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1. INTRODUCTION

In this work the modes of a uniform beam described by the Euler–Bernoulli model
with axial force or the Timoshenko model are determined in a unified manner with
the use of a fundamental free response. This later being referred to as the dynamical
solution. Together with its first three derivatives it constitutes a dynamical basis of
solutions for the underlying fourth order differential equation that governs the shape of a
mode.

The flexural modes of a beam with general boundary conditions can be, in principle,
determined with the use of a generic basis for the modal differential equation. However,
the initial conditions satisfied by the dynamical solution allows to reduce the dimension of
the algebraic modal equation that arises from satisfying the boundary conditions. This
equation leads to the characteristic equation for the eigenfrequencies.

Under limit situations, the dynamical basis behaves much better than the spectral basis
constructed in terms of the roots of the characteristic equation set up for seeking
exponential solutions. This is the case for a static situation.

2. THE MODAL EQUATION FOR FREE VIBRATIONS

For a uniform beam with mass per unit length m, Young’s modulus E, moment of
inertia of the cross-section I subject to an axial force �N and an external load p, we have
the Euler–Bernoulli model
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The Timoshenko beam model is described by the equation
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Table 1

Constants for the two models

Euler–Bernoulli g2 ¼ N

EI
a4=b2o2

Timoshenko g2=(a2+d2)o2 a4=b2o2�a2d2o4
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Here I denotes the identity operator, r, G the rotary and shear parameters, A the
transversal section area and k a geometric factor depending upon such section [1, 2].

The above models are subject to classical or non-classical spatial boundary conditions.
When no external load is acting upon the beam, free vibrations v ¼ XðxÞeiot

can be determined by solving the differential equation for the amplitude distribution
X(x) subject to boundary conditions. For both models, this amplitude satisfies the
equation

X ðivÞðxÞ þ g2X 00ðxÞ � a4XðxÞ ¼ 0 ð3Þ

where the constants g and a are as shown in Table 1.
The modes are subject to the general boundary conditions

A11Xð0Þ þ B11X 0ð0Þ þ C11X 00ð0Þ þ D11X 000ð0Þ ¼ 0;

A12Xð0Þ þ B12X 0ð0Þ þ C12X 00ð0Þ þ D12X 000ð0Þ ¼ 0;

A21XðLÞ þ B21X 0ðLÞ þ C21X 00ðLÞ þ D21X 000ðLÞ ¼ 0;

A22XðLÞ þ B22X 0ðLÞ þ C22X 00ðLÞ þ D22X 000ðLÞ ¼ 0:

ð4Þ

It should be observed that for non-classical conditions, the boundary coefficients might
involve the frequency o.

The general solution of equation (3) can be written in matrix form as X ¼ fc; where
f ¼ ½f1 f2 f3 f4� denotes any basis of solutions, that is, their Wronskian is non-zero. In
order to satisfy the boundary conditions, it follows that by a direct substitution and a
convenient grouping, the constant vector c must be a non-zero solution of BFc ¼ 0; where

B ¼

A11 B11 C11 D11 0 0 0 0

A12 B12 C12 D12 0 0 0 0

0 0 0 0 A21 B21 C21 D21

0 0 0 0 A22 B22 C22 D22
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Here B is the matrix of the boundary coefficients and F the matrix carrying the solution
basis and its derivatives at both ends. We thus have the modal equation

Uc ¼ 0; U ¼ BF ð6Þ

and the characteristic equation

D ¼ det U ¼ 0:

3. THE DYNAMICAL BASIS

The classical or spectral basis of equation (3) comes from searching exponential type
solutions. It is constructed in terms of the roots of the characteristic polynomial

l4 þ g2l2 � a4 ¼ 0: ð7Þ
The roots of equation (7) are given by l ¼ e; �e; id; �id; where

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ e2

p
; e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4 þ g4
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1=2

�g2

2

s
: ð8Þ

Then the spectral basis is given by

f ¼ ½sin dx; cos dx; sinh ex; cosh ex�:
Another basis, equally or more important than the spectral basis, that will be referred to as
the dynamical basis, is constituted by a particular solution and its derivatives [3]. The
dynamic solution or the fundamental solution of equation (3) is defined as being the
solution hðxÞ of the equation

hðivÞðxÞ þ g2h00ðxÞ � a4hðxÞ ¼ 0 ð9Þ
with the initial conditions

hð0Þ ¼ 0; h0ð0Þ ¼ 0; h00ð0Þ ¼ 0; h000ð0Þ ¼ 1:

The general solution is given by

XðxÞ ¼ c1hðxÞ þ c2h0ðxÞ þ c3h00ðxÞ þ c4h000ðxÞ ð10Þ
because the set of solutions {h, h0, h00, h000} has a non-zero Wronskian at t ¼ 0 and,
consequently, it is a basis of solutions. It is of interest to observe that from equation (9)
and by uniqueness, the solutions h and h00 are odd functions while h0 and h000 are even
functions.

The dynamical basis has the following representation with respect to the spectral basis:

f1 ¼ hðxÞ ¼ d sinh ex � e sin dx

deðe2 þ d2Þ
; f2 ¼ h0ðxÞ ¼ cosh ex � cos dx

ðe2 þ d2Þ
: ð11Þ

f3 ¼ h00ðxÞ ¼ e sinh ex þ d sin dx

ðe2 þ d2Þ
; f4 ¼ h000ðxÞ ¼ e2 cosh ex þ d2 cos dx

ðe2 þ d2Þ
: ð12Þ

In the vibration literature, for instance [1, 2, 4–6], the terms involving h or its derivatives
might appear frequently in the final or middle of calculations but without any reference to
a systematic treatment as the one given here. For the spectral basis there is not a natural
preference order for the elements of the basis. This is not the case with the dynamical basis.
The first element is naturally chosen as the fundamental solution h. Besides that, for a
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distributed load f ðxÞ its convolution with the dynamical solution gives the forced response
[1, 3, 7].

3.1. THE EULER–BERNOULLI MODEL AS A LIMIT CASE

Limit situations can be obtained directly from hðxÞ without any modification. Let us
consider the basic Euler–Bernoulli model without axial force (N ¼ 0). In this case, g ¼ 0
and, consequently d ¼ e ¼ a; Thus by taking limit as g tends to 0 in equation (12), it turns
out that

hðxÞ ¼ sinhðaxÞ � sinðaxÞ
2a3

: ð13Þ

The basic Euler–Bernoulli model, without axial force, reduces to the static situation
when inertia effects are neglected, that is, we set a ¼ 0: In this situation, we must
observe that equation (7) has a single root l ¼ 0 of multiplicity four. This implies d ¼
e ¼ 0 and, consequently, the spectral basis degenerates. This is not the case with the

dynamical basis. For such limit situation we get without any trouble that the dynamic
solution is

hðxÞ ¼ x3

6
: ð14Þ

This later will generate the basis

f ¼ x3

6
;

x2

2
; x; 1

� 

:

If we consider the Timoshenko model, we can eliminate the rotary inertia and the shear
deformation effects to get the Euler–Bernoulli model without axial force. This amounts to
consider a ¼ 0; d ¼ 0 so that g ¼ 0 and, consequently, d ¼ e ¼ a: With these assumptions
equation (13) is recovered.

This good behaviour of the dynamical solution h is not accidental. The reason situation
being that h is defined in term of its initial values which are independent of the parameters
of a given equation.

4. COMPUTING THE MODES OF A FIXED-SUPPORTED BEAM

The modes of a beam subject to diverse boundary conditions can be obtained
in a systematic way by solving equation (6). We observe that due to the initial
conditions of the dynamic solution h, the use of the dynamical basis will introduce a high
number of zeros in the matrix basis F. Thus, the order of the system is automatically
reduced by half.

This approach will be illustrated by considering the case of a fixed-sliding beam and
fixed-supported beam. The boundary conditions for this kind of beam will imply that the
matrix which registers such conditions is given by

B ¼

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

2
6664

3
7775: ð15Þ
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This matrix, when multiplied with F, activites only the elements of F that correspond to
the derivatives present on a boundary condition, that is

U ¼

hð0Þ h0ð0Þ h00ð0Þ h000ð0Þ
h0ð0Þ h00ð0Þ h000ð0Þ hðivÞð0Þ
hðLÞ h0ðLÞ h00ðLÞ h000ðLÞ
h00ðLÞ h000ðLÞ hðivÞðLÞ hðvÞðLÞ

2
66664

3
77775 ¼

0 0 0 1

0 0 1 0

hðLÞ h0ðLÞ h00ðLÞ h000ðLÞ
h00ðLÞ h000ðLÞ hðivÞðLÞ hðvÞðLÞ

2
66664

3
77775: ð16Þ

It turns out that the characteristic equation is given by

D ¼ det U ¼ hðLÞh000ðLÞ � h0ðLÞh00ðLÞ ¼ 0: ð17Þ
For each root e of this equation, a value is obtained for d and a that allows to fix the
dynamical basis for computing the corresponding mode to an eigenfrequency o whose
value is given in terms of a. The system Uc ¼ 0 is solved by elimination or with symbolic
software for more complex situations.

The corresponding mode, relative to the dynamical basis, is given by

XnðxÞ ¼ snh0ðx; enÞ þ hðx; enÞ; sn ¼ hðL; enÞ
h0ðL; enÞ

ð18Þ

where, for the definition of hðxÞ; the dependence upon the root en has been emphasized.
It should be noticed that with this methodology, the case of a supported-fixed Euler–

Bernoulli beam can be handled with a simple row permutation in the matrices B and F or,
when convenient, to employ the basis that would be generated by hðL � xÞ instead of hðxÞ:

REFERENCES

1. L. Meirovitch 1997 Principles and Techniques of Vibrations. Englewood Cliffs, NJ: Prentice-
Hall.

2. S. Timoshenko and D. H. Young 1955 Vibration Problems in Engineering. Princeton, NJ: Van
Nostrand.

3. J. C. R. Claeyssen 1990 Journal of Sound and Vibration 140, 73–84. On predicting the response
of non-conservative linear vibrating systems by using dynamical matrix solutions.

4. M. A. De Rosa 1996 Journal of Sound and Vibration 194, 631–635. Free vibrations of stepped
beams with flexible ends, in the presence of follower forces at the step.

5. J. Ginsberg 2001 Mechanical and Structural Vibrations: Theory and Practice. New York: John
Wiley.

6. D. Inman 1995 Vibration Engineering. Englewood Cliffs, NJ: Prentice-Hall.
7. J. C. R. Claeyssen, G. Canahualpa and C. Jung 1999 Applied Numerical Mathematics

30, 65–78. A direct approach to second-order matrix non-classical vibrating equations.


	1. INTRODUCTION
	2. THE MODAL EQUATION FOR FREE VIBRATIONS
	TABLE 1

	3. THE DYNAMICAL BASIS
	4. COMPUTING THE MODELS OF A FIXED-SUPPORTED BEAM
	REFERENCES

