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The estimation of wave amplitudes is investigated for the case in which two different
vibration types couple to the measured variables. Particular reference is made, by way of
example, to the coupling of axial wall motion to pressure waves in a fluid-filled pipe. Two
different types of sensor array are considered: one in which the same parameter is measured
at a number of different locations, and one in which the measured parameters are not all
identical. Predictions of variation in frequency range and sensitivity to measurement errors
are made based on the behaviour of the determinant of the transformation matrix, and are
verified by simulation. It is shown that the analytical expression for this determinant can
give valuable insight into the design of sensor arrays, and that the choice of measured
variables is critical to achieving low sensitivity to measurement error.

© 2002 Elsevier Science Ltd. All rights reserved.

1. INTRODUCTION

Reducing the transmission of structure-borne noise and vibration can be a challenging
task. Typically, a variety of different vibration types can be present in a structural element,
and the relative importance of these is not generally known a priori. However, this
information is important to the analyst, as the effectiveness of a particular vibration
treatment depends strongly on the vibration types that are present. Wave decomposition,
in which the amplitudes of the various waves are estimated from vibration measurements,
can therefore provide valuable insight.

The accuracy of the estimates of wave amplitude depends strongly on the specific
measurement environment. In general, however, there is often considerable uncertainty in
the assumed material properties, sensor locations, etc. and there are inevitably errors in the
measured data. A low sensitivity to measurement and other errors is therefore a
prerequisite of a reliable measurement system.

In simple structural elements, the measured variables can be chosen so that, to a good
approximation, they are influenced only by a single vibration type, and the estimation of
wave amplitudes can therefore be performed for each vibration type independently. The
design of appropriate sensor arrays for these situations has been investigated in previous
work [1] and is summarized in section 4.

In more complicated structural elements, the measured variables can be strongly
influenced by more than one vibration type. Examples of this include coupled flexural and
extensional motion in curved beams, and the coupling of axial and circumferential motion
in a pipe wall with pressure variations in the fluid. Under these circumstances, the
amplitudes of the waves associated with the different vibration types should ideally be
estimated simultaneously. The design of appropriate sensor arrays for these applica-
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tions is more complicated, and a strategy to assist in the design process is the subject of this
paper.

In the following section, the principle of estimating wave amplitudes from a set of
simultaneous measurements is described. This is followed by a brief discussion regarding
the sensitivity of the estimates to errors in the assumed parameters and experimental
measurements. In section 4, the problem of designing sensor arrays for wave
decomposition is discussed, and the use of the transformation matrix determinant as a
design guide is proposed. Sections 5 and 6 illustrate how the determinant can be used in
the design of single parameter and hybrid arrays respectively. Simulations of measure-
ments in fluid-filled pipes are used as examples, and sensitivity to errors is demonstrated by
the introduction of random noise to the simulations.

2. PRINCIPLES OF WAVE DECOMPOSITION

Consider a response parameter y(z), such as acceleration or strain, of a vibrating
structure. Typically, there will be a number of waves present that will influence this
variable. It can, therefore, be expressed as the sum of the contributions of the individual
waves in the form

Y(z) =@/ gfe ™+ drgreh 4 @ gte TR0 4@ g el (1)

where @ and @, are the positive- and negative-going wave amplitudes and k, is the
wavenumber, the subscript r denoting the rth wave type. The terms ¢ and ¢, are
conversion factors that relate the wave amplitudes to the measured variable. It should be
noted that the wave amplitudes can be described in terms of any parameter that varies due to
the presence of the wave. For example, axial waves in a rod can be described in terms of
axial displacement, axial strain, axial stress, or even the circumferential strain that results
from the Poisson effect. If a particular wave type, r, is described in terms of the response
parameter, (z), then g = ¢, = 1. If, however, the wave type is described in terms of some
other parameter, the relevant theoretical conversion factors, ¢ and ¢, , must be applied.

If n simultaneous measurements ¥, (z;) are taken on the structure they can be written in
matrix form as

¥ = Fd (2)

where

Y= (1(21) Yo(22) .- W(za), @ =(0F @7 .0, @),

+ ~—ikiz — alkiz + a—ikpuz — alkpz
qlle 121 qlle 121 ql]ne mZ1 qlme m=1
+ ~—ik)z — Wk z 4+ a—ikpz — alkyz
q21€ 122 q21e 122 cee q2me mz2 q2me mZ2
F= . . . . . : (33" bv C)
+ a—ikiz, — ikyz, + a—ikuz, — aikmzn
qnle q4,1© qnme qnme

In order to estimate the wave amplitudes from these measurements it is necessary, as a
minimum requirement, for the number of measurements, n, to equal the number of waves
assumed present (2m). The transformation matrix F is then square, and the wave
amplitudes can be estimated using matrix inversion to give

®—F 'y ()

provided that matrix F is non-singular. If the number of simultaneous measurements
exceeds the number of waves assumed to influence the measurements, the problem is
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overdetermined. A “best” estimate of the wave amplitudes can then be found, in a least-
squares sense, using the Moore—Penrose inverse, giving

® = (FUF)'FHy, (5)

where ()H denotes the conjugate transpose of a matrix [2]. However, while the use of an
overdetermined system is certainly desirable in terms of reducing errors, it significantly
increases the complexity and cost of the measurement system. For this reason, in the work
described in this paper, F is assumed to be a square matrix.

3. ERRORS AND CONDITIONING

In practice, there will inevitably be errors in both the vector of experimental
measurements, \, and the transformation matrix, F. These errors will result both from
experimental error (in the measured values, ¥/, and in the sensor placement, z;) and from
imperfect knowledge of the structural properties and behaviour (causing errors in the
assumed wavenumbers, k, and conversion factors, ¢¥). The sensitivity of the wave
amplitude estimate to these errors is determined by the conditioning of the problem, with a
well-conditioned problem being relatively insensitive to errors in the input data. This
conditioning can be quantified by the two-norm condition number of the transformation
matrix F, with a condition number of unity indicating optimal conditioning and a
condition number of infinity signifying that the matrix is singular.

It can be shown that if there exists an error, 8F, in the transformation matrix such that

F' =F + 6F, (6)
then the resulting error, 8@, in the wave amplitude estimate is related to 6F by

|3 ||SF]|

Tl < @)

where || || denotes the norm of a vector or matrix and x(F) is the condition number of the
matrix F [3]. Similarly, if there exists an error, 8\, in the measured variables such that

V' =+, (8)
the resulting error, 8®, in the wave amplitude estimate is related to oy by
8] |8
——<k(F) +—+. 9)
|D]| [l

The condition number of the transformation matrix, F, therefore determines the upper
bound to the resulting errors in the wave amplitude estimate. Minimizing the condition
number minimizes the maximum possible error, and thus allows the best estimate of the
wave amplitudes from a given quality of input data.

The elements of the matrix, F, and therefore its condition number, are determined by
the measured variables, the measurement locations, and the parameters used to describe
the waves. The sensitivity of the wave amplitude estimate to errors can therefore be
minimized through the use of an appropriate sensor array for the measurements. In
practice, however, it is generally only possible to achieve good conditioning over a limited
frequency band. It is therefore necessary to consider the variation of conditioning with
frequency when designing a sensor array for a given measurement application.
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4. SENSOR ARRAY DESIGN

Overall, the goal in designing the sensor array is to obtain an accurate and reliable
estimate of the wave amplitudes that are present. Clearly, the quality of the estimate
depends not only on the conditioning of the problem, as discussed in the previous section,
but also on the quality of the measured data. This introduces additional considerations,
such as the relative accuracy of different sensor types, and their susceptibility to
interference from other sources. However, in the interests of generality, it is assumed in
what follows that all sensors have similar accuracy, and sensor arrays are compared only
in terms of the conditioning achieved.

The design of sensor arrays for wave amplitude estimation in situations in which only a
single vibration type affects the measured variables has been covered in previous work. In
summary, for conventional sensor arrays, in which a single variable is measured at uniformly
spaced locations, and the number of sensors is equal to the number of waves assumed present
(i.e., a fully determined, rather than overdetermined, system) optimal conditioning occurs at
a sensor spacing of approximately a quarter wavelength, with singularity occurring at a half-
wavelength spacing. It has also been shown that hybrid sensor arrays, in which more than
one variable is measured, can result in improved conditioning in cases where the array size is
restricted. A typical example of this is the measurement of flexural wave amplitude between
two closely spaced discontinuities. Under these circumstances, an array comprising of a strain
gauge and an accelerometer at each of two locations can offer substantially better
conditioning than an array of four uniformly spaced accelerometers [1].

When the measured variables are influenced by more than one vibration type, the design
of an appropriate sensor array becomes more complicated. It is still desirable to minimize
sensitivity to errors, and thus a low condition number is a suitable indicator of potential
performance. However, the selection of appropriate sensors and sensor locations to
achieve this goal is not intuitive. In what follows, the determinant of matrix F is expanded,
and its behaviour is used to determine the qualitative changes in conditioning that result
from specific changes in sensor spacing. It should be noted that good conditioning, as
indicated by a low condition number in the frequency range of interest, is still used as a
measure of sensor array suitability. The determinant is simply used as an aid in selecting
sensor types and spacings to obtain a well-conditioned calculation.

Consider the case where there are two vibration types, each comprising of a pair of
propagating waves that affect the measured variable. The output of any sensor, being the
sum of the contributions of the individual waves can be written as

Y(z) = qf ®fe M7 4+ gy By 4 gf D 4 gy Dy e, (10)

If the sensor array comprises four sensors, the relationship between the sensor outputs and
wave amplitudes can be expressed as
V= Fo, (11)

where

V= (21) ¥al22) ¥s(z) Yulza), @ = (@] &y @5 @),
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If the estimation of wave amplitudes is to be relatively insensitive to errors, it is necessary
that F be a well-conditioned matrix. This can be achieved by the appropriate selection of
measured variables and wave descriptors, which between them determine q?, and
measurement locations, z;. However, the effect on the conditioning of varying these
parameters is not readily apparent, and thus, without additional insight, refinement of
sensor array design is largely a matter of trial and error.

Some additional insight can be gained by considering the behaviour of the determinant
of matrix F. However, the general expression for the determinant of a 4 x 4 matrix is
relatively complicated, and therefore some degree of simplification is desirable at this
stage. Initially, this involves the assumption that the sensors are used in pairs of a
particular type. For example, a sensor array might comprise of two pairs of
accelerometers, or of a pair of accelerometers and a pair of strain gauges. It is assumed,
with no loss of generality, that sensors 1 and 2 constitute the first sensor pair, while sensors
3 and 4 constitute the second sensor pair. Under these circumstances, matrix F becomes

ik1:1 ikzll

+ —ikyz —
g " gt

+ —ikz — ik z + a—ikyz — Hikrz
qlle 122 qlle 122 qlze 222 qlze 222

+ .—ikz —
gie " qne

F— (13)
+ —ikz — Ak z + —ikyz — Aikyz
P FT 2 PP S
b omikiza o aikiza b oamikozs = aikoz
gy T @y €T e gpyet

The expression for the determinant of F depends on the relative signs of the conversion
factors, ¢, with ¢;; = j:q;. If q; = g; for all jj then the determinant is given by

det(F) =4[—q{,4{1924% sin(ki(z2 — z1))sin(ka(z4 — z3))
— 4591295195 sin(ki (z4 — z3))sin(ka(z2 — z1))
+ 4119951935, (sin (k1 (z3 — z1))sin(ka(z4 — 22)) — sin(ky(z4 — z1))sin(ka(z3 — 22))
—sin(ky(z3 — z2))sin(ka(z4 — z1)) + sin(ky (z4 — 22))sin(ka(z3 — 21)))], (14)

while if ¢7, = =47}, ¢ = =415, &5 = ¢3,, and ¢5, = ¢3,, the determinant becomes

det(F) =4[q{,4{,9nq5sin(ki (2 — z1))sin(k2(z4 — z3))
+ 41,9293 95 5in(k1 (24 — z3))sin(ka(z2 — 21))
+ 41141242192 (—cos(ki (z3 — z1))cos(ka(z4 — 22))
+ cos(ky(z4 — z1)) cos(ka(z3 — z2))
+ cos(ki(z3 — z2))cos(ka(z4 — z1)) — cos(ki(za — z2))cos(ka(z3 — z1)))].  (15)

It is apparent from these expressions that the determinant can be expressed as the
superposition of a number of modulated harmonic terms. The frequencies of variation and
modulation with wavenumber are determined by the separations of the individual sensors
in terms of the wavelengths of the two wave types present. In order to determine the upper
bound to the upper frequency limit of the sensor array, it is necessary to identify the first
(non-zero frequency) zero of the determinant. Furthermore, the behaviour of the
determinant below that frequency can give an indication of the variation of conditioning
with frequency, with a large determinant generally being associated with a well-
conditioned system.

The precise behaviour of the determinant depends strongly on the form of the sensor
array and on the relative values of the two wavenumbers, k; and k. It is thus difficult to
establish general rules for the design of sensor arrays in this application. However,
valuable insight can be gained by considering specific situations. In the following sections,
two particular sensor array types will be considered: one in which the four sensors measure



940 C. R. HALKYARD

z

—>

| e s e

Figure 1. Sensor array configuration.

the same variable (a single parameter array), and one in which two measurements of one
variable and two measurements of a second variable are taken (a hybrid array). In both
cases, the sensor array is assumed symmetrical with the sensor locations as shown in
Figure 1. Predictions are made, based on the behaviour of the determinant, regarding the
conditioning of the wave amplitude estimation, and simulations are performed to
demonstrate the effects on the useable frequency range and sensitivity to noise.

5. WAVE AMPLITUDE ESTIMATION USING A SINGLE PARAMETER ARRAY

In this type of array, a single variable, e.g., axial acceleration, is measured at four
different locations simultaneously. For simplicity, that same variable is used to describe
the wave amplitudes. (Note that these waves can be expressed in terms of any other
variable simply by applying the appropriate conversion factor. There will, however, be an
additional error associated with this conversion.) Under these circumstances qéﬁ =1 forall
ij, and the determinant can be written as

det(F) = (Q+ R+ S+T), (16)
where
Q =4 Sil’l(k] (22 — Z]))Sin(k2(24 — 23)),

R=-4 sin(k1 (24 — 23))sin(k2(22 — Zl)),
S=-8 Sil’l(k] (23 — Z]))Sill(kz(Zg, — Z])),

T = 8sin(k|(z4 — z1))sin(ka(zs — z1)), (17)

An intuitive approach to designing the sensor array would suggest that, at any given
frequency, one pair of sensors should be spaced to efficiently sense the presence of each
wave type. This would mean that, for the sensor array shown in Figure 1, sensors 1 and 2
would be placed to suit the larger wavenumber (assumed to be k;), while sensors 3 and 4
would be placed to suit the smaller wavenumber (assumed to be k). If this is the case

kl(zzle)zk2(24723). (18)

This approximate relationship will be used as a starting point in all subsequent analyses.

The behaviour of the determinant of the transformation matrix, F, is strongly dependent
on the relative values of the two wavenumbers k; and k,. Three separate cases are
therefore considered in the following subsections: when there is a relatively large difference
between the wavenumbers (i.c., k| > k»), when there is a relatively small difference between
the wavenumbers (i.e. k1 & k), and the special case where k, = k/3.
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Figure 2. Terms contributing to determinant as a function of sensor spacing (k; > k;): (——) Det(F); (————)
Q=) R; (o) S+T.

5.1. CASE 1: ky>k>

Using the approximate sensor placement given in equation (18), if k; >k, then
ko(zy — z1) is small and thus the modulation of R with changing wavenumber is relatively
slow (see Figure 2). This means that at low frequencies the magnitude of R is relatively
small. At these frequencies the value of the determinant is therefore dominated by the
remaining three terms, Q, S and 7. The term Q varies comparatively slowly with
wavenumber relative to S and 7', and the variation of the determinant is dominated by the
variation of the sum of S and 7, which is ~ cos(0-5k;(z4 — z3)). The first zero in the
determinant approximately coincides with the first peak in the sum of S and T (i.e., when
0-5k;(z4 — z3) =~ 2m). Singularity of the transformation matrix will therefore occur at a
much lower frequency than if each wave type were to be sensed separately (i.e., when
ki(z2 — z1) < m). It should also be noted that within this frequency range, the separation of
the inner pair of sensors (za — z1), is very small in terms of wavelengths for either wave
type. Increasing this separation slightly might therefore improve conditioning at low
frequencies, without significantly affecting the upper frequency limit of the sensor array.
Furthermore, adjustment of the frequency of singularity is most readily achieved by
changing the separation of the outer pair of sensors (z4 — z3). It is apparent that reducing
this spacing will raise the frequency at which matrix singularity occurs and thus, in
general, increase the upper frequency limit of the array. However, this will be accompanied
by a deterioration of conditioning at lower frequencies.

An example of this situation is a steel pipe, having a 50 mm internal diameter and 5 mm
wall thickness, containing compressed air. (Derivations of the required equations, along
with the definitions of the symbols used, are given in the Appendices A and B.) Under
these circumstances kr ~ 15k,, thus satisfying the requirement that k;>k,. Letting the
separation of the inner sensor pair (z; — z;) = 0-150 m and the separation of the outer
sensor pair (z4 — z3) = 2-25m satisfies the initial assumption that kr(z2 — z1) = k.(z4 —
z3). In Figure 3 is shown the variation of the condition number with frequency for this
sensor array, together with a plot of 14 1/|det(F)|. It is apparent that 1+ 1/|det(F)|
qualitatively approximates the behaviour of the condition number. The qualitative
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Figure 3. Estimates of matrix condition (steel/air): (——) two-norm condition number; (——— ) 1+ 1/|det(F)|.
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Figure 4. Matrix condition number (two-norm) (steel/air ky ~ 15k.): (—) (22 —z1) = 0:150m, (z4 — z3) =
2250 m; (----- ) (z2 —z1) = 0450 m, (z4 — z3) = 2:250 m; (——— ) (z2 —z1) = 0-150m, (z4 — z3) = 1-700 m.

behaviour of the condition number with frequency can thus be predicted with acceptable
accuracy from the behaviour of the determinant.

As predicted from examination of the expression for the determinant of matrix, F, the
proposed sensor array has a relatively narrow frequency range, with the first singularity
occurring at a frequency of approximately 275 Hz, corresponding to 0-5ky(z4 — z3) = 5-7.
The effect of increasing the separation of the inner sensor pair, and of decreasing the
outer sensor pair, on the conditioning can be seen in Figure 4. In the former case,
the separation of the inner pair of sensors is tripled, so that (z; —z;) = 0450 m and
k(2o — z1) = 3ke(z4 — z3). It can be seen that the effect of this modification to the sensor
array is to improve the conditioning at low frequencies, at the expense of a slightly reduced
upper frequency limit, as predicted. In the latter case, the separation of the outer pair of
sensors is reduced to give (z4 — z3) = 1.7 mm, so that k(z, — z1) ~ 1-3k.(z4 — z3). The first
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Figure 5. Condition number and normalized wave amplitude estimate (steel/air): (——) extensional wave;
(ceeenn ) fluid wave; (-------- ) condition number.

singularity is then seen to occur at approximately 360 Hz, at the expense of poorer
conditioning at low frequencies.

The sensitivity of the wave decomposition to measurement errors can be demonstrated
by simulation. In this simulation it is assumed that there exist only positive-going waves of
each type, with their amplitudes such that they contribute equally to the net energy flow.
The resulting measured parameters are calculated, and the “measurements’ contaminated
by noise. This noise has an amplitude that is uniformly distributed on the interval that is
+0-1% of the ‘true’ measurement value, and is of random phase. Wave decomposition is
performed using these contaminated measurements, and the wave amplitude estimates
compared with their true values. This approach is taken in all subsequent simulations,
although in some cases the relative amplitude of the noise is changed to aid visualization.
The calculated wave amplitudes, normalized with respect to the true amplitudes, together
with the condition number of the transformation matrix, F, are shown in Figure 5. It can
be seen that the estimate of the wall-dominated wave is not affected significantly by this
level of noise, except in the poorly conditioned region that occurs at low frequencies. In
contrast, the estimate of the fluid-dominated wave is severely affected by this noise, to the
extent that it is obviously not practical to estimate these wave amplitudes with this form of
sensor array. However, the reduced sensitivity to measurement error with improving
conditioning is readily apparent.

5.2. CASE 2: k| ~ ky

Using the sensor placement given in equation (18), if k| ~ k, then (z2 — z1) & (z4 — z3)
and |(z3 — z1)| < |(z2 — z1)]. Term S in equation (17) therefore has a very slow variation
with wavenumbers k| and k,, while the more rapid variations (as opposed to modulation)
of the remaining terms cancel at low frequencies, as seen in Figure 6. The variation of
determinant with wavenumber at low frequencies is thus dominated by the slow
modulation of the individual terms. The first zero in the determinant approximately
coincides with the first zero in the third term, S (i.e., when (ki(z; —z3)) =~
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(ka(z1 — z3)) = m). Since |(z3 — z1)| < |(z2 — z1)] the first singularity of the transformation
matrix occurs at a much higher wavenumber (and hence higher frequency) than would be
the case if each wave type were to be sensed separately with the corresponding pair of
sensors (i.e., when k(zx — z1) = ky(z4 — z3) > m). However, this frequency is very sensitive
to the relative placement of the sensors, as small changes in (z, — z;) or (z4 — z3) resultin a
relatively large change in (z3 — z1).

An example of this situation is an uPVC pipe, having a 50 mm internal diameter and
2.5mm wall thickness, containing helium. Under these circumstances kr ~ 1-5k.. Letting
the separation of the inner sensor pair (z; — z;) = 1-333 m and the separation of the outer
sensor pair (z4 — z3) = 2-0 m satisfies the initial assumption that ks (z> — z1) = k(24 — z3).
In Figure 7 is shown the variation of the condition number of the transformation matrix
with frequency, together with a plot of 1+ 1/|det(F)|, for this sensor array. As in the
previous case, it can be seen that the determinant of the transformation matrix, F, can be
used as a qualitative indicator of matrix condition.

As predicted from examination of the expression for the determinant of matrix, F, the
proposed sensor array has a relatively wide frequency range, with the first singularity
occurring at a frequency of approximately 1500 Hz, corresponding to kr|(z3 — z1)| =~ 3-1.
The effect of increasing the distance between adjacent outer and inner sensors on the
conditioning can be seen in Figure 8. Both decreasing the separation of the inner sensor
pair and increasing the separation of the outer pair reduce the upper frequency limit of the
array. However, in both of these cases the improvement in conditioning at low frequencies
is relatively small.

The calculated wave amplitudes, normalized with respect to the true amplitudes, when
random noise is added to the measurement as described in the previous subsection, are
shown in Figure 9, together with the condition number of the transformation matrix.
Again it can be seen that the estimate of the wall-dominated wave is not greatly affected by
this level of noise, except in the poorly conditioned region that occurs at low frequencies.
The estimate of the fluid-dominated wave is more severely affected, however, with the
correlation between the condition number and sensitivity to measurement errors readily
apparent.
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Figure 7. Estimates of matrix condition (uPVC/helium): (——) two-norm condition number; (————)
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(z4 —z3) =2:000m; (----- ) (z2—z1) =1200m, (z4 —z3) = 2000 m; (——— ) (z20—z1) =1:333m, (z4 —z3) =
2:200 m.

5.3. CASE 3: ky =k/3

In the special case when k, = k; /3, if the sensor spacing proposed in equation (18) is
used, a uniformly spaced sensor array is obtained and

dét(F) = — 4[sin(k] (Zz — z]))sin(3k2(22 — Zl))
+sin(3k; (zo — z1))sin(ka(z2 — 21)) + 2sin(—ky (z2 — z1))sin(—ka(z2 — z1))
—2Si1’1(2k1(22 —Zl))Sin(zkz(Zz —21))]. (19)
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Figure 9. Condition number and normalized wave amplitude estimate (uPVC/helium): (——) extensional
wave; (--- - ) fluid wave; (-------- ) condition number.

The first zero in the determinant then occurs when k(z; — z;) = ka(z4 — z3) = m, as would
be found if each wave type were sensed independently with a single pair of sensors.

5.4. THE EFFECTS OF WEAK COUPLING

A fundamental problem in the use of a single parameter sensor array is the fact that at
least one vibration type is often relatively weakly coupled to the measured parameter. In
this situation, the contribution of that vibration type to the measurements will often be
relatively small. The estimation of the amplitudes of these waves is then sensitive to
measurement errors, even if the transformation matrix, F, is well conditioned, because the
levels of error in the measurements are significant relative to the contribution of the wave.
This is apparent in the previous examples, where the estimate of the fluid-dominated wave
is strongly affected by relatively low levels of noise. Under these circumstances, the
simultaneous estimation of the two wave types becomes of questionable value. If the
measured parameter is dominated by one vibration type, then the assumption of a single
wave type being present is a valid approximation. A reasonable estimate of the amplitudes
of these waves could thus be obtained using a single pair of sensors, with the benefits of
improved conditioning, and reduced equipment and computational requirements. If the
noise levels are comparable to the contribution of the ‘minor’ wave type, it will not be
possible to get a reliable estimate of these wave amplitudes with the proposed sensors,
irrespective of whether a two-sensor or a four-sensor array is used. In summary, an array
of four identical sensors is appropriate for wave decomposition in this application only if
both vibration types make a significant contribution to the measured variable. In practice,
however, the use of different sensor types in the array (hybrid sensor arrays) offers the
potential of improved wave amplitude estimates.

6. WAVE AMPLITUDE ESTIMATION USING A HYBRID SENSOR ARRAY

This section considers a sensor array that uses two different sensor types, meaning that,
under the assumption of utilizing pairs of sensors, ¥/, and y, in equation (12) are one
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variable measured at different locations, while ; and , represent a second variable,
again measured at different locations. Under these circumstances, the constants qi]i- will, in
general, be different for each wave type and each measured variable. The value of the
determinant, and therefore the conditioning of the wave amplitude estimate, then depends
not only on the placing of the sensors but also on the relative values of qi Good
conditioning, and a relatively broad operating frequency range, will be achieved if the
determinant is dominated by a term having a large magnitude and relatively slow variation
with wavenumber. This requirement is fulfilled if |¢7;||¢3| > |¢73||¢5; |- If the sensors are
placed such that k(z; — z1) & kz(z4 — z3), the determinant is then dominated by the first
term of equation (14) or (15), and the first zero of the determinant occurs when k;(z; —
z1) & ka(z4 — z3) = m, irrespective of the relative values of k; and k,. This provides a
better-conditioned problem than is achieved using identical sensors, together with an
acceptable operating frequency range.

In physical terms, the requirement that |¢7;||¢3|> |47;||¢3| means selecting, for each
vibration type of interest, a measured variable that is strongly influenced by that vibration
type while being weakly influenced by the other. This is more apparent when the
relationship is expressed as |gf;| > |¢35| and |¢%| > |q¢3;|, which can be obtained through
the use of appropriate units for the variables, for example expressing pressure in terms of
MPa rather than Pa. (It should be noted that changing the units of a measured variable
and wave amplitude has the effect of multiplying the affected columns of the matrix F by
the relevant scaling factor, and the affected rows by the inverse of that scaling factor, and
thus does not change the value of the determinant.) In the limiting case, the
transformation matrix, F, becomes block diagonal and the amplitudes of the different
wave types can be estimated independently.

The effect of reducing the coupling between the measured variables on the conditioning
can be seen in Figure 10. This replicates the simulation of the single parameter array for
ki1 >k, (section 5.1), but in this case it is assumed that a hybrid array is used. The

measured variables and wave amplitude descriptors are chosen such that |¢f; | = |¢3,| = 1,
lai5| = |43;| = ¢, where ¢< 1 and determines the degree of coupling between the measured

variables. Figure 10 shows the condition number of the matrix F for a variety of values of
¢, starting with ¢ = 1 (i.e., a single-parameter array). It is apparent that a hybrid array that
offers even a moderate reduction in coupling over a single-parameter array can give
substantially improved conditioning and increased frequency range.

Clearly, if measured variables can be chosen such that ¢ is very small then it is possible
to measure parameters which are not strongly coupled, and under these circumstances the
simultaneous estimation of the two wave types may not be required. However, even in the
presence of weak coupling it is possible for both wave types to contribute significantly to
the measured variables due to the relative amplitudes of the waves. The simultaneous
estimation of wave amplitudes is therefore recommended unless a priori knowledge of the
system indicates otherwise.

The simulated results of wave decomposition using a hybrid array and a single
parameter array are shown in Figure 11(a) and (b). The simulation involves an air-filled
steel pipe (as used in section 5.1), and the hybrid array measures axial velocity and air
pressure, while axial motion is measured in the single-parameter array. As in the previous
examples, random noise is added to the simulated measurements (in this case uniformly
distributed on the interval 4+0-5%) and the resulting wave amplitude estimates normalized
with respect to the true values. The upper row of Figure 11 shows the amplitude estimates
for the fluid-dominated wave, while the lower row shows the estimates for the wall-
dominated wave. It can be seen that both arrays give reasonable results for the wall-
dominated wave, with the hybrid array giving much better performance at lower
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frequencies and a much greater frequency range. It is apparent, however, that only the
hybrid array gives a reasonable estimate for the fluid-dominated wave.

In many practical situations, direct pressure measurements, while desirable, are not
possible. Under these circumstances an alternative hybrid array is required. One
possibility substitutes the pressure measurements with measurements of circumferential
strain, as proposed by Pinnington and Briscoe [4]. For comparative purposes the
results achieved with such an array, under the conditions described above, are shown in
Figure 11(c). It is clear that this array gives better results than the single-parameter array,
but is significantly more sensitive to measurement noise than the pressure/axial velocity
array when estimating the amplitude of the fluid-dominated wave. This can be explained
by the fact that, with the frequencies and amplitudes used in the simulation, the
circumferential strain is dominated by the (predominantly) extensional wave. As a
consequence, the levels of error in the measurements are significant relative to the
contribution of the fluid-dominated wave, resulting in the situation described in section
5.4. In this specific case the strain sensors, being placed to sense the fluid wave effectively,
are closely spaced relative to the wavelength of the dominant wave. They, therefore,
measure almost identical quantities, and in particular have very similar phase.
Calculations of relative phase and difference in magnitude of these measurements, upon
which the estimation of fluid wave amplitude is heavily reliant, are thus prone to large
relative errors.

7. CONCLUDING REMARKS

The sensitivity of the wave amplitude estimate to measurement and other errors is
determined by the conditioning of the transformation matrix. In designing a sensor array
with which to estimate wave amplitudes, it is therefore desirable to obtain a well-
conditioned transformation matrix. However, the relationship between sensor type and
placement and matrix condition is not obvious when more than one vibration type affects
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Figure 11. Normalized wave amplitude estimate (steel/air): (a) single-parameter array; (b) hybrid pressure/
axial velocity array; (c) hybrid circumferential strain/axial velocity array.

the measured variables. Under these circumstances, study of the analytical expression for
the determinant of the transformation matrix can give improved insight into sensor array
design. In this paper, the simultaneous estimation of two wave types is discussed.
Particular reference is made to coupled axial motion and pressure pulses in a fluid-filled
pipe, but the approach is completely general.

If two vibration types significantly affect the possible measured variables, it is preferable
that two pairs of sensors are used, each pair measuring a different variable. The first sensor
pair is chosen to sense the first vibration type effectively, with a minimum of influence
from the second vibration type. The measured variable for the first sensor pair should
therefore be strongly influenced by the first vibration type but weakly influenced by the
second, and the separation of this pair should be appropriate for the wavelength of the
first wave type. The second sensor pair and its placement are chosen on a similar basis, but
with the intention of sensing the second vibration type effectively. In the limiting case, the
amplitudes of the waves associated with the different vibration types can be estimated
independently.

If an array of identical sensors is used and the measured variables are used to describe
the wave amplitudes, the operational frequency range of the sensor array is strongly
dependent on the relative size of the wavenumbers of the two wave types. If the two
wavenumbers are similar in magnitude, then the first singularity of the transformation
matrix occurs at a relatively high frequency if the sensor placement given by equation (18)
is used. However, this frequency is very sensitive to changes in the placement of the
sensors.

If the wavenumbers differ greatly, then the frequency at which the first singularity
occurs is relatively low using the sensor placement given by equation (18), restricting the
frequency range of the sensor array. The frequency of singularity can be increased through
decreasing the overall span of the sensor array, at the expense of poorer conditioning at
low frequencies.
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Irrespective of the conditioning achieved, it is necessary to ensure that the noise levels in
the measurements are small, not just relative to the measurements themselves, but small
relative to the contributions of the individual waves to the measurements. This applies to
both single-parameter and hybrid arrays.
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APPENDIX A: EQUATIONS OF MOTION FOR A FLUID-FILLED PIPE

The vibration of fluid-filled pipes has been studied by a number of authors (e.g.,
references [5, 6]). It is, however, necessary to make a number of simplifying assumptions in
order to yield approximate equations of motion that are amenable to analysis, and whose
solutions may be related to the measurements of a practical (i.e., relatively simple)
measurement system. Thus, only certain models are appropriate for this task. The theory
developed in this section follows the method proposed by de Jong [7]. It is assumed that
the frequencies of interest are well below the ring frequency of the pipe, being below the
cut-on frequency of the n = 2 circumferential mode. At these frequencies the motion of the
pipe is dominated by the » = 0 and 1 modes, and there is little deformation of the pipe
cross-section. Membrane stresses are, therefore, the dominant stresses in the pipe, and
local bending and radial shear deformation can be neglected. Under these circumstances, it
can be shown [7] that the equations of motion can be approximated by

O é”] (Ala,b)

di : = A0, C:ZZ - EF i 2vr11 gfi . (A2a—d)

(A3a—d)

% = —mo iy, cg‘zy = K?A b, dfg* =F, - p,[;&*¢,, dj; = 241 (Ada—d)



SENSOR ARRAYS FOR COUPLED WAVE MOTION 951

The meanings of the symbols are given in Appendix B and the sign conventions for
displacements (i, o), rotations (¢), forces (F), moments (M), and pressure (j) are as
defined in Figure Al. Note that the overbar indicates that these quantities are averaged
over the pipe cross-section.

The equations of motion can be considered as describing four independent (i.e.,
uncoupled) motions, and therefore four independent vibration types. Equations (Ala,b)
and (A2a—d) describe the torsional motion of the pipe and the axial motion of the pipe and
fluid respectively, while equations (A3a—d) and (A4a—d) describe the transverse motion of
the pipe and fluid in the x—z and y—z planes respectively. As these motions are
independent they may be considered, and measured, separately. This paper considers only
equation (A2a—d), describing axial motion of the pipe and fluid, as an example of coupled
motion.

Assuming that the possible solutions to the equations of motion can be written
in terms of propagating and evanescent waves, each possible solution will have the
form

Yz 1) = B, (AS)
and the general solution will be given by
N .
Wiz, 0) = Z P, (A6)
n=1
i.e., the sum of a number of different waves.

Assuming that the dynamic quantities vary spatially with e**, combining the four
equations (A2a—d) gives the dispersion equation

T

2
W 2k + ) + gk, (1 - (2v ’) o-> —0, (A7)

where 4 are the wavenumber solutions to the equation,

2 2
P2 P 2 Pr®
ke="p— g == (14 20Ky [hE)), (A8a,b)
and
o = ks ! (A8c)

~ AGE, (1+2rK;/hE,)

?

Figure Al. Conventions for displacement, rotation, forces, moments, and pressure.
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Since the dispersion equation is of fourth order in 4, there are four possible wavenumber
solutions. For the pipe geometry being considered (4« r, damping negligible) the resulting
A are two purely imaginary conjugate pairs, corresponding to two (positive and negative
going) propagating wave pairs. For typical fluids and pipe materials, the wavenumber pair
with the greatest magnitude (+iks) corresponds to a vibration dominated by a pressure
pulse in the fluid, but also resulting in a circumferential strain, owing to the finite modulus
of elasticity of the pipe wall, and axial strain due to the Poisson effect. The wavenumber of
this wave pair is therefore similar to that for a pressure pulse in a rigid pipe, but somewhat
higher owing to the elasticity of the pipe reducing the wave speed. The wavenumber pair
with the lower magnitude (+ik,) corresponds to a vibration dominated by axial motion of
the pipe wall, but also resulting in circumferential strain (due to the Poisson effect) and,
consequentially, pressure pulses in the fluid. The wavenumber for this wave pair is
therefore similar to that for axial vibration in a rod, but somewhat lower owing to the
resistance to the Poisson effect endowed by the fluid.

As discussed in section 2, the amplitude of a wave may be expressed in terms of any
variable that is affected by the presence of that wave. For a particular wave, there exist
fixed relationships between the different response variables. These relationships can be
determined for axial motion of the pipe and fluid by combining the relation in equation
(A2a—d). For example, the various response parameters can be expressed in terms of the

pressure as
- )va,‘ a; 2aKf 1 a Af 1\._
= 1 A L M
Uz <2vapf(u2 + 2vaKf( + hE; ) A Y a; EgAg A P,

_ A _ E Aa; 72 1 2aKy _
= F.= +—(1+ : A9a—
o pfwzp’ : 2va <pfw2 Ky hE; Py (A9a=c)

where /4 is the wavenumber solution appropriate for the particular wave. A measured
variable related to axial motion of the pipe and fluid can therefore be expressed with
complete generality as

l//(Z) — /—f—@}-e—ik/z + q;(pj:eik/z _’_q:@:e—ihz + qe—(p;eilq,z7 (AIO)
where qf+ is the conversion factor that relates the parameter used to describe the wave

amplitude to the measured variable for the positive-going fluid-dominated wave, and
similarly for the other waves.

APPENDIX B: NOMENCLATURE

BN
Ky

fluid area

pipe wall cross-sectional area

elastic modulus of pipe wall

force

transformation matrix relating measured variables to wave amplitudes
shear modulus of pipe wall

pipe wall thickness

torsional second moment of area of pipe
wavenumber of (predominantly) extensional wave
approximation of k&,

wavenumber of (predominantly) pressure wave
approximation of k,

oA
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bulk modulus of fluid

linear density of pipe + fluid

moment

pressure

conversion factor between units of measured variable and units of wave amplitude
pipe radius to mid-thickness

internal pipe radius

displacements

rotation

2-norm condition number of matrix F
wavenumber solutions to dispersion equation
the Poisson ratio for pipe wall

fluid density

solid (pipe wall) density

pipe/fluid system parameter

angular frequency

measured variable

vector of measured variables

wave amplitude

vector of wave amplitudes

An overbar indicates that a quantity is averaged over the pipe cross-section.
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Subscripts

e pertaining to extensional wave
f pertaining to fluid or fluid wave
s pertaining to solid (pipe wall)
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