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A power flow analysis method was developed to predict the vibrational responses of
reinforced beam–plate coupled structures in frequencies ranging from medium to high.
This analysis method was successfully applied to simply supported rectangular plates
reinforced with multi-parallel beams by utilizing the power flow coupling relationships at
the beam–plate junctions and the zero intensity conditions at the plate edges. Through
numerical simulations, the power flow energy density and intensity fields of two different
plates, consisting of single beam and eight beams, were compared with those of classical
displacement solutions, and they show good agreement in terms of the global decay and the
attenuation patterns of the energy density.
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1. INTRODUCTION

Many engineering structures are designed as plate components with reinforcing beams to
provide effective strength and resistance to vibrational motions. The reinforcing beam is
the structural element of greatest practical importance in ship superstructures, bridge
decks, ribbed floors, aircraft and space structures. At low-frequency ranges, the
vibrational response of these structures may be analyzed with regards to structural
deformations by conventional methods such as the finite element method (FEM).
However, at high frequency or for broadband analysis, an alternative approach is required
because conventional methods demand excessive computation time.

Recent investigations have considered power flow analysis (PFA), which is analogous to
the steady state heat flow model, as a possible alternative approach. In this method, the
primary response variable is the vibration energy density of the structure and the
secondary response variable is the vibration intensity vector which is proportional to the
gradient of the energy density. For longitudinal vibration in rods and transverse flexural
vibration of beams, Wohlever and Bernhard [1] have found that time- and space-averaged
farfield intensity is proportional to the gradient of total energy density, and have derived
approximate energy governing equations. Bouthier and Bernhard [2] also have developed
energy governing equations for flexural wave in plates and applied it to a single plate. Cho
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[3] has utilized PFA to predict the vibration response of coupled plate structures by
applying the power flow coupling relationships to the coupled plate junctions. In this
study, the diffused power transmission and reflection concept is used in semi-infinite
coupled plates because the frequency-averaged vibration responses of finite structures are
close to those of similar types of infinite structures [4]. Park [5, 6] has derived completely
energy governing equations for in-plane waves such as longitudinal wave and shear wave
in plates. Seo [7] has developed 3d.o.f. finite element formulations of energy governing
equations for flexural, longitudinal, and shear waves in plates.

Up to now, most PFA investigations have concentrated on developing power flow
models of a single structure or coupled structures consisting of similar types of elements.
The main purpose of this study is to develop an adequate PFA method for application to
reinforced beam–plate coupled structures and consequently to prove the efficacy of the
PFA method relative to the classical method. Reinforced beam–plate structures are
modelled on simply supported plates with uniformly parallel multi-reinforcing beams. For
rigorous consideration of the discrete nature of the beams, the energy density satisfies the
energy governing equations of the plates in their domains and the power flow coupling
relationships are applied to the plate–beam junctions.

In the next section, power transmission and reflection coefficients at the plate–beam
junctions are discussed. In section 3, power flow analysis solutions of the beam-reinforced
plates are discussed, and in section 4, the power flow analysis solutions and displacement
solutions are compared for several different conditions.

2. WAVE TRANSMISSION ANALYSIS OF BEAM-REINFORCED PLATES

Cremer and Heckl [8] have established the transmission and reflection characteristics of
various structural junctions. For the reinforced plate part, their study assumed that a thin
and rectangular beam is symmetrically connected with co-planar plates, and simple
boundary conditions were applied. Therefore, the displacements at both sides of the plate–
beam junction were same. Langley and Heron [9] have investigated power transmission
coefficients for the more general types of structural junctions which consist of an arbitrary
number of plates coupled through a beam of arbitrary shape. In this section, the wave
transmission approach is applied to the structural junctions between plates and a beam.

Figure 1(a) shows the cross-section of a semi-infinite rectangular beam joined, along its
length, to N semi-infinite plates of different materials and geometrical properties. The
centroid line of the beam is the yb axis of its co-ordinate system (xb; yb; zb) and is the same
in terms of its shear axis due to the symmetry cross-section. The plate m; one of i;
1; 2; . . . ; N � 1 is joined at Jm at angle ym from xb and follows the local co-ordinate system
(xm; ym; zm). Figure 1(b) shows the plane of plate I from which an incident wave strikes the
reinforcing beam at angle fm from normal to the junction line.

When a flexural wave of amplitude Af ; or a longitudinal wave of amplitude Al ; or a
shear wave of amplitude As is incident as a plane wave form propagating in the plate i;
transmitted or reflected wave is generated in each semi-infinite plate. The x; y; and z

directional displacements (ui; vi; and wi) of the incident plate i in its local co-ordinate can
be represented as follows:

uiðx; yÞ ¼ � klxi

kli

Ale
jklxix�jkyy � ky

ksi

As e
jksxix�jkyy

þ klxi

kli

Plie
�jklxix�jkyy � ky

ksi

Qsi e
�jksxix�jkyy; ð1Þ



Figure 1. (a) Cross-section of N plates joined to a rectangular beam and a co-ordinate system for the plates
and the beam. (b) Plane of an incident plate.
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viðx; yÞ ¼ � ky

kli

Ale
jklxix�jkyy � ksxi

ksi

Ase
jksxix�jkyy

þ ky

kli

Plie
�jklxix�jkyy þ ksxi

ksi

Qsie
�jksxix�jkyy; ð2Þ

wiðx; yÞ ¼Af e
jkfxix�jkyy þ Bie

�jkfxix�jkyy

þ Cie
�
ffiffiffiffiffiffiffiffiffiffi
k2

fi
þk2

y

p
x�jkyy

: ð3Þ
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In equations (1) and (2), the first and second terms are the incident longitudinal and shear
waves, respectively, and the third and fourth are the reflected longitudinal and shear waves
respectively. In equation (3), the first term is the incident flexural propagating wave, the
second is the flexural reflected propagating wave, and the third is the reflected decaying
nearfield wave. The terms kfm; klm and ksm are the flexural, longitudinal and shear
wavenumbers of the plate m; respectively, and are related to the following equations:

kfm ¼ ðo2rmhm=DmÞ1=4; ð4Þ

klm ¼ o=ðEm=rmð1� u2mÞÞ
1=2; ð5Þ

ksm ¼ o=ðGm=rmÞ
1=2; ð6Þ

where o; r; h; E; and u are the frequency of the incident wave, the material density, the
thickness, Young’s modulus and the Possion ratio respectively. D ¼ Eh3=ð1� u2Þ and
G ¼ E=2 1þ uð Þ are the flexural stiffness and shear modulus of a plate. The term ky is the y

directional wavenumber of the incident wave expressed with the incident wavenumber k as

ky ¼ k sin f ð7Þ
and all the waves of the plates and the beam produced by the incident wave share the
factor e�jkyy; since they share the same wave motion along the junctions. The terms kfxm;
klxm and ksxm are the x directional wavenumbers of kfk; klk; and ksk; which can be defined
as follows for the purpose of numerical convenience:

kpxm ¼
ki

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2pm � sin2f

q
; apm > sin f;

�jki

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 f� a2pm

q
apm5sin f:

8><
>: ð8Þ

Here, the subscript p indicates one of the wave types among the flexuralðf Þ; longitudinal
ðlÞ and shear ðsÞ waves. The term apm is wavenumber ratio of the p type wave at the
transmitted or reflected plate m to the incident wavenumber. If apm > sinf; kpxm becomes
real and the p type wave at the transmitted or reflected plate m represents a propagating
wave. Otherwise, kpxm is a purely imaginary number and the p type wave at the plate m

represents a decaying wave.
The x; y; and z directional displacements (ut; vt; and wt) in the transmitted plate can be

represented as follows:

utðx; yÞ ¼ klxt

klt

Plte
�jklxtx�jkyy � ky

kst

Qste
�jksxtx�jkyy; ð9Þ

vtðx; yÞ ¼ ky

klt

Plte
�jklxtx�jkyy þ ksxt

kst

Qste
�jksxtx�jkyy; ð10Þ

wtðx; yÞ ¼ Bte
�jkfxtx�jkyy þ Cte

�
ffiffiffiffiffiffiffiffiffiffi
k2

ft
þk2

y

p
x�jkyy

: ð11Þ
In equations (9) and (10), the first and second terms are the transmitted longitudinal and
shear waves respectively. In equation (11), the first term is the flexural transmitted
propagating wave and the second represents the transmitted decaying nearfield wave.

The displacements of the reinforcing beam in the beam co-ordinate system can be
represented as

wbxðyÞ ¼ Fxe
�jkyy; ð12Þ

wbzðyÞ ¼ Fze
�jkyy; ð13Þ
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ubðyÞ ¼ Lbe
�jkyy; ð14Þ

ybðyÞ ¼ Tbe
�jkyy; ð15Þ

where wbx and wbz are the x and z directional transverse waves, respectively, and where ub

is a longitudinal wave and yb is a torsional wave of the beam.
In equations (1)–(3) and (9)–(15), the 4N complex amplitudes (Plm; Qsm; Bm and Cm) of

the plates and the 4 complex amplitudes (Fx; Fz; Lb and Tb) of the beam are determined
from the following 4N þ 4 equilibrium conditions at the junctions. The 3N among the
4N þ 4 conditions impose continuity of displacement between the beam and plates in the
three directions of the beam as follows:

ybzJm þ wbx ¼ um cos ym � wm sin ym; m ¼ I ; 1; 2; . . . ; N � 1; ð16Þ

ub ¼ vm; m ¼ I ; 1; 2; . . . ; N � 1; ð17Þ

�ybxJm þ wbx ¼ um sin ym þ wm cos ym; m ¼ I ; 1; 2; . . . ; N � 1; ð18Þ
where (xJm; zJm) indicates the co-ordinates of the junctions Jm between the beam and mth

plate. The N conditions impose continuity of slope between the beam and plates in the y

direction of the beam as follows:

yb ¼ �@wm=@x; m ¼ I ; 1; 2; . . . ; N � 1: ð19Þ

The remaining three conditions impose force equilibrium in the three directions of the
beam as follows:

XN

k¼1

Nk
xx cos yk � Qk

xz sin yk

	 

þ @Vyx

@y
¼ mb

@2wbx

@t2
; ð20Þ

XN

k¼1

Nk
xy þ

@Fyy

@y
¼ mb

@2uby

@t2
; ð21Þ

XN

k¼1

Nk
xx sin yk þ Qk

xz cos yk

	 

þ @Vyz

@y
¼ mb

@2wbz

@t2
; ð22Þ

where Nxx; Nxy and Qxz are the extensional force, shear force of in-plane motion and
effective shear force of bending motion per unit plate length, respectively, and can be
written as

Nxx ¼ Eh
@u

@x
þ u

@v

@y

� �
; ð23Þ

Nxy ¼ Gh
@u

@y
þ @v

@x

� �
; ð24Þ

Qxz ¼ �D
@3w

@x3
þ ð2� uÞ @3w

@x@y2

� �
; ð25Þ

The term mb is the mass per unit beam length and Vyx; Vyz and Fyy are the x and z

directional shear forces and the axial force of the beam respectively. They can be written
with the moments of inertia Ix; Iz for the x and z axes and the cross-sectional area Sb as

Vyx ¼ �EIz

@3wbx

@y3
; ð26Þ
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Vyz ¼ �EIx

@3wbz

@y3
; ð27Þ

Fyy ¼ ESb

@3u

@y
: ð28Þ

The last condition imposes the moment equilibrium in the y direction as

XN

k¼1

fMk
xx þ Nk

xxðyJk cos yk � xJk sin ykÞ þ Vk
xzð�yJk sin yk � xJk cos ykÞg þ

@Mt

@y
¼ Jb

@2yb

@t2
;

ð29Þ

where Jby is the mass moment of inertia per unit beam length. And the bending moment
per unit plate length Mxx and the torque of the beam Mt can be written as

Mxx ¼ �D
@2w

@x2
þ u

@2w

@y2
;

� �
ð30Þ

Mt ¼ Tb

@yb

@y
; ð31Þ

where Tb is the torsional stiffness of the beam.
By substituting the displacement equations (1)–(3) and (9)–(15), into the equilibrium

equations (16)–(22) and (29), the equilibrium conditions at the joint are expressed in terms
of the amplitudes of the plates and beam. Then the equilibrium equations are solved
simultaneously for the reflected and transmitted complex amplitudes in terms of the
incident amplitude for each incident wave type.

In the incident plate i; the time-averaged power inputs in the x direction for each
incident wave type are obtained as

hPf ii ¼ Dk3
fio Af



 

2cos f; ð32Þ

hPlii ¼ 1=2Ehklio Al



 

2cos f; ð33Þ

hPsii ¼ 1=2Ghksio As



 

2cos f: ð34Þ

The time-averaged power transmitted or reflected by the plate m in the x direction for each
incident wave type can be written as

hPf im ¼ Re Dmk2
fmo Bmj j2kfxm

h i
; hPlim ¼ Re 1=2Emhmklxmo Plmj j2

h i
; ð35; 36Þ

hPsim ¼ Re 1=2Gmhmksxmo Qsmj j2
h i

; ð37Þ

Here, the transmitted or reflected power will be zero if a decaying wave is transmitted or
reflected by the incident wave, since the x directional wavenumber is a pure imaginary
number.

When the p type incident wave in plate i is transmitted or reflected into the q type wave
in plate m or plate i; the diffused power transmitted coefficients htpqiim and reflected
coefficients hgpqiii can be expressed as

htpqiim ¼
R p=2
�p=2hPqim dyR p=2
�p=2hPpii dy

; hgpqiii ¼
R p=2
�p=2hPqii dyR p=2
�p=2hPpii dy

: ð38; 39Þ
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These diffused coefficients are used in power flow relationships for the reinforced beam–
plate coupled structures.

3. POWER FLOW ANAYSIS OF SIMPLY SUPPORTED RECTANGULAR PLATES
WITH MULTI-REINFORCING BEAMS

Consider the N þ 2 simply supported rectangular plates to which N rectangular cross-
sectioned reinforcing beams are joined symmetrically as shown in Figure 2. The plate
between beam p and beam p þ 1 is excited by a vertical point loading and is divided into
two parts by the loading line paralleled with the beam.

The power flow analysis model to describe the vibration of the plates can be assumed as
shown in Figure 3 using the zero intensity boundary conditions at the plate edges, the
power balance relationship at the excitation location and the power flow coupling
relationships at the plate–beam junctions. If the beam is assumed to have no mechanical
Figure 2. Rectangular plate structures with N reinforcing beams driven by point loading. All edges are simply
supported.

Figure 3. Power flow model equivalent to the structures shown in Figure 2.
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internal loss factor and if the in-plane waves energy density of the plates is ignored, only
the flexural wave energy density of the plates is considered. The energy governing equation
for the flexural waves in homogeneous plates is known to be

�
c2g

Zo
@2

@x2
þ @2

@y2

� �
hei þ Zohei ¼ 0; ð40Þ

where cg is the group velocity of the flexural waves, Z is the internal loss factor and hei is
the flexural wave energy density. The time-averaged farfield intensity for the flexural waves
in the plate can be expressed as

h~II i ¼ �
c2g

Zo
@

@x
~xx þ @

@y
~yy

� �
hei: ð41Þ

Since the boundary condition for each rectangular plate is such that the intensity at any
two opposite edges (yk ¼ 0 and yk ¼ Ly) is zero, the solution of equation (41) can be
expressed by the L!eevy Method with the Fourier cosine series

heiðx; yÞ ¼
X1
m¼0

YmðxÞ cos
mpy

Ly

; ð42Þ

where YmðxÞ is yet to be determined and must satisfy the appropriate boundary conditions
at the other edges (xk ¼ 0 and xk ¼ Lxk). Substituting equation (42) into equation (40)
yields:

Y 00
mðxÞ �

mp
Ly

� �2

þ Zo
cg

� �2
 !

YmðxÞ ¼ 0: ð43Þ

The general solution of equation (43) is written as

YmðxÞ ¼ AeFmx þ Be�Fmx ð44Þ

where A and B are arbitrary constants and Fm is defined as

Fm ¼ mp
Ly

� �2

þ Zo
cg

� �2

: ð45Þ

By substituting equation (44) into equation (42), the energy density of each plate yields

heikðx; yÞ ¼
X1
m¼0

Ake
Fmkx þ Bke

�Fmkx
� �

cos
mpy

Ly

; k ¼ 1; 2; . . . ; N þ 2 ð46Þ

where the subscript k is the index of the plates. On the right-hand side of equation (46), the
first and second terms can be expressed as hexi�k and hexiþk ; respectively, by the direction of
the travelling flexural waves. By substituting equation (46) into equation (41), the intensity
components can written as

hIxikðx; yÞ ¼ �
c2g

Zo

X1
m¼0

Fmk Ake
Fmkx � Bke

�Fmkx
� �

cos
mpy

Ly

; ð47Þ

hIyikðx; yÞ ¼
c2g

Zo

X1
m¼0

mp
Ly

Ake
Fmkx þ Bke

�Fmkx
� �

sin
mpy

Ly

ð48Þ

On the right-hand side of equation (47), the first and second terms can be expressed as
hIxi�k and hIxiþk ; respectively, by the direction of the travelling flexural waves.

A1;A2; . . . ; ANþ1 and B1;B2; . . . ; BNþ1 are determined by 2
 ðN þ 1Þ appropriate
boundary conditions. Two of the boundary conditions applied are zero intensity in the x
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direction at x1 ¼ 0 and xNþ2 ¼ LxNþ2; and subsequently with equation (47), the following
relations are obtained:X1

m¼0

ðAk � BkÞ ¼ 0;
X1
m¼0

Ake
FmNþ2LxNþ2 � Bke

�FmNþ2LxNþ2
� �

¼ 0: ð49; 50Þ

Two of the boundary conditions are from the relationship between the energy and power
balance at the line xp ¼ Lxp; and hence the continuity of the energy density heipðLxp; yÞ ¼
heipþ1ð0; yÞ yields: X1

m¼0

Ape
FmpLxp þ Bpe

�FmpLxp
� �

¼
X1
m¼0

ðApþ1 þ Bpþ1Þ: ð51Þ

Also, the power balance relationship is

hIxipþ1ð0; yÞ ¼ hIxipðLxp; yÞ þPdðy � yF Þ; ð52Þ

where P is the input power that can be expressed using the Fourier cosine series as

Pdðy � yF Þ ¼
X1
m¼0

Lm

Ly

P cos
mpyF

Ly

cos
mpy

Ly

: ð53Þ

Here, Lm has the constant value of 1 at m ¼ 0 or 2 at m=0: Substituting equations
(48)–(53) into equation (52) yieldsX1

m¼0

FmðApþ1 � Bpþ1Þ ¼
X1
m¼0

Fm Ape
FmpLxp � Bpe

�FmpLxp
� �

þ
X1
m¼0

Lm

Ly

P cos
mpyF

Ly

: ð54Þ

The rest boundary conditions result from the power flow coupling relationships of each
plate–beam junction as follows for k ¼ 1; 2; . . . ; N þ 1 except p:

hIxiþkþ1ð0; yÞ ¼ htff ikkþ1hIxiþk ðLxk; yÞ � hgff ikþ1kþ1hIxi�kþ1ð0; yÞ; ð55Þ

�hIxi�k ðLxk; yÞ ¼ hgff ikkhIxiþk ðLxk; yÞ � htff ikþ1khIxi�kþ1ð0; yÞ; ð56Þ

where htff iij is the diffused flexural power transmission coefficient in plate j due to the
incident flexural wave in plate i; and where hgff iii is the diffused flexural power reflection
coefficient in plate i due to the incident flexural wave in plate i; as shown in section 2.

Substituting equation (47) into equations (55) and (56) yields fork ¼ 1; 2; � � � ;N þ 1
except p:

c2gkþ1

Zo

X1
m¼0

Fmkþ1Bkþ1 ¼htff ikkþ1

c2gk

Zo

X1
m¼0

FmkBke
�FmkLxk þ hgff ikþ1kþ1

c2gkþ1

Zo

X1
m¼0

Fmkþ1Ak; ð57Þ

c2gk

Zo

X1
m¼0

FmkAke
FmkLyk ¼hgff ikk

c2gk

Zo

X1
m¼0

FmkBke
�FmkLyk þ htff ikþ1k

c2gkþ1

Zo

X1
m¼0

Fmkþ1Akþ1: ð58Þ

The terms Ak and Bk of equations (49)–(51), and (54) and (57) and (58) can be calculated
numerically for each mode m: By substituting the computed Ak and Bk into equations
(46)–(48), the power flow solutions of the plates are obtained for energy density and
intensity.

4. NUMERICAL SIMULATION

In this section, several numerical simulations for the two different models are performed
and compared with the classical energy density and intensity calculated from displacement
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solutions in order to demonstrate the reliability of the derived power flow equation and the
solutions presented in section 3. The decibel scales of the energy density and intensity
referenced to 10�12 J=m2 and 10�12 W=m2 are used in all figures of the simulation results.
The displacement solutions for the structures shown in Figure 2 are obtained using the
L!eevy method generally used for power flow solutions, by applying the end conditions.
Here, the plate edges are simply supported, and the boundary conditions with the
displacement continuity and force/moment equilibrium at plate–beam junctions are used
as previously described in section 2. For the band analysis the frequency band energy
Figure 4. Reinforced plate with single beam. All edges are simply supported.

Figure 5. Energy density distribution of the displacement solutions when fc ¼ 5000Hz and Z ¼ 0�1:



POWER FLOW ANALYSIS OF BEAM}PLATE STRUCTURES 1119
density is calculated by numerically integrating the energy density over the band using the
trapezoidal rule [10, 11]. The spectral contents of the excitation force are assumed to be flat
between the lower cut-off frequency f1 and the upper cut-off frequency f2:

The power flow solutions are solved only at the center frequency fc: In the frequency
averages, the power input given to the finite structures at the excitation location can be
deduced approximately using the exciting force Fejwt and the mobility Min derived from a
similar type of infinite structures with the equation:

Pin ¼ 1
2

Fj j2Re Minf g ð59Þ
as discussed by Cremer and Heckl [9].

For the first model, the 1 m
 1 m
 5 mm ðL 
 B 
 HÞ steel plate structures rein-
forced with a 5 mm
 50 mm ðB 
 HÞ steel beam are selected as seen in Figure 4.
The structures are driven by point loading of magnitude F ¼ 1N at the co-ordinates, 0�25;
0�5ð0�25; 0�5Þ: Figures 5 and 6 show the energy density distributions of the displace-
ment solutions and power flow solutions, respectively, for the 1/3 octave band with fc ¼
5000 Hz and Z ¼ 0�1: As expected, the energy density of the displacement solutions
decreases universally with increasing distance from the excitation location and fluctuates
locally in space, especially near the edges of the plates and the junction. The energy density
of the power flow solutions shown in Figure 6 varies smoothly in space without any
fluctuation and has a discontinuity line at the plate–beam junction. Figure 7 shows the
compared result of the energy density distributions from Figures 5 and 6 along the line
y ¼ 0�5: The displacement solutions fluctuate in the vicinity of the smoothed result of the
power flow solutions. Figures 8 and 9 show that the intensity fields of the displacement
solutions and power flow solutions respectively. The intensity field in Figure 5 appears to
be far more intricate than that in Figure 6, but both are similar in terms of power flow
tendency.
Figure 6. Energy density distribution of the power flow solutions when fc ¼ 5000Hz and Z ¼ 0�1:



Figure 7. Energy density distribution comparison along the line y ¼ 0:5 when fc ¼ 5000Hz and Z ¼ 0�1: }},
displacement solution; – – – –, power flow solution.

Figure 8. Intensity field of the displacement solutions when fc ¼ 5000Hz and Z ¼ 0�1:

S.-H. SEO ET AL.1120
For the following simulations, the exciting frequency band and/or internal loss factor
are changed. Figure 10 compares the results of the energy density distributions of the
displacement solutions and power flow solutions along the line y ¼ 0�5 for the 1/3 octave
band with fc ¼ 1000 Hz; with the other parameters used in Figures 5–9 remaining



Figure 9. Intensity field of the power flow solutions when fc ¼ 5000Hz and Z ¼ 0�1:

Figure 10. Energy density distribution comparison along the line y ¼ 0:5 when fc ¼ 1000Hz and Z ¼ 0�1:
}}, displacement solution; – – – – –, power flow solution.
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unchanged. This analysis method is repeated for the results presented in Figure 11 but with
a different internal loss factor of 0�01: As shown in many previous studies on power flow
analysis [1–3, 5–7, 10], the comparison of Figures 7, 10 and 11 confirms that the spatial
energy density exhibits a more global decay as the frequency or internal loss factor
increases.



Figure 11. Energy density distribution comparison along the line y ¼ 0:5 when fc ¼ 1000Hz and Z ¼ 0�01:
}}, displacement solution; – – – – –, power flow solution.

Figure 12. Reinforced plate with 8 beams. All edges are simply supported.
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For the second model, the simple supported plates with multi-beams are chosen as
shown in Figure 12. The 8 steel beams separated by a uniform 0:2 m space with the
cross-section of 5 mm
 20 mm ðB 
 HÞ; are joined symmetrically to 2 m
 1 m

5 mm ðL 
 B 
 HÞ steel plates. The excitation of this model is also point loading with
magnitude F ¼ 1 N at the co-ordinates 0�2; 0�25ð0�2; 0�25Þ for the 1/3 octave band. For the
first simulation of the second model, the two main parameters consist of fc ¼ 3000 Hz and
Z ¼ 0�05: Figures 13(a) and (b) show the energy density distributions of the displacement
solution. The energy density decays more steeply in the direction of the x axis than
the y axis because the reinforcing beams attenuate vibrational power transmission.
Figures 14(a) and (b) show energy density distributions of the power flow solutions. At
each junction, energy density discontinuities of 1–2 dB appear. Figures 15 and 16 show the
intensity fields of the displacement solutions and power flow solutions, respectively.

For the following simulation for the second model, the center frequency, fc ¼ 5000 Hz
and the internal loss factor, Z ¼ 0�15 are increased. Figures 17(a) and (b), Figures 18(a)
and (b) show the energy density distributions of the displacement solutions and the power



Figure 13. Energy density distributions of the displacement solutions when fc ¼ 3000Hz and Z ¼ 0�05:
(a) 3-dimensional view; (b) 2-dimensional view.
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Figure 14. Energy density distributions of the power flow solutions when fc ¼ 3000Hz and Z ¼ 0�05:
(a) 3-dimensional view; (b) 2-dimensional view.
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Figure 15. Intensity field of the displacement solutions when fc ¼ 3000Hz and Z ¼ 0�05:

Figure 16. Intensity field of the power flow solutions when fc ¼ 3000Hz and Z ¼ 0�05:
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Figure 17. Energy density distributions of the displacement solutions when fc ¼ 5000Hz and Z ¼ 0�15:
(a) 3-dimensional view; (b) 2-dimensional view.
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Figure 18. Energy density distributions of the power flow solutions when fc ¼ 5000Hz and Z ¼ 0�15:
(a) 3-dimensional view; (b) 2-dimensional view.
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Figure 19. Intensity field of the displacement solutions when fc ¼ 5000Hz and Z ¼ 0�15:
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flow solutions, respectively. Figures (19) and (20) show the intensity fields of the
displacement solutions and the power flow solutions. For the multi-beam reinforced plate
structures, the results of the power flow solutions also represent smooth and averaged
results of the displacement solutions.

5. CONCLUSIONS

In this study, the power flow analysis method has been developed to predict the
vibrational response of the reinforced beam–plate coupled structures in frequencies
ranging from the medium to high. The energy density of the power flow solutions satisfies
the energy governing equations in homogeneous plate domains. On the plate edges, the
intensity of the power flow solutions is zero due to simple supports. On the beam–plate
junctions, adequate power flow coupling relationships are applied to consider the reflected
and transmitted power at the boundaries.

To verify the developed power flow analysis, numerical simulations for the two models
were performed. As expected, the energy density of the power flow solutions decays
smoothly in space and attenuates at the junctions, while the intensity of the power flow
solutions spreads over the plates from the loading location. Compared with displacement
solutions, power flow solutions exhibit good agreement with respect to the global decay
and the attenuation patterns of the vibrational energy. It is concluded that power flow
analysis can be an effective tool of vibration prediction for reinforced beam–plate coupled
structures.



Figure 20. Intensity field of the power flow solutions when fc ¼ 5000Hz and Z ¼ 0�15:
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