530
5x5 9-5451  20-771 42336 25263 52365 23450 38309 11-547 43.512
6x6 9-5451  20-771 42320 25263 52365 23450 38309 11-547 43.512
77 9-5451  20-771 42319 25263 52365 23450 38309 11-547 43.512
8x8 9-5451  20-771 42319 25263 52365 23450 38309 11-547 43.512

(2) Simply Supported

2x2 10-339  58:689 103-80 34.959 106-30 23.772 10796 54-618 167-93
3x3 10-326  43.945 74406 34.732 80-303 23-628 71481 53.828 113-16
4x4 10-326  43-186 73-217 34730 78285 23.627 68941 53.812 108-25
5x5 10-326  43-171  73-196  34.730 78206  23-627 68-847 53.812 107-96
6x6 10-326  43-171  73-196  34.730 78205 23-627 68-846 53-812 107-96
Tx7 10-326  43-171  73-196  34.730  78-205 23-627 68-846 53-812 107-96

(3) Clamped

2x2 22-199 64480 103-43  52.965 109-07 38-157 98:997 74519 14971
3x3 22:195  60-688 98-468 52.926 10179 38-125 89-849 74.360 135-09
4x4 22-195 60-513 98272 52.926 101-29 38-125 §9-199 74358 133.74
5x5 22-195  60-510 98270 52926 107-27 38-125 89-181 74.358 13368

6x6 22-195 60-510 98270 52926 107-27 38125 89-181 74358  133-68
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Figure 2. Convergence pattern of the lowest three frequency parameters in Table 2.

agreement with comparison values obtained from reference [5], while the results for SS-2
mode are not in accord. It is believed that the comparison values for SS-2 mode are not
reasonably accurate. The inaccuracy of the values is understandable considering the fact
that the values in the reference were obtained by using only two fully symmetrical terms.
In order to show the inaccuracy for the second modes of two term solution, some present
results for 2 x 1 and 1 x 2 term solutions are included in the table.

In Table 2, convergence test for all the classical free, simply supported and clamped
boundary conditions are presented for the material with D,/H=2-0, D,/H = 0-5, v\, =
0-3, taking aspect ratio (b/a) 0-5. For the lowest three frequency parameters, a
convergence pattern is shown in Figure 2. The pattern will be changed depending upon
the material property and/or aspect ratio. The converged values for the parameters seem
to be in close agreement with those in reference [8], where the convergence pattern for the
cases were presented in a graphical form.

Comparison of fundamental frequency parameters for orthotropic, clamped, elliptical
plates for several material properties are shown in Table 3. The values of references [15-17]
in the table were those calculated by Chakraverty and Petyt [8] using the equations in the
references. Close agreement may be seen to exist for all the cases, particularly with the
most recent results in reference [8].

In Table 4, the frequency parameters for graphite/epoxy and carbon/epoxy are
presented. The orthotropic properties of the material were obtained from reference [18]
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TABLE 3

Comparison of fundamental frequency parameters (ph w*a*/H )'/* for orthotropic, clamped

elliptical plates
bla References
Present Reference [15] Reference [16] Reference [17] Reference [8]

(1) Glasslepoxy (Dy/H = 375, Dy/H = 0-80, v, = 0-26)

0-2 136-29 147-24 144.52 143-11 136-51

0-4 38-796 40-383 39.637 39.249 38-849

0-5 27-345 28-280 27-757 27-485 27-376

0-6 21-457 22-131 21-722 21-509 21-476

0-8 16-234 16-742 16-433 16-272 16-242

1-0 14.222 14-720 14-448 14-306 14.225

(2) Boronlepoxy (Dy/H =13-34, D,,/H = 121, vy, = 0-23)

0-2 168-60 180-60 17727 175-53 168-53
0-4 50-169 51-841 50-883 50-385 50-152
0-5 37-193 38:308 37-601 37-232 37-181
0-6 30-975 31904 31-315 31-008 30-966
0-8 25913 26-823 26-327 26-069 25907
1.0 24-062 25-130 24-666 24424 24057

(3) Carbonlepoxy (D./H = 1564, D,/H = 091, v, =0-32)

0-2 148-56 158-10 155-18 153-66 148-67
0-4 46477 47-966 47-079 46:618 46-501
0-5 35-864 36-953 36-270 35915 35-876
0-6 30-931 31909 31-319 31-012 30-937
0-8 26-958 28-016 27-498 27-229 26-959
1.0 25-443 26-735 26-241 25984 25-442

(4) Kevlar (Dy/H = 2:60, Dy/H = 2:60, vy, =0-14)

0-2 236-60 261-08 256-26 253.75 236-43
0-4 63-123 67-016 65-778 65-133 63-077
0-5 42074 44.080 43-266 42.842 42043
0-6 30-688 31-880 31-291 30-984 30-666
0-8 19-740 20-351 19-975 19-779 19-726
1.0 15-152 15-596 15-308 15-158 15-142

and the number of terms used are 9 x 9 terms to obtain sufficiently accurate results for
various values of aspect ratio without considering the rate of convergence.

The convergence study for isotropic, clamped plates are presented in Table 5, together
with the comparison values by Shibaoka [19], McNitt [17], Tomar and Gupta [5], Singh
and Chakraverty [20], Rajalingham et al. [21], and Carrington [22]. The most accurate
values among the present results are fully converged values up to the figures. Close
agreement may be seen to be achieved except the values for AS modes with those in
reference [21]. For AS-1 mode, the present result is in close agreement with that in
reference [20]. The author cannot explain the discrepancy between the present results and
those in reference [21]. It may be noted that the rate of convergence is relatively slower for
smaller values of b/a. The rate can be increased, with the same number of total terms, for
smaller b/a by using more terms in the x direction than in the y direction rather than using
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TABLE 4

Frequency parameters (ph w*a*/H )'? for orthotropic, clamped, elliptical plates

bla Mode type
SS-1 SS-2 SS-3 SA-1 SA-2 AS-1 AS-2 AA-T AA-2
(1) Graphitelepoxy (Dy/H=10-548, Dy/H=0-60023, Dy,/H=0-41597)

1/3 50-252  130-09  230-58 122:66 21358  81:654  194.55 160-56  281-58
1/2.5 38596 11969 16443  88-687 177-:36  70-726 18201 12505  243-89
12 29-883 106-02 11648 61318 14830  63-010  146-58 97382 20348
1/1.5 24221 67-351 108-38  41.202  101-82 57935 106-12  77-872  142-41

1 21-101 40-105 74232 28-771 55235 54.533  78-898 65096 95958
1.5 19-828 29383 44.779  23.887  36-319  52.787  66-458  58.931 75319
2 19-320 25566 34919  22.045 29849  52.022 61418  56:327  67-246
2-5 19-046  23-633  30-175  21-082  26-662  51.592  58.711 54-896  63-001
3 18-876 22475 27433 20494 24789 51317  57-033 53993  60-411

(2) Carbonlepoxy (Ds/H=15-637, Dy/H=0-91160, Dyy/H=0-35642)

1/3 60-795 155-41  280-95 149-08 25345 97451  233.38 191-80  333.93
1/2-5 46-501 14349 19972 10741 210-22  84.407  219-52 14869 290-14
1/2 35-877 128-85 139-52  73-839 17676~ 75402 17491 11537 24440
1/1-5 29-081 81-089  130-54  49-271 123-38  69-643 12576 92.382  169-44

1 25-443 47-888 89-326 34.364 66-178 65-832 93.710 113-78 113-78

1-5 23.977 35122 53.539 28643  43.385  63-886  79-313  70-693  89-606

2 23.394 30-620 41-733 26-498 35-689 63-041 73-530 67-760 80-238

25 23.084 28-351 36-083 25-383 31916 62-572 70-448 66-160 75-349

3 22-892 26-999 32-831 24-706 29-709 62-274 68-555 65-159 72-391
TABLE 5

Frequency parameters (ph w*a*/D)"? for isotropic, clamped, elliptical plates

No. of terms Mode type
SS-1 SS-2 SS-3 SA-1 SA-2 AS-1 AS-2 AA-1  AA-2

(1) bla=0-5
2%2 27394 61319 13940 69-996 12346 39590 88517 88601 160-44
3x3 27378 56:320 12440 69-862 11145 39499 78013 88071 139-10
4x4 27377 55985 10516 69-858 11003 39497  77.037  88.048 13599
5% 5 27377 55976 10280 69-858 10994 39497 76996  88.047 13572
6x6 27377 55976 10265 69-858 10994 39497 76995  88.047 13571

Reference [19] 27-5

Reference [17] 27-746

Reference [5] 27-746

Reference [20] 27-377  55-985 69-858 39-497

Reference [21] 27-377 55976 102-65 69-858 109-94 48.077 11-27 88-047 13571
(2) bla=1

2x2 10-217 33661 42-097 21-272  54.088 The same as SA 34.922  75-895
3x3 10-216 34938 39-874 21260 51-172 34-877  70-032
4x4 10-216 34878 39-773 21260  51-032 34-877  69-674
5x5 10-216  34.877 39-771 21-260  51-030 34-877  69-666

Reference [17]  10-217

Reference [5] 10-217

Reference [20] 10-216  34-878 39773  21-260

Exact [22] 10216 3488 39.771 21-26 51-04 34-88  69-666




LETTERS TO THE EDITOR 741

the same number of terms both in the x and y directions (e.g., using 9 x 4 terms rather than
using 6 x 6 terms). This is due to the fact that the length of the plate in the x direction is
longer than that in the y direction and accordingly the number of waves contributed to the
x direction is more than to the y direction for lower modes. For circular plates (b/a = 1),
Carrington [22] obtained exact solutions which are given as a Bessel function as early as in
1925. The present results are the same as the exact solutions up to the figures given, with
an exception of the result for SA-2 mode. The present lower value for the mode, which is
the same as the upper bound in reference [23], seems to be strange because the Rayleigh—
Ritz method gives an upper bound. The author calculated the exact solution using double
precision to inspect the accuracy of the values presented by Carrington [22] and found that
the exact solution is the same as the converged values presented here. It is believed that the
value for SA-2 mode in reference [22] has a small numerical error which occurred in the
calculation of Bessel function. (There was no computer in 1925.) Further, it may be noted
that the values for SS-2 and AA-1 modes are the same, and in fact they can be said to be
the same mode since both are modes having two nodal diameters perpendicular to each
other and thus turning one mode 45° around the centre of the plate becomes the other.
This kind of phenomenon can be observed not only for this case, but also for all the modes
with at least one nodal diameter in axisymmetrical plates (axisymmetrical about the
centre) with a uniform boundary condition.

The frequency parameters for isotropic plates were presented by previous investigators.
In particular, Rajalingham et al. [21] presented the lowest six frequency parameters in each
mode type for aspect ratio 0-5 for all the classical free, simply supported and clamped

TABLE 6

Frequency parameters (ph w*a*/D'? for isotropic, free, elliptical plates (v = 0-3)

bla Mode type
SS-1 SS-2 SS-3 SA-1 SA-2 AS-1 AS-2  AS-3 AA-l  AA-2

02 67778 32.817 78-123 48-582 10172 17-389  53-058 108-01 25-747 73-638

0-25 67737 32779 77901 39-621 86-070 17377 52-.955 107-60 20-676 61-181
101-22

03 67654 32675 71773 33.710 75-839 17-343  52.718 95-362 17-301 53-015
77451

0-35 6-7518 32.503 53.775 29-520 68-592 17.284 52-345 74.353 14.891 47.243

0-4 67321 32:257 41.937 26-393 63-137 17-195 51-824 60-261 13-084 42.928

0-45 67054 31.928 33.719 23.963 58-824 17.076  50-267 51-179 11-677 39-558

0-5 6:6705 27.768 31-513 22.015 55272 16:921 42991 50-276 10-548 36-828

0-55 6-6264 23-325 30987 20-411 52.241 16:726  37-480 49-183  9-6206 34.-547

0-6 6:5712 19922 30-337 19-061 49-565 16-484 33.239 47.852 8-8447 32:590

0-65 6:5029 17264 29-551 17-901 43.290 16-185 29-938 46-289 8-1848  30-868

0-7 64185 15160 28-626 16-888 37-800 15-822 27357 44.538 7-6161 29-320
43.750

0-75 6-3144 13-478 27-580 15-988 33.366 15386 25345 42669 7-1203  27-898
41-595

0-8 6-1861 12:128 26449 15-174 29-743 14-880 23790 40-755 6-6841 26-570
39-961

0-85 6-0286 11-048 25277 14-427 26-755 14311 22599 38.852 62969 25.311
38-695

09 58381 10-191 24-101 13-731 24274 13-699 21-694 36-997 59509 24-107

0-95 56135 9:5199 22.949 13.072 22.205 13.068 21-005 35209 5:6397 22.949

1.0 53583 9-0031 21-835 the same as AS 12-439 20475 33-495 5-3583 21-835
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boundary conditions, and Singh and Chakraverty presented the first four frequency
parameters for free [24], simply supported [25] and clamped [20] plates with various aspect
ratios. Nevertheless, it may be worth presenting exhaustive accurate results for all the
classical boundary conditions classifying the mode types, since the values in the literature
are limited to the first several (five or less) frequency parameters without distinguishing the
mode types [20, 24, 25, etc.] or to the results for each mode type for a special aspect ratio
[21]. In Tables 6-8, the lowest 10 frequency parameters for various aspect ratios are
presented for isotropic plates with free, simply supported and clamped boundary
conditions respectively. The values are categorized with the mode types. However, the
order of the mode types are changed depending upon the boundary conditions and/or the
aspect ratio. Thus, when the lowest ten frequency parameters are not consisted with the
mode types of the heading, additional values are attached at the bottom. For an example,
the tenth frequency parameter for aspect ratio b/a = 0-25 in Table 6 is 101-22 which is SS-
4 mode. A sufficient number of terms depending upon the aspect ratio were used to obtain
the values and the values presented are thus believed to be fully converged values up to the
figures shown. The lowest four frequency parameters are in good agreement with those in
references [20, 24, 25]. However, the values for AS modes of the plates with simply
supported and clamped boundary conditions are fully different from those in reference [21]
(the case for free boundary condition is in good agreement). In addition, it may be worth
noting that the exact solution exists for circular plates (b/a = 1) and the values presented
are the same as the exact solution available in the literature [24-27, etc.]. Further, the

TABLE 7

Frequency parameters (ph w*a*/D)"? for isotropic, simply supported, elliptical plates

bla Mode type
SS-1 SS-2 SS-3 SS-4 SA-1 SA-2 AS-1 AS-2 AS-3 AA-1

02 69680 11128 16748 239-66 262-63 33541 88-761 137-46 201-50 297-40
025 45917 81.510 132:26 199-77 170-69 231-18 61-944 10487 163-84 199-28
03 32813 64-503 112.00 177-00 120-38 172-77 46-828 86-145 14224 144-89
0-35 24.793 53-843 99-384 16295 §9-823 136-52 37412 74-424 128-86 111-45
04 19514 46-757 91.077 150-99 69-854 112-37 31-146  66-672 120-07 89-357

139-09
0-45 15853 41-845 85-338 120-61 56-071 95-406 26-782 61320 11396 73.952
0-5 13213 38326 81-190 98-787 46-150 83-013 23-641 57482 109-47 62-764

107-10
0-55 11.253 35.729 78-053 82578 38.767 73-669 21-319  54-628 104-16 54-374
96-833
0-6 97629 33.760 70-209 75-562 33-122 66-441 19-566 52429 90-566 47917
88-843

0-65 8-6087 32.229 60-559 73-468 28-709 60-727 18215 50-670 79-939 42.842
0-7 77007 31-005 52-893 71-576 25-192 56-120 17-157 49-196 71-509 38781
0-75 69769 29998 46-712 69-700 22.347 52-339 16:314 47-889 64-769 35-483
0-8  6:3935 29:139 41-677 67-650 20-012 49-177 15634 46-633 59-393  32.769
0-85 59185 28:364 37-556 65273 18.074 46477 15-077 45299 55-194 30-509

63-626

09 55282 27-600 34208 62-573 16-448 44-115 14-615 43.750 52076 28-608
57-580

095 52049 26:734 31-585 59711 15.072 41978 14227 41.934 49917 26-995
52-576

1.0 49351 25613 29-720 56-842 the same as AS 13-898 39957 48479 25-613
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TABLE 8

Frequency parameters (ph w*a*/D)"? for isotropic, clamped, elliptical plates

bla Mode type
SS-1 SS-2 SS-3 SS-4 SA-1 SA-2 AS-1  AS-2  AS-3 AA-
02 149-64 19588 25671 333.21 403-40 481-61 170-99 224-41 292.94 440-88

426-38 377-65 479-48
025 97599 13722 192.02 26332 261-30 326-30 115-59 162-64 225-53 292.15
305-51

03 69-147 104-56 155-81 224.38 183.73 240.-07 84.976 128-10 187-85 210-21
0-35 51-894 84-513 133-66 200-80 136-73 187-03 66-253 10691 16492 160-15
04  40-646 71.378 11929 185-62 106-09 151-99 53.982 93-.083 150-11 12727

180-42
045 32913 62.370 109-53 161.73 84.997 127-60 45-532  83-655 140-08 104-49

154-52
0-5 27377 55976 102:65 13236 69-858 109-94 39-497 76995 132.95 88-047
0-55 23290 51-308 97-588 110-57 58-624 96-743 35065 72-138 127-64 75796

121-63
0-6 20-195 47816 93.717 93969 50-060 86-632 31.736  68-485 11585 66430

110-80
0-65 17-805 45-143 81-034 90-606 43-386 78717 29-187 65-645 10195 59-117
0-7 15928 43.048 70-771 87-944 38.087 72-403 27204 63-354 90-944 53-306
0-75 14.433 41365 62-507 85461 33.814 67-276 25-637 61410 82-159 48-620
0-8 13229 39971 55781 82-889 30-322 63-038 24383 59-641 75-174 44.792
0-85 12.248 38.762 50-276 79-987 27.434 59-465 23-366 57-862 69-650 41-630

79-727

09 11.442 37-627 45797 76-694 25-021 56-378 22.532  55-870 65-546  38-990
72-172

0-95 10774 36:409 42277 73-185 22.988 53-617 21-840 53-555 62-705 36-766
65-928

1.0 10-216 34-877 39771 69-666 the same as AS 21260 51-030 60-829 34-877

frequency parameters for the clamped plates do not depend upon the Poisson ratio,
though the present results were obtained with v = 0-3.

4. CONCLUDING REMARKS

The method used in this paper permits treating vibration problems of isotropic
and rectilinear orthotropic elliptical plates. Using the eigenvalue equation induced,
natural frequencies and mode shapes for various aspect ratio and orthotropic property
can be easily obtained. The accuracy and rate of convergence were shown for both
orthotropic and isotropic plates. In addition, though the equation is given for plates with
uniform thickness, the approach can be extended without any special difficulty to the case
with variable thickness when the variation of the thickness can be expressed as
polynomials.

Except for the special case of isotropic circular plates (b/a= 1), the exact solution is not
known even for isotropic elliptical plates and the approximate results presented in the
literature are available only for the first several modes or for a special aspect ratio. In this
paper, natural frequency parameters for isotropic elliptical plates with all the classical free,
simply supported, and clamped boundary conditions are tabulated for various aspect
ratios classifying the mode types. The values may be useful for design data.



744 LETTERS TO THE EDITOR

o —

10.

11.

12.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

REFERENCES

. A. W. LE1ssA 1979 NASA SP-160 Vibration of Plates. Washington: NASA.

. A. W. LEissa 1977-1987 The Shock and Vibration Digest: 1977, 9, 13-24; 1977, 9, 21-35;
1981, 13, 11-22; 1981, 13, 19-36; 1987, 19, 11-18; 1987, 19, 10-24. Recent research in plate
vibrations.

. G. YaMADA and T. IRIE 1987 Applied Mechanics Review 40, 879-892. Plate vibration research in
Japan.

. T. Ir1E and G. YAMADA 1979 Bulletin of JSME 22, 1456-1462. Free vibration of an orthotropic
elliptic plate with a similar hole.

. J. S. TomAR and A. P. GupTta 1984 Journal of Sound and Vibration 96, 29-35. Vibrations of
orthotropic elliptic plate of non-uniform thickness and temperature. doi: 10.1006/jsvi.

. Y. Narita 1985 Journal of Sound and Vibration 100, 83-89. Natural frequencies of free,
orthotropic elliptical plates. doi: 10.1006/jsvi.

. P. G. YOUNG and S. M. DICKINSON 1994 Journal of Sound and Vibration 177, 93—109. Further
studies on the vibration of plates with curved edges, including complicating effects. doi: 10.1006/
jsvi.

. S. CHAKRAVERTY and M. PETYT 1999 International Journal of Structural Engineering and
Mechanics 7, 53—67. Free vibration analysis of elliptic and circular plates having rectangular
orthotropy.

. S. CHAKRAVERTY, R. B. BHAT and 1. STiHARU 2000 Journal of Applied Mechanics and

Engineering 5, 843-866. Vibration of annular elliptic orthotropic plates using two dimensional

orthogonal polynomials.

C. S. KM 1992 Journal of KSME 16, 1485-1492. Free vibration of elliptical and circular plates

(in Korean).

A. W. LE1ssA 1967 Journal of Sound and Vibration 6, 146—148. Vibration of a simply-supported

elliptical plate. doi: 10.1006/jsvi.

C. S. KM, P. G. YouNG and S. M. DickinsoN 1990 Journal of Sound and Vibration 143,

379-394. On the flexural vibration of rectangular plates approached by using simple polynomials

in the Rayleigh—Ritz method. doi: 10.1006/jsvi.

. C. S. Kim and S. M. DIcKINSON 1990 Journal of Sound and Vibration 141, 291-311. The free

flexural vibration of right triangular isotropic and orthotropic plates. doi:10.1006/jsvi.

C. S. Kim and S. M. DICKINSON 1992 Journal of Sound and Vibration 152, 383—403. The free

flexural vibration of isotropic and orthotropic general triangular shaped plates. doi: 10. 1006/

jsvi.

T. SAKATA 1976 Journal of Sound and Vibration 48, 405-412. A reduction method for problems

of vibration of orthotropic plates.

N. R. RajaprrA 1963 American Institute of Aeronautics and Astronautics Journal 1, 1194-1195.

Free vibration of rectangular and circular orthotropic plates.

R. P. McNITT 1962 Journal of Aerospace Science 29, 1124-1125. Free vibration of a clamped

elliptical plate.

C. G. KM and C. S. HoNG 1988 American Institute of Aeronautics and Astronautics Journal 26,

982-988. Buckling of unbalanced anisotropic sandwich plates with finite bending stiffness.

Y. SHIBAOKA 1956 Journal of Physical Society of Japan 11, 797-803. On the transverse vibration

of an elliptic plate with clamped edge.

B. SINGH and S. CHAKRAVERTY 1992 Computers and Structures 43, 439-443. On the use of

orthogonal polynomials in the Rayleigh—Ritz method for the study of transverse vibration of

elliptic plates.

C. RaJALINGHAM, R. B. BHAT and G. D. Xi1str1s 1993 Journal of Vibration and Acoustics 1185,

353-358. Natural frequencies and mode shapes of elliptic plates with boundary characteristic

orthogonal polynomials as assumed shape functions.

H. CARRINGTON 1925 Philosophical Magazine 50, 1261-1264. The frequencies of vibration of

flat circular plates fixed at the circumference.

C. S. Kim and S. M. DIckINSON 1989 Journal of Sound and Vibration 130, 363-377. On the

lateral vibration of thin annular and circular composite plates subject to certain complicating

effects. doi: 10. 1006/jsvi.

B. SiNGH and S. CHAKRAVERTY 1991 International Journal of Mechanical Sciences 33, 741-751.

Transverse vibration of completely-free elliptic and circular plates using orthogonal polynomials

in the Rayleigh—Ritz method.



25.

26.

27.

LETTERS TO THE EDITOR 745

B. SINGH and S. CHAKRAVERTY 1992 Journal of Sound and Vibration 152, 149-155. Transverse
vibration of simply supported elliptical and circular plates using boundary characteristic
orthogonal polynomials in two variables.

A. W. Leissa and Y. NARITA 1980 Journal of Sound and Vibration 70, 221-229. Natural
frequencies of simply supported circular plates. doi: 10.1006/jsvi.

K. ITao and S. H. CRANDALL 1979 Journal of Applied Mechanics 46, 448—453. Natural modes
and natural frequencies of uniform, circular, free-edge plates.



	1. INTRODUCTION
	2. ANALYSIS
	Figure 1

	3. RESULTS AND DISCUSSION
	TABLE 1
	TABLE 2
	Figure 2
	TABLE 3
	TABLE 4
	TABLE 5
	TABLE 6
	TABLE 7
	TABLE 8

	4. CONCLUDING REMARKS
	REFERENCES

