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This work aims to establish a vibration-based damage identification method for
fiber-reinforced laminated composites and their sandwich construction. This new on-line
structural damage identification technique uses the structural dynamic system reconstruc-
tion method exploiting the frequency response functions (FRFs) of a damaged structure.
To verify the effectiveness of this damage identification method, the frequency responses
obtained by vibration testing of fatigue-damaged laminated composites and honeycomb
sandwich beams with debonding are examined according to the extent of the damage via
the fatigue-damage load cycle for laminated composites, and via the debonding extent for
honeycomb sandwich beams. The changes of the peaks and valley of the FRFs according to
the debonding extent and the fatigue load cycles are examined, and the area changes in the
FRFs are also discussed as the damage index. The residual FRFs or the difference between
intact and damaged FRFs are newly defined for application of the on-line damage
identification method. Finally, the delamination extent for the sandwich beams and the
fatigue damage level for the laminated composites can be easily identified in terms of the
changes in natural frequencies and damping ratios of the reconstructed FRFs for these
damaged composite structures.

# 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

The most common damage identification methods used today are visual inspection and
localized experimental methods, such as acoustic or ultrasonic methods, which require
that the location of the damage be known a priori and be readily accessible. The need for
quantitative global damage detection methods applicable to complex structures has led to
methods that examine changes in the vibration characteristics of the structures. Research
in this field has been spurred by several factors: catastrophic failures resulting in loss of
life, such as in-flight failure of aircraft structural components; the economics of repairing
aging infrastructures; advances in digital signature analysis techniques such as modal
testing and system identification methods. In vibration-based damage identification, the
changes in the modal parameters of beams, plates, and even rather complicated truss and
bridge structures, can be exploited using the finite element model of these structures for
diverse structural damages.

Many researchers have investigated the global damage identification methods, mostly
based on changes on the vibrational characteristics, from various aspects: frequency
changes in terms of forward problems [1–3], and of inverse problems [4–6]; mode shape
displacement or curvature/strain changes [7–9]. Changes on flexibility or stiffness matrix
are also used for the damage identification: flexibility changes [10]; stiffness error matrix
0022-460X/02/$35.00 # 2002 Elsevier Science Ltd. All rights reserved.
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method [11]; changes in measured stiffness matrix [12]. Some researchers implement the
iterative optimization methods to efficiently identify the damages in structures: structural
model parameter updating [13]; optimal matrix method [14–16]; sensitivity-based update
method [17–19]; eigenstructure assignment method [20, 21].

Model-based damage identification techniques are generally used to monitor changes in
structural dynamic characteristics or changes in the dynamical response of structures.
Combined with modal analysis, these techniques provide global as well as local damage
information. The reference model for an undamaged structure is built using finite element
analysis (FEA). However, FEA-based damage identification methods have many
limitations. Some can detect only pre-specified forms of damage in their diagnostic
schemes. FEA-based methods usually compare the undamaged structural parameters with
the damage information, but the reference structural model is not consistent because of
aging and variation in the operational environment. FEA-based methods also often fail to
detect small defects in global structures [22]. Moreover, a large number of sensors or
measurement points are needed to locate damage accurately on a large structure. FEA-
based damage identification methods are therefore liable to be inaccurate and expensive:
In most of the previous works, the finite element model has been adopted for the damaged
structures so that FEA-based damage identification is limited in its application to in-
service structures. Also, as more and more structures are made from composite material,
there are a lot of research works in the area of identification of mechanical properties of
composite structures based on vibration rather than FEA [23–26].

On-line damage identification is increasingly popular because of more stringent
requirements in the integrity and safety assessment of structures. The idea is to identify
damage as soon as it is initiated, to monitor continuously the health of the structure
without affecting its operation, and if possible to rectify the damage. Research works on
on-line vibration-based monitoring and diagnostics of a structure are recently focused:
optimization [27] and modal norms [28] of frequency response functions (FRFs) of the
damaged structures. Natke and Cempel [29] used the symptoms as sensitive quantities of a
defect/fault/damage in the operational systems undergoing aging, wear, etc. They
introduced and manipulated the observation matrix for the evaluation of symptoms in
the context of the state-space formulation.

There is hardly any research paper available in the open literature dealing with the
damage identification based on the state-space system reconstruction of the measured
FRFs in the modal co-ordinate. This paper provides a new vibration-based damage
identification method using the reconstructed subspace system model, which is obtained
from differences in the frequency responses of healthy and damaged structures. To
develop an on-line damage identification method, the structural dynamic system
reconstruction methods which accurately provide modal parameter estimates are
employed to obtain the modal parameters of the damaged structures. In application,
the frequency responses are used of fatigue-damaged composite laminate beams and of
debonded honeycomb sandwich beams. The extent of the damage in these composite
structures can be identified from the natural frequencies and damping ratios of the
reconstructed dynamic system; these are also compared with a damage indicator, namely
the normalized area change of the measured FRF curves.

2. EXPERIMENTS

Fiber-reinforced composite laminates and their sandwich beams were fabricated to
demonstrate the effectiveness of the vibration-based damage identification method. These
composite beams were then tested as specified below.
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2.1. MATERIAL AND SPECIMEN

For the vibration testing on the fatigue damaged beams, resin-containing carbon-fiber/
epoxy prepreg having the physical properties shown in Table 1 was used to produce
composite plates with a lay-up ½902=02�s: The curing cycle was 1�5 h at 1308C; with a
warming-up cycle of 0�5 h at 808C:

The test specimens were cut to dimensions 20 mm� 300 mm� 1 mm from the laminate
plates by a diamond cutter, following the ASTM D-3039/D-3470 standards. To avoid
stress concentration in the gripping area, glass-fiber/epoxy tab material was bonded by
adhesive to each end of the specimen.

To study the effect of face-layer debonding on the vibrational characteristics of
honeycomb sandwich beams, sandwich beams with skin laminates of carbon-fiber/epoxy
composite were fabricated using an autoclave and vacuum bag cure. The skin laminate
was pre-cured and subsequently bonded to core. Each layer of adhesive has a thickness of
0�005 in and a density of 1153 kg=m3: To produce good quality sandwich beams reliably,
cure cycle was adopted as follows: 1 h from the ambient temperature to 1258C; 1�5 h at
1258C; and 1 h from 1258C to the ambient temperature. The honeycomb sandwich beams
are made of Nomex aramid honeycomb core supplied by Hexcel Composites. The
honeycomb core has a nominal cell size of 3 mm and a core thickness of 19 mm:
Mechanical properties of the honeycomb core are listed in Table 2. The properties of the
face layers are the same as that of the fatigue-damaged beams.

The face-skin laminate panels of thickness 1 mm with a lay-up ½02=902�s for the
honeycomb sandwich construction are cut into beams using a diamond wheel cutter. A
width b of 45 mm was chosen to be greater than twice the sandwich height and three times
the cell size as recommended by the ASTM standards [30]. The honeycomb core was cut
with the ribbon direction in the longitudinal direction along the beam axis. Debonded
sandwich beams were made by inserting teflon films of various sizes between the face layer
and the honeycomb core.

2.2. EXPERIMENTAL PROCEDURE

A fatigue testing was performed first, to investigate the reduction in stiffness of
composite laminates due to the extensional fatigue loading. Vibration testing was
performed to obtain the natural frequencies of the cantilever-beam-type laminates that
had been subjected to the fatigue loading. Figure 1 shows the fatigue and vibration
testings. Before fatigue testing, tensile strength test was carried out in an Shimadzu UTM
Table 1

Properties of carbon/epoxy preprag (USN125 Type A)

Properties Value

Young’s modulus in fiber direction ðE1Þ 120�3� 109 Pa
Young’s modulus in transverse direction ðE2Þ 7�63� 109 Pa

Shear modulus ðG12Þ 3�36� 109 Pa
The Poisson ratio ðm12Þ 0�32
Volume density ðrÞ 1510 kg=m3

Tensile strength in fiber direction ðXT Þ 2�2� 109 Pa
Compressive strength in fiber direction ðXCÞ 1�4� 109 Pa
Tensile strength in traverse direction ðYT Þ 2�1� 106 Pa

Compressive strength in traverse direction ðYCÞ 1�3� 109 Pa
Ply shear strength in fiber direction ðSÞ 0�226� 109 Pa



Table 2

Properties of honeycomb core (Hexel aramid)

Properties Type A
Type B

Density (kg=m3) 96�1
80�1

Shear strength in longitudinal direction ðFxÞ 2�28� 106 Pa
1�90� 106 Pa

Shear modulus in longitudinal direction ðGxÞ 89�6� 106 Pa
70�3� 106 Pa

Shear strength in width direction ðFyÞ 1�38� 106 Pa
1�21� 106 Pa

Shear modulus in width direction ðGyÞ 44�8� 106 Pa
37�2� 106 Pa
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machine with a 20 kN load cell. The experiments were performed in displacement-control
mode at a stroke rate of 2 mm=min; and the longitudinal displacements were measured by
the Autograph. The average extensional modulus and ultimate strength of three specimens
are measured as 61�49 GPa and 845�65 MPa respectively. Fatigue tests were then
performed by the Servopulser in load-control mode. The cyclic loading profile applied
in fatigue tests was a pure sinusoidal wave of 3 Hz having three different maximum
loading levels, 50, 60 and 70% of tensile strength. A minimum loading of 5% ultimate
strength was applied to prevent possible compression loading. For each loading level, all
specimens were categorized according to specified cycles, and every three specimens were
subjected to fatigue loading for these cycles.

Vibration testing was performed using an HP-3566A FFT spectrum analyzer with a
data-acquisition personal computer. The vibration tests shown in Figure 2 were conducted
using the sandwich cantilever beam specimens damaged by debonding. A Dytran-5800SL
instrumented impulse hammer was used to hit the cantilever beam laminate sample. The
impact took place at the end of the cantilever beam to reduce the excitation of higher
vibrational modes. A Kaman-KD2300 proximity sensor was located at the end of the
laminate beam to measure the displacement. The force and displacement signals were
processed by a digital Fourier transform algorithm in the analyzer to convert the discrete
time signals into frequency-domain data. The FRFs were displayed, as voltage ratios
between the displacement response and force excitation in the frequency domain, on a
computer monitor. Each distinct vibration test was performed 10 times to provide an
averaged frequency response function. Natural frequencies were observed from the plot of
the FRF by eye, using a pointing cursor to pick the resonance points. For the fatigue
damage analysis of the laminated beams, the frequencies of three specimens having the
same fatigue damage cycles were averaged to reduce frequency error due to variation in
the specimen dimension and properties.

3. FRF RECONSTRUCTION OF DAMAGED STRUCTURES

The structural dynamic system reconstruction is based on the subspace identification for
the use of vibration spectral estimates, which can provide the reconstructed transfer
functions in terms of the modal parameter for the transfer function poles and zeros. This
section outlines the structural dynamic system reconstruction method, detailed in reference
[31]. The system matrix estimates are derived using the observability matrix and the input



Figure 1. Photographs of experimental set-ups for the axial-fatigue and vibration test.
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participation matrix is estimated from the system matrix parameterization for the
frequency-domain input–output relationships.

The spectrum estimates from the noisy input and output data are given by the smoothed
periodograms comprising the frequency contents of the signal over a finite time interval
[32]. To analyze the smoothed periodograms, define the residual spectrum estimateSq and
the frequency shift matrix Iq to obtain the observability range space, defined by the linear
vector subspace ranged by the system observability matrix Oq:

Sq ¼4 Syy 	SyuS
y

uuS
H
yu; ð1Þ



Figure 2. Photograph of honeycomb sandwich beams and configuration of experimental set-up for vibration
testing.
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where

fSyy;Suu;Syug ¼
XM

z¼1

IqðzÞ 
 fSM
yy ðzÞ;SM

uu ðzÞ;SM
yu ðzÞg ð2Þ

and

IqðzÞ¼
4

1 e	j2pz=M � � � e	j2pðq	1Þz=M

ej2pz=M 1 � � � ej2pðq	2Þz=M

..

. ..
. ..

. ..
.

ej2pðq	1Þz=M � � � � � � 1

2
666664

3
777775: ð3Þ

Here, the superscript y denotes the Moore–Penrose inverse and 
 denotes the Kronecker
product of the matrices.
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When the system is minimal and the observability matrix Oq is non-singular, it is well
known that the estimate of the system matrix A can be obtained from the observability
matrix and its submatrices [33]: A ¼ O

y
q	1

%OOq	1; where

Oq	1 ¼

C

CA

..

.

CAq	2

2
666664

3
777775; %OOq	1 ¼

CA

CA2

..

.

CAq	1

2
666664

3
777775: ð4Þ

With the singular-value decomposition (SVD) of the residual spectral estimate, the basis
vectors of the range space of Oq can be computed as follows:

R½Sq� ¼ ½U Unx
�

S 0

0 Sn

" #
U

Unx

( )
; ð5Þ

where ½U Unx
� 2 Rqny�qny is the unitary matrix, and diag½S Sn� ¼ diag½. . . ; snxþi; . . .� 2

Rqny�qny is the diagonal matrix of singular values snxþi; i ¼ 1; . . . ; qny 	 nx:
The integer nx is the number of orders about a specified singular-value threshold %ss such

that

si > %ss; i ¼ 1; . . . ; nx and snxþi5 %ss; i ¼ 1; . . . ; qny 	 nx: ð6Þ

The basis vector matrix of the observability range space can be estimated as U 2
Rqny�nx : By combining the truncated unitary matrix U in equation (5) with the
observability matrix Oq; we obtain the estimates of #AA and #CC of the subspace system
identification model:

#AA ¼ U
y
q	1

%UUq	1; #CC ¼ U1: ð7Þ

From the identified system matrix #AA and the output matrix #CC in equation (7), the
matrices #BB and #DD can be simply parameterized in the least-squares sense using the
spectrum estimates as follows. Consider the transfer function relation between the auto-
spectrum estimate Suu and the output cross-spectrum estimate Syu:

#BB; #DD ¼ argmin
#BB; #DD

SyuðzÞ 	 ½ #CCðe	j2pz=MInx
	 #AAÞ	1; Inu

�
#BB

#DD

" #
SuuðzÞ

�����
�����

�����
�����
2

F

: ð8Þ

Define

QðzÞ¼4 ½ #CCðe	j2pz=MInx
	 #AAÞ	1; Inu

�: ð9Þ

By applying Kronecker product relations, we can obtain the estimates for the matrices #BB

and #DD [31]:

½ #BB; #DD�T ¼
XM

z¼1

Rð½QHQ�yQHSyuSH
uu½SH

uuSuu�yÞ; ð10Þ

where

QðzÞ¼4 ½ #CCðe	j2pz=MInx
	 #AAÞ	1; Inu

�: ð11Þ

For modal analysis and damage detection in vibrating structural systems, it is often
necessary to develop canonical structural dynamic models from the state-space system in
terms of eigenmode parameters such as natural frequencies, damping ratios and mode
shapes. First, a similarity transformation xðkÞ ¼ CzðkÞ can be applied to the estimated
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state-space system matrices to give the eigenvalue system equation

zðk þ 1Þ ¼ LzðkÞ þ FuðkÞ; yðkÞ ¼ EzðkÞ ð12Þ

with

L ¼ lnðC	1ACÞ
4t

¼ diagfsi � joig; C	1B ¼ b. . . jRðFiÞ � IðFiÞ� . . .�T;

CC ¼ b. . . ½RðEiÞ � IðEiÞ� . . .c; i ¼ 1; . . . ; n:

The similarity transformation, called the common basis-normalized structural
identification method zi ¼ Tixi ðTi ¼ T

ð2Þ
i T

ð1Þ
i Þ [34], can be applied to equation (12) to

obtain the mode-co-ordinate reconstructed transfer function:

T
ð1Þ
i ¼ ci

2jo
	si þ joi 1

si þ joi 	1

" #
; T

ð2Þ
i ¼

	si 	 rioi 1

	s2i 	 o2
i si 	 rioi

" #
; ð13Þ

where ri ¼ IFi=RFi and ci is a mass normalization parameter in Fi and Ei: We have

#AAi ¼
0 1

	ðo2
i þ s2i Þ 	2si

" #
; ½0; #BBð1Þ

i �T ¼ 1

ci

0

2RFi

" #
; ð14Þ

½ #CCð1Þ
i ; #CC

ð2Þ
i � ¼ ci½ðrisi 	 oiÞIEi 	 ðsi þ rioiÞREi; REi 	 riIEi�: ð15Þ

The reconstructed FRF for the input vector u and displacement output vector y can be
represented as

GðoÞ ¼
Xn

i¼1

#CCiðoI 	 #AAiÞ	1 #BBi ¼
Xn

i¼1

2ðRFiÞðREiÞ 	 ðIFiÞðIEiÞ
oI 	 #AAi

: ð16Þ

The natural frequencies and damping ratios of dynamic systems can be found from the
complex conjugate pairs of eigenvalues of the identification system matrix #AAi:

si � joi ¼ 	zioni � joni

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1	 z2i

q
; ð17Þ

or directly from the discrete eigenvalues li; and %lli of the estimated system matrix #AA:

si ¼
1

24 t
lnðli

%liliÞ; oi ¼
1

4t
arctan

Ili

Rli

� �
: ð18Þ

Moreover, the corresponding mode shapes, found from the numerators of the mode-co-
ordinated reconstructed transfer function, can be obtained by applying simultaneous
impulses at the position of displacement output sensors.

4. FRFS OF DAMAGED COMPOSITE STRUCTURES

FRF-based damage identification involves only the measurements from a small
number of sensors located on the structure, and does not require a complex structural
model. Damage is detected using vibration measurements, and identified by comparing
signals in higher frequency ranges before and after damage. In on-line damage
identification, the measured response functions of the operational structures have
to take into account the changes of physical parameters in the structures due to
damage. Global changes in stiffness and delamination in composite structures affect the
FRFs in easily predictable ways, so that the natural frequencies and damping ratios of
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damaged structures can readily be adopted for debonding or delamination in the
structures.

The structural dynamic transfer function for a damaged structure, based on the FRF, is
given as

Gijðf Þ ¼
Cijð f Þ
Ciið f Þ ¼

hni hj

hni hi

; ð19Þ

where h are the row entries of the FRF matrix for the applied excitation, and Cij is the
cross-power spectrum. (No summation over i is implied in hni hi:) The input loads have the
same relative force levels and occur at the same locations on the structure for
each test. The transfer function is the ratio of the response of the cross-spectral density
between input i and sensor j to the input auto-spectral density at point i: This is a non-
dimensional complex quantity that specifies how vibration is transmitted between points i

and j on the structure as a function of frequency. The FRFs do not depend on whether the
receptance, mobility or inertance spectral densities are measured. FRF-based damage
identification is accurate because the relative vibration response across small sections of
the structure is characterized. The difference between FRFs is a continuous function with
many peaks and valleys, and when damage occurs these peaks and valleys shift relative to
each other. The sensitivity of changes in the FRF to mild damage generally increases as the
actuator and sensors move closer to the damage, and as the frequency of the excitation is
increased.

The area under the FRF curve can be interpreted as the possible meaning of the
potential energy density of the structures under the assumption of unit inertial energy
density. When the mass of the structure is unchanged by the damage, the change of
stiffness can be determined from changes of the FRF-curve area. Thus, a normalized
damage index matrix can be defined as

D ¼
R f2

f1
jjGd

ij jj dfR f2
f1
jjGh

ijjj df
	 1; ð20Þ

where the integrated is taken element by element, and the superscripts on Gd
ij indicate

damaged (d) or healthy (h); and f denotes frequency. This damage indicator therefore lose
the information on the peaks and valleys of FRF data.

In the damage-indicator equation (20), the normalized area difference of the FRF
curves suggests an alternative FRF of damaged structures for damage identification. This
is called the residual FRF matrix RðoÞ; and is defined by

RðoÞ8GdðoÞ 	 GhðoÞ: ð21Þ

Figure 3 presents the frequency responses and the residual FRFs of debonded
honeycomb sandwich beams for the variety of debonding extent and type. The peaks of
both the measured responses and their residual FRFs shift to lower frequency as the
debonding extent increases in the sandwich beams. Figure 4 also shows the measured
responses and residual FRFs of axial-fatigue-damaged laminated beams as a function of
the number of fatigue loading cycles.

5. DAMAGE IDENTIFICATION USING RECONSTRUCTED RESIDUAL FRFS

The structural dynamic system expressed in terms of modal-parameter co-ordinates can
be then obtained from the residual FRFs by using the structural dynamic system



Figure 3. Frequency responses for the debonded honeycomb sandwich beam.

H.-Y. KIM1140
reconstruction method in section 3, as follows:

RðoÞ ¼
Xn

i¼1

Vres
i

oI 	 Ares
i

; ð22Þ

Ares
i ¼

0 1

	ðo2
i þ s2i Þ 	2si

" #
; V res

i ¼ 2ðRFiREi 	 IFiIEiÞ;

where Ares
i and Vres

i are the ith-mode eigenvalue matrix and the ith-mode residue of the
reconstructed dynamic system respectively. Damage can therefore be identified from
changes in the eigenvalues and residues of the reconstructed structural dynamic system
using equation (22).



Figure 4. Frequency responses for the axial-fatigue-damaged laminated beams.
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Figure 5 presents frequency response curves reconstructed from residual FRFs
for debonded honeycomb sandwich beams with delamination lengths 50 and 110 mm:
Figure 6 shows response curves of the reconstructed dynamic system for composite
laminated beams damaged by extensional fatigue loads and fatigue cycle numbers 300 and
1� 106: These figures show that the reconstructed response functions accurately capture
the residual frequency responses of the damaged structures.

In Tables 3 and 4, the natural frequencies and damping ratios of the reconstructed
dynamic systems for the debonded sandwich beams and the fatigue-loaded laminate
beams are set out based on the dynamic system reconstruction method. A group of natural
frequencies can be recognized that represent the dynamical characteristics of the intact
beam; that the natural frequencies in this group decrease proportionately until a critical



Figure 5. Reconstructed residual FRFs for the debonded honeycomb sandwich beam (measured¼circles,
reconstructed¼solid lines).
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debonding extent (marked by dagger in the tables) is reached. The damping ratios in this
group show a small increase, while the natural frequency decreases. Beyond this critical
debonding extent, another group of natural frequencies arise which represents the
dynamical characteristics of the damaged sandwich beam, while the natural frequencies of
the intact beam become invariant. The damping ratios in this group increase noticeably
beyond the critical debonding extent. These damping ratios for the case of fatigue-loaded
beams do not increase beyond the critical debonding extent.

The indicator D in equation (20) does not increase monotonically with the damage so
that the use of this damage indicator could lead to incorrect damage information for the



Figure 6. Reconstructed residual FRFs for the axial-fatigue-damaged laminated beams (measured¼circles,
reconstructed¼solid lines).
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sandwich beams. However, damage identification based on the reconstructed residual
FRFs, where the differences in the natural frequencies and damping ratios of each groups
are compared in order to determine the damage levels, provides reliable information on
the damage extent in the sandwich beams.

In conclusion, we summarize the findings on the residual FRFs and the natural
frequencies and damping ratios of the structural dynamic system reconstruction. The
frequency responses and the residual FRF of the debonded honeycomb sandwich beams,
and of the axial-fatigue-damaged laminated beams, show that the peaks of all response



Table 3

Natural frequencies and damping ratios of residual FRFs for the debonded honeycomb

sandwich beams (nx ¼ 30; q ¼ 300)

Debonding Natural Damping Normalized area
length frequency (Hz) ratios (%) deviation of FRFs

Intact 164�7 0�05 0�00
20 mm 162�6 0�05 2�11
35 mm 156�8 0�07 3�12
50 mm 151�6 (165�2) 0�12 (0�10) 2�85
65 mm 138�8 (165�0) 0�15 (0�06) 2�20
80 mm 130�9 (165�0) 0�18 (0�07) 5�32
95 mm 125�0 (165�0) 0�37 (0�06) 2�01
110 mm 118�7 (165�0) 0�54 (0�05) 2�55

Table 4

Natural frequencies and damping ratios of residual FRFs for fatigue-loaded composite

laminates with the 70% tensile strength (nx ¼ 30; q ¼ 300)

Fatigue Natural Damping Normalized area
cycle frequency (Hz) ratios (%) deviation of FRFs

10 17�9; 112�2; 315�5 0�18; 0�04; 0�04 0�00
300y 17�4; 109�4; 307�1 0�59; 0�18; 0�18 0�51

(17�9; 112�1; 315�8) (0�39; 0�07; 0�07)
3� 103 17�4; 108�0; 301�2 1�33; 0�12; 0�14 0�73

(17�8; 112�3; 316�6) (0�24; 0�07; 0�06)
8� 103 16�6; 103�1; 287�7 0�29; 0�06; 0�05 1�86

(17�9; 112�1; 315�7) (0�26; 0�04; 0�03)
3� 105 13�1; 95�0; 231�7 0�28; 0�07; 0�15 3�44

(17�9; 112�2; 315�4) (0�19; 0�04; 0�04)
1� 106 12�7; 80�5; 227�1 0�27; 0�09; 0�10 0�51

(17�9; 112�3; 315�7) (0�19; 0�05; 0�04)

H.-Y. KIM1144
functions shift to lower frequency as the damage increases. Two groups of natural
frequencies, representing the dynamic characteristics of the damaged and intact beams,
arise before and after the damage in the structure reaches some critical level. The natural
frequencies in these composite structures decrease as the debonding extent and the fatigue-
load cycle increase. The change in the damping ratios with increasing damage depends on
the type of damage: delamination or fatigue loaded.

6. CONCLUSION

Vibration-based damage identification has recently come to the fore due to increasing
interest in the capability to monitor a structure and detect global damage at the earliest
stage. For this purpose, the reconstructed residual FRF-based damage identification
method has been set out. In this method, the measured FRFs depend on the physical
quantities such as the reduction in stiffness due to the fatigue loading or delamination;
these changes imply detectable changes in the modal, dynamical system properties.
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A new damage identification method is also developed using the structural dynamic
system reconstruction algorithm, based on the residual FRFs of the vibrational structures.
For application of the damage identification, frequency responses for the damaged
composite structures are measured to give the residual FRFs of the composites. From the
FRF measurements, the effects of the damage are studied on the peaks and valley of the
FRFs. Damage identification based on reconstructed residual FRFs can accurately
determine the extent of the damage from the natural frequency and the damping ratios.

The damage identification methods developed here using the reconstructed residual
FRFs of the damaged structures provide accurate and direct information on the damage in
structures even though the damage indicator D based on the FRF-curve area is
inconsistent.
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