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In this paper, based on the theory of elastic wave motion for open cylindrical shell, wave
scattering and dynamic stress concentrations in open cylindrical shells with a hole are
studied by making use of small parameter perturbation methods and boundary-integral
equation techniques. The boundary-integral equations and iterative imminent series of
scattered waves around the cavity of the cylindrical shell are derived. By employing this
method, the approximately analytical solutions of scattered waves on the edge of cutout are
gained. The computational formula for getting the dynamic stress concentration factors on
the contour of cavity is developed. As an example, the numerical results of these dynamic
stress concentration factors are graphically presented and discussed. The analytical
methods put forward in the present work have practical significances for solving the
problem of elastic wave scattering and dynamic stress concentrations in cylindrical shells
with a circular cutout.

# 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

Circular cylindrical shells are commonly used in many engineering applications such as
aircraft fuselages, deep-diving vehicles, pressure containers, and oil lines. In practical
application, the shells may be with a cutout that can produce dynamic stress
concentration. Dynamic stress concentrations on the contour of cutout reduce the bearing
capacity of the shell structures. The problem of dynamics for the shell is much more
complex than that of the plate because of the effect of the curvature of the shell to the
flexural wave equation. Consequently, the curvature of the shell influences the dynamic
performance of shell in a complex manner.

Due to their importance in applications, shells with cutouts in the wall have been the
subject of numerous theoretical studies and experiments for the last several decades [1–5].
Dyke [6] studied the problem of stress around a circular hole in a cylindrical shell and got
the stress solutions that were based on Donnell’s equations of shallow shells. Using
geometrically non-linear theory, Dennis and Palazotto [7] studied the static response of a
cylindrical composite panel with cutouts. Hwang and Foster [8] analyzed the axisymmetric
free vibration of a thin, isotropic and shallow spherical shell with a circular cutout. Using
the finite element method, Sivasubramonian et al. [9] studied the free vibration of isotropic
curved panels with cutouts. Results were presented for cylindrical panels with square
cutouts. Ram and Babu [10] investigated the bending behavior of axisymmetric laminated
0022-460X/02/$35.00 # 2002 Elsevier Science Ltd. All rights reserved.
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composite shells with a cutout using the finite element method based on a higher order
shear deformation theory.

The problem of wave scattering by scatterers in all kinds of engineering structures has
always been studied by large numbers of researchers since the mid-20th century [11–14].
With wave functions expansion method, Pao [15] and Pao and Mow [16] first studied the
problem of the flexural wave scattering and dynamic stress concentrations in thin plates
with cutouts and gave an analytical solution and numerical examples. Bogan and Hinders
[17] analyzed the problem of wave scattering and dynamic stress concentrations in fiber-
reinforced composites with interfacial layers, and they calculated the dynamic stress
concentrations of three fiber composite materials}boron fibers in an epoxy matrix,
silicon-carbide fibers in a metal matrix and tungsten fibers in a steel matrix. By making use
of complex function method, Liu and Hu [18] studied the flexural wave scattering and
dynamic stress concentrations in Mindlin’s thick plates and presented numerical solutions.
Gabrielli and Finidori [19] theoretically, numerically and experimentally studied acoustic
scattering by two identical spheres by highlighting the role of the symmetries of the
scatterer. Sato and Shindo [20] researched the problem of multiple scattering of elastic
waves in fiber-reinforced composite and analyzed the effect of interface properties on the
phase velocities, attenuations of coherent waves and the effective elastic moduli.

The presence of cutouts or discontinuities in plates and shells used in many engineering
applications can produce stress concentration and reduce the strength of plates and shells.
So, the stress concentration problem has been the focus of many authors concerned with
many subjects [15, 21–24]. The dynamic stresses and displacements around cylindrical
discontinuities due to plane harmonic shear waves were studied by Mow and Mente [22],
and they considered the oblique incidence case of elastic waves. Mow and Workman [23]
investigated the dynamic stresses around a fluid-filled cavity and presented the formal
solution of the steady state problem of elasticity theory in the form of Rayleigh-type waves
propagating on a free convex or concave cylindrical cavity. Liu et al. [24] proposed the
complex variable method and the conformal mapping technique to solve the problem of
dynamic stress concentrations.

Wave functions expansion method is the main tool for solving dynamic problems
described by second order partial differential equations. However, the main difficulty for
solving elastic wave problems in plates and shells lies in that one cannot usually reduce
higher order dynamic equations to second order partial differential ones. Due to the
limitations of present mathematical and physical methods, and the complexity of
engineering structures, numerical structural analysis is often performed to investigate the
dynamic problems in plates and shells. Boundary-integral equation technique is an
effective method to solve these problems for plates and shells [25–28]. Using an approach
called domain-boundary element method (DBEM), Dirgantara and Aliabadi [29]
developed boundary-integral equations for shear deformable shallow shells by coupling
integral equations for shear deformable plate and two-dimensional (2-D) plane stress
elasticity. Wen et al. [30] developed the dual reciprocity method for transforming domain
integrals to boundary integrals for shear deformable plate and shell bending formulation,
and employed particular solutions for three radial basis functions. Dirgantara and
Aliabadi [31] presented a new boundary element formulation for fracture mechanics
analysis of shear deformable shells. They derived the hyper-singular integral equations
that were employed with displacement integral equations to form DBEM formulation.

The main purpose of this paper is to investigate the problems of flexural wave scattering
and dynamic stress concentrations around holes in infinite open circular cylindrical shells
based on the theory of bending deflection of shallow cylindrical shell. By making use of
small parameter perturbation methods and boundary element theory, a boundary-integral
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equation method for solving this problem is employed. The boundary-integral equations
and iterative imminent series of scattered waves around the cavity in the cylindrical shell
are given. With this method, one can finally get the approximately analytical solutions.
Computational formula of dynamic stress concentration factors on the contour of the
cutout is developed. As an example, the numerical results are graphically presented and
discussed.

2. GOVERNING DYNAMIC EQUATIONS OF CYLINDRICAL SHELL

The schematic of the cylindrical shell with a circular cutout and the co-ordinate system
is depicted in Figure 1. The motion equations governing the normal displacement w and
stress function j are given as follows:

Dr2r2w þ 1

R

@2j
@Y 2

þ rh
@2w

@t2
¼ q;

1

Eh
r2r2j� 1

R

@2w

@Y 2
¼ 0; ð1a; bÞ

where D ¼ Eh3=12ð1� n2Þ is the bending stiffness of the shell wall, E Young’s modulus, n
the Poisson ratio, r the mass density, R the radius of curvature, h the thickness of the shell,
X and Y the rectangular co-ordinates with Y axis oriented along the shell axis, r2 ¼
@2=@X 2 þ @2=@Y 2 the 2-D Laplacian operator in variables X and Y, t the time and q the
normal load, for free vibration, q ¼ 0:

The solutions of the fourth order partial differential equations (1a) and (1b) can be
expressed as

w ¼ r2r2f ; j ¼ Eh

R

@2f

@Y 2
: ð2a; bÞ

Substituting equations (2a) and (2b) into equations (1a) and (1b) gives the following form:

Dr2r2r2r2f þ rh
@2

@t2
½r2r2f � þ Eh

R2

@4f

@Y 4
¼ 0: ð3Þ

In order to obtain the normal displacement w and the stress function j, one assumes the
steady wave solution of equation (3) as

f ¼ FðX ;Y Þe�iot; ð4Þ
where o and F are, respectively, the circular frequency and the complex amplitude value of
bending wave. Introducing non-dimensional co-ordinates

x ¼ X=a; y ¼ Y=a; r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 2 þ Y 2

p
=a; ð5Þ
X 

w 

Y 

Incident wave 

o 
a 

R 

Figure 1. Schematic of cylindrical shell with a circular cutout and co-ordinate system.
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where a is the characteristic length with regard to cutout in the shell, such as the radius of
the cutout, and substituting equations (4) and (5) into equation (3), one can obtain

r2r2r2r2F � a4r2r2F þ e@4F=@y4 ¼ 0; ð6Þ

where r2 ¼ @2=@x2 þ @2=@y2 is the 2-D Laplacian operator in variables x and y, e ¼
12ð1� n2Þða=

ffiffiffiffiffiffi
Rh

p
Þ4 the small structural parameter and a ¼ ka ¼ 2pa=l the non-

dimensional wavenumber, in which k ¼ ½rho2=D�1=4 is the wavenumber and l the
wavelength.

The solution of equation (6) is assumed to have the form

F ¼ F0 þ eF1 þ e2F2 þ 
 
 
 ¼
Xþ1

m¼0

emFm: ð7Þ

Substituting equation (7) into equation (6) and letting the coefficients of different powers
of e on the left side of equation (6) be equal to zero give the following expression:

r2r2½r2r2 � a4�Fm ¼ �Hðm � 1Þ@4Fm�1=@y4; ð8Þ

where H( 
 ) denotes the Heaviside function.

3. GENERALIZED INTERNAL FORCES AND BOUNDARY CONDITIONS

In the polar co-ordinates ðr; yÞ; the generalized internal forces can be expressed in terms
of normal displacement w and stress function j as follows:

Nr ¼
1

r

@j
@r

þ 1

r2
@2j

@y2
; Ny ¼

@2j
@r2

; Nry ¼ � @

@r

1

r

@j
@y

� �

Mr ¼ �D nr2w þ ð1� nÞ @
2w

@r2

� �
; My ¼ �D r2w � ð1� nÞ @

2w

@r2

� �

Mry ¼ �Dð1� nÞ @
@r

1

r

@w

@y

� �
;

Qr ¼ �D
@

@r
ðr2wÞ; Qy ¼ �D

1

r

@

@y
ðr2wÞ

ð9Þ

where Nr, Ny and Nry are the internal membrane forces, Mr, My and Mry the bending
moments, Qr and Qy the transverse shear forces, respectively, r2 ¼ @2=@r2 þ ð1=rÞ@=@r þ
ð1=r2Þ@2=@y2 the 2-D Laplacian operator in variables r and y: The nominal shear force is
defined as

Vr ¼ Qr þ
1

r

@Mry

@y
: ð10Þ

In the polar co-ordinates ðr; yÞ; it can be written as

Vr ¼ �D
@

@r
ðr2wÞ � Dð1� nÞ 1

r

@

@r

1

r

@2w

@y2

� �
: ð11Þ

For circular boundary, the generalized internal forces on the boundary can be expressed
as

ð 
 Þn ¼ ð 
 Þr; ð 
 Þt ¼ ð 
 Þy; ð 
 Þnt ¼ ð 
 Þry; ð12Þ

where ( 
 ) represents, respectively, the internal membrane force, the bending moment and
the nominal shear force, and the subscripts n and t are the normal and tangent directions.
In the present study, the boundary of the circular hole is assumed to be free of traction. So,
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the boundary conditions can be written as

ðMrÞr¼1 ¼ 0; ðVrÞr¼1 ¼ 0: ð13Þ

4. ASYMPTOTIC SOLUTIONS

When the subscript m in equation (8) is equal to zero, the following homogenous
equation can be gained:

r2r2½r2r2 � a4�F0 ¼ 0: ð14Þ

The solution of equation (14) can be written as follows:

F0 ¼ F
ð1;2Þ
0 þ F

ð3;4Þ
0 ; ð15Þ

where F
ð1;2Þ
0 and F

ð3;4Þ
0 satisfy the following equations:

r2r2F
ð1;2Þ
0 � a4F

ð1;2Þ
0 ¼ 0; r2r2F

ð3;4Þ
0 ¼ 0: ð16a; bÞ

The solution of equation (16a) is given as

F
ð1;2Þ
0 ¼ F

ð1Þ
0 þ F

ð2Þ
0 ; ð17Þ

where F
ð1Þ
0 and F

ð2Þ
0 satisfy the following Helmholtz and modified Helmholtz equations:

ðr2 þ a2ÞF ð1Þ
0 ¼ 0; ðr2 � a2ÞF ð2Þ

0 ¼ 0: ð18a; bÞ

In the polar co-ordinates (r, y), the solutions of equations (18a) and (18b) can be written as
[32]

F
ð1;2Þ
0 ¼ F

ð1Þ
0 þ F

ð2Þ
0 ¼

Xþ1

n¼�1
A0

nHð1Þ
n ðarÞeiny þ B0

nKnðarÞeiny
h i

; ð19Þ

where A0
n and B0

n are unknown coefficients which are determined by the boundary
conditions of the cavity, H

ð1Þ
n ð 
 Þ the nth order Hankel function of the first kind and Knð 
 Þ

the nth order modified Bessel function.
The fundamental solution of equation (16b) is the one corresponding to the following

equation:

r2r2F * ð3;4Þ
0 ¼ dðP;QÞ ¼ dðrP � rQÞ; ð20Þ

where dðrP � rQÞ is the Dirac delta function, rQ the vector representing a unit applied
potential at a given point Q (source point) and rP the variable corresponding to the
observation point P. The fundamental solution for equations such as equation (20) is a
function only of the distance between the source point and the observation point. This
distance is denoted by x as seen in Figure 2 and defined as

x ¼ jnj ¼ jrP � rQj: ð21Þ

The fundamental solution of equation (20) can be given by [33, 34]

F * ð3;4Þ
0 ðP;QÞ ¼ x2

8p
lnx: ð22Þ

The integral equations for solving F
ð3;4Þ
0 can be derived by the method of integration by

parts. Integrating the integral
R
Gðr

2r2F
ð3;4Þ
0 ÞF * ð3;4Þ

0 dO by parts twice, the following
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Figure 2. Notation for source and observation points.
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expression can be obtained:

F
ð3;4Þ
0 ðQÞ ¼

Z
G

F
ð3;4Þ
0 ðP0Þ

@½r2F * ð3;4Þ
0 ðP0;QÞ�
@nðP0Þ

dG�
Z

G

@F
ð3;4Þ
0 ðP0Þ
@nðP0Þ

r2F * ð3;4Þ
0 ðP0;QÞ dG

þ
Z

G

@F * ð3;4Þ
0 ðP0;QÞ
@nðP0Þ

r2F
ð3;4Þ
0 ðP0Þ dG�

Z
G
r2 @F

ð3;4Þ
0 ðP0Þ
@nðP0Þ

" #
F * ð3;4Þ
0 ðP0;QÞ dG;

ð23Þ

where P0 2 G and Q 2 O are the field points on the boundary and inside the
domain respectively, nðP0Þ the normal direction on the boundary. Integrating the last
two terms at the right side of equation (23) by parts twice, the following equations can be
gained:

Z
G

@F * ð3;4Þ
0 ðP0;QÞ
@nðP0Þ

r2F
ð3;4Þ
0 ðP0Þ dG ¼

Z
G
r2 @F * ð3;4Þ

0 ðP0;QÞ
@nðP0Þ

" #
F

ð3;4Þ
0 ðP0Þ dG

þ @F
ð3;4Þ
0 ðP0Þ
@nðP0Þ

@F * ð3;4Þ
0 ðP0;QÞ
@nðP0Þ

�����
G

� @2F * ð3;4Þ
0 ðP0;QÞ
@n2ðP0Þ

F
ð3;4Þ
0 ðP0Þ

�����
G

; ð24aÞ

Z
G
r2 @F

ð3;4Þ
0 ðP0Þ
@nðP0Þ

" #
F * ð3;4Þ
0 ðP0;QÞ dG ¼

Z
G
r2F * ð3;4Þ

0 ðP0;QÞ @F
ð3;4Þ
0 ðP0Þ
@nðP0Þ

dG

þ @2F
ð3;4Þ
0 ðP0Þ

@n2ðP0Þ
F * ð3;4Þ
0 ðP0;QÞ

�����
G

� @F * ð3;4Þ
0 ðP0;QÞ
@nðP0Þ

@F
ð3;4Þ
0 ðP0Þ
@nðP0Þ

�����
G

: ð24bÞ

Substituting equations (24a) and (24b) into equation (23), one can get

F
ð3;4Þ
0 ðQÞ ¼ 2

Z
G

F
ð3;4Þ
0 ðP0Þ

@½r2F * ð3;4Þ
0 ðP0;QÞ�
@nðP0Þ

dG� 2

Z
G

@F
ð3;4Þ
0 ðP0Þ
@nðP0Þ

r2F * ð3;4Þ
0 ðP0;QÞ dG

þ 2
@F

ð3;4Þ
0 ðP0Þ
@nðP0Þ

@F * ð3;4Þ
0 ðP0;QÞ
@nðP0Þ

�����
G

� @2F * ð3;4Þ
0 ðP0;QÞ
@n2ðP0Þ

F
ð3;4Þ
0 ðP0Þ

�����
G

� @2F
ð3;4Þ
0 ðP0Þ

@n2ðP0Þ
F * ð3;4Þ
0 ðP0;QÞ

�����
G

: ð25Þ
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By taking the point Q to the boundary, that is Q 2 O ! Q0 2 G; equation (25) can be
written as follows:

CðQÞF ð3;4Þ
0 ðQÞ ¼2

Z
G

F
ð3;4Þ
0 ðP0Þ

@½r2F * ð3;4Þ
0 ðP0;QÞ�
@nðP0Þ

dG�2

Z
G

@F
ð3;4Þ
0 ðP0Þ
@nðP0Þ

r2F * ð3;4Þ
0 ðP0;QÞ dG

þ 2
@F

ð3;4Þ
0 ðP0Þ
@nðP0Þ

@F * ð3;4Þ
0 ðP0;QÞ
@nðP0Þ

�����
G

� @2F * ð3;4Þ
0 ðP0;QÞ
@n2ðP0Þ

F
ð3;4Þ
0 ðP0Þ

�����
G

� @2F
ð3;4Þ
0 ðP0Þ

@n2ðP0Þ
F * ð3;4Þ
0 ðP0;QÞ

�����
G

: ð26aÞ

In equation (26a) there are altogether three unknown boundary variables, namely,
F

ð3;4Þ
0 ðP0Þ; @F

ð3;4Þ
0 ðP0Þ=@nðP0Þ and @2F

ð3;4Þ
0 ðP0Þ=@n2ðP0Þ: So the following two equations

are required to determine F
ð3;4Þ
0 ðQÞ:

CðQÞ@F
ð3;4Þ
0 ðQÞ
@nðQÞ ¼ 2

Z
G

F
ð3;4Þ
0 ðP0Þ

@2½r2F * ð3;4Þ
0 ðP0;QÞ�

@nðP0Þ@nðQÞ dG

� 2

Z
G

@F
ð3;4Þ
0 ðP0Þ
@nðP0Þ

@½r2F * ð3;4Þ
0 ðP0;QÞ�
@nðQÞ dG

þ 2
@F

ð3;4Þ
0 ðP0Þ
@nðP0Þ

@2F * ð3;4Þ
0 ðP0;QÞ

@nðP0Þ@nðQÞ

�����
G

� @3F * ð3;4Þ
0 ðP0;QÞ

@n2ðP0Þ@nðQÞ F
ð3;4Þ
0 ðP0Þ

�����
G

� @2F
ð3;4Þ
0 ðP0Þ

@n2ðP0Þ
@F * ð3;4Þ

0 ðP0;QÞ
@nðQÞ

�����
G

; ð26bÞ

CðQÞ@
2F

ð3;4Þ
0 ðQÞ

@n2ðQÞ ¼ 2

Z
G

F
ð3;4Þ
0 ðP0Þ

@3½r2F * ð3;4Þ
0 ðP0;QÞ�

@nðP0Þ@n2ðQÞ dG

� 2

Z
G

@F
ð3;4Þ
0 ðP0Þ
@nðP0Þ

@2½r2F * ð3;4Þ
0 ðP0;QÞ�
@n2ðQÞ dG

þ 2
@F

ð3;4Þ
0 ðP0Þ
@nðP0Þ

@3F * ð3;4Þ
0 ðP0;QÞ

@nðP0Þ@n2ðQÞ

�����
G

� @4F * ð3;4Þ
0 ðP0;QÞ

@n2ðP0Þ@n2ðQÞ F
ð3;4Þ
0 ðP0Þ

�����
G

� @2F
ð3;4Þ
0 ðP0Þ

@n2ðP0Þ
@2F * ð3;4Þ

0 ðP0;QÞ
@n2ðQÞ

�����
G

ð26cÞ

where C (Q) is the jump term. The value of C (Q) is

CðQÞ ¼
1=2 for Q ¼ Q0 2 G;

1 for Q 2 O:

(
ð27Þ

Then, the zeroth order or the unperturbed terms for determining the normal displacement
and the stress function are written as

W0 ¼ r2r2F0; F0 ¼
Eh

R

@2F0

@y2
: ð28Þ

W
ð1Þ
0 e�iot and W

ð2Þ
0 e�iot denote, respectively, the scattered and the evanescent waves of

normal displacement around the hole. They compose together the scattered waves of
normal displacement. Fð1Þ

0 e�iot expresses the scattered wave of membrane force, and
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Fð2Þ
0 e�iot and Fð3;4Þ

0 e�iot represent the evanescent waves of membrane force around the
cutout. They form altogether the scattered waves of membrane force.

The first order and the above perturbation solutions can be gained by the boundary-
integral equation techniques. By introducing

Wm ¼ r2r2Fm; m ¼ 1; 2; 3; . . . ; ð29Þ

and substituting it into equation (8), one can obtain the first order and the above
perturbation equations

r2r2Wm � a4Wm ¼ �@4Fm�1=@y4; m ¼ 1; 2; 3; . . . ; ð30Þ

The fundamental solution of equation (30) should satisfy the following expression:

r2r2W n

m � a4W n

m ¼ dðP;QÞ ¼ dðrP; rQÞ: ð31Þ

In the polar co-ordinates, the fundamental solution of equation (31) can be expressed as
[35]

W n

mðP;QÞ ¼ i

8a2
½Hð1Þ

0 ðaxÞ þ 2i

p
K0ðaxÞ�; ð32Þ

where the significance of x is the same as that in equation (21), H
ð1Þ
0 ð 
 Þ the zeroth order

Hankel function of the first kind and K0ð 
 Þ the zeroth order modified Bessel function.
By making use of the fundamental solution, the integral formulations of the first order

and the above perturbation solutions can be written as [34]

CðQÞDWmðQÞ ¼ � D

Z
O

W n

mðP;QÞ @
4Fm�1ðPÞ
@y4

dO

þ
Z

G
Mn

n ðP0;QÞ@WmðP0Þ
@nðP0Þ

�
�MðmÞ

n ðP0Þ
@W n

mðP0;QÞ
@nðP0Þ

�
dG

�
Z

G
½Vn

n ðP0;QÞWmðP0Þ � V ðmÞ
n ðP0ÞW n

mðP0;QÞ� dG; ð33aÞ

where CðQÞ is the jump term and defined by equation (27), D the bending stiffness of shell
wall as defined in equation (1), P0 2 G and P 2 O the observation points on the boundary
and inside the domain, respectively, and the definition of Q the same as that in equation
(27). Mn

n ðP0;QÞ and Vn
n ðP0;QÞ can be expressed as

Mn

n ðP0;QÞ ¼ Mn½W n

mðP0;QÞ� ¼ �D
in
8ar

1

2
H

ð1Þ
�1 ðaxÞ � H

ð1Þ
1 ðaxÞ

� �
� i

p
K�1ðaxÞ þ K1ðaxÞð Þ

� ��

þ i

16

1

2
H

ð1Þ
�2 ðaxÞ � 2H

ð1Þ
0 ðaxÞ þ H

ð1Þ
2 ðaxÞ

� �
þ i

2p
K�2ðaxÞ þ 2K0ðaxÞ þ K2ðaxÞð Þ

� ��
;

Vn

n ðP0;QÞ ¼Vn½W n

mðP0;QÞ� ¼ �D
ia
32

1

2
H

ð1Þ
�3 ðaxÞ � 3H

ð1Þ
�1 ðaxÞ þ 3H

ð1Þ
1 ðaxÞ � H

ð1Þ
3 ðaxÞ

� ���

� i

p
K�3ðaxÞ þ 3K�1ðaxÞ þ 3K1ðaxÞ þ K3ðaxÞð Þ

�

� i

8ar2
1

2
H

ð1Þ
�1 ðaxÞ � H

ð1Þ
1 ðaxÞ

� ��
� i

p
K�1ðaxÞ þ K1ðaxÞð Þ

�

þ i

16r

1

2
H

ð1Þ
�2 ðaxÞ � 2H

ð1Þ
0 ðaxÞ þ H

ð1Þ
2 ðaxÞ

� ��

þ i

2p
K�2ðaxÞ þ 2K0ðaxÞ þ K2ðaxÞð Þ

��
:
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In equation (33a), only two boundary variables are known in the four ones, namely,
Wm(P0), @WmðP0Þ=@nðP0Þ; M

ðmÞ
n ðP0Þ ¼ Mn½WmðP0Þ� and V

ðmÞ
n ðP0Þ ¼ Vn½WmðP0Þ�: The

other supplementary equation is necessary to obtain Wm(Q)

CðQÞD @WmðQÞ
@nðQÞ ¼ �

Z
O

@W nðP;QÞ
@nðQÞ

@4Fm�1ðPÞ
@y4

dO

þ
Z

G

@Mn
n ðP0;QÞ
@nðQÞ

@WmðP0Þ
@nðP0Þ

�
� MðmÞ

n ðP0Þ
@2W nðP0;QÞ
@nðP0Þ@nðQÞ

�
dG

�
Z

G

@Vn
n ðP0;QÞ
@nðQÞ WmðP0Þ � V ðmÞ

n ðP0Þ
@W nðP0;QÞ

@nðQÞ

� �
dG: ð33bÞ

In order to determine Fm, one can rearrange equation (29) as follows:

r2r2Fm ¼ Wm; m ¼ 1; 2; 3; . . . : ð34Þ

The fundamental solution of equation (34) should satisfy the following formulation:

r2r2Fn

m ¼ dðP;QÞ ¼ dðrP � rQÞ: ð35Þ

The fundamental solution of equation (35) is the same as equation (22), namely

Fn

mðP;QÞ ¼ x2

8p
ln x; ð36Þ

where the significance of x is the same as that in equation (21). The integral equations for
solving Fm can be derived by the same method for determining F

ð3;4Þ
0 as stated above, and

they are given by

CðQÞFmðQÞ ¼
Z

O
WmðPÞFn

mðP;QÞ dOþ 2

Z
G

FmðP0Þ
@½r2Fn

mðP0;QÞ�
@nðP0Þ

dG

� 2

Z
G

@FmðP0Þ
@nðP0Þ

r2Fn

mðP0;QÞ dGþ 2
@FmðP0Þ
@nðP0Þ

@Fn
mðP0;QÞ
@nðP0Þ

����
G

� @2Fn
mðP0;QÞ

@n2ðP0Þ
FmðP0Þ

����
G
� @2FmðP0Þ

@n2ðP0Þ
Fn

mðP0;QÞ
����
G
; ð37aÞ

CðQÞ@FmðQÞ
@nðQÞ ¼

Z
O

WmðPÞ
@Fn

mðP;QÞ
@nðQÞ dOþ 2

Z
G

FmðP0Þ
@2½r2Fn

mðP0;QÞ�
@nðP0Þ@nðQÞ dG

� 2

Z
G

@FmðP0Þ
@nðP0Þ

@½r2Fn
mðP0;QÞ�

@nðQÞ dGþ 2
@FmðP0Þ
@nðP0Þ

@2Fn
mðP0;QÞ

@nðP0Þ@nðQÞ

����
G

� @3Fn
mðP0;QÞ

@n2ðP0Þ@nðQÞFmðP0Þ
����
G
� @2FmðP0Þ

@n2ðP0Þ
@Fn

mðP0;QÞ
@nðQÞ

����
G
; ð37bÞ

CðQÞ@
2FmðQÞ
@n2ðQÞ ¼

Z
O

WmðPÞ
@2Fn

mðP;QÞ
@n2ðQÞ þ 2

Z
G

FmðP0Þ
@3½r2Fn

mðP0;QÞ�
@nðP0Þ@n2ðQÞ dG

� 2

Z
G

@FmðP0Þ
@nðP0Þ

@2½r2Fn
mðP0;QÞ�

@n2ðQÞ dGþ 2
@FmðP0Þ
@nðP0Þ

@3Fn
mðP0;QÞ

@nðP0Þ@n2ðQÞ

����
G

� @4Fn
mðP0;QÞ

@n2ðP0Þ@n2ðQÞFmðP0Þ
����
G
� @2FmðP0Þ

@n2ðP0Þ
@2Fn

mðP0;QÞ
@n2ðQÞ

����
G
: ð37cÞ
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Then, the first order and the above perturbation terms for determining the stress function
are given by

Fm ¼ Eh

R

@2Fm

@y2
; m ¼ 1; 2; 3; . . . ; ð38Þ

5. SCATTERING OF ELASTIC WAVES

Assuming that a steady flexural wave propagates in the positive x direction, one can give
the incident wave of the generalized potential function F as follows:

*F
ðiÞ ¼ *F0 exp½iðax � otÞ�; ð39Þ

where *F0 is the amplitude of the incident wave, a the non-dimensional wavenumber and o
the circular frequency of the incident wave. The incident wave fields of the normal
displacement and the stress function on the boundary of the cutout are of the forms

*W
ðiÞ ¼ r2r2 *F

ðiÞ ¼ a4 *F0 exp½iðax � otÞ� ¼ *W0 exp½iðax � otÞ�; ð40aÞ

*FF
ðiÞ ¼ Eh

R

@2 *F
ðiÞ

@y2
¼ 0; ð40bÞ

where *W0 ¼ a4 *F0 denotes the amplitude of the incident wave of the normal displacement.
The scattered wave of the generalized potential function F around the cavity can be

written in the form of equation (7), namely

*F
ðsÞ ¼ F0 þ eF1 þ e2F2 þ . . . : ð41Þ

The scattered wave fields of the normal displacement and the stress function on the edge of
the cutout are given by

*W
ðsÞ ¼ r2r2 *F

ðsÞ ¼
Xþ1

m¼0

emr2r2Fm ¼
Xþ1

m¼0

emWm; ð42aÞ

*FF
ðsÞ ¼ Eh

R

@2 *F
ðsÞ

@y2
¼ Eh

R

Xþ1

m¼0

em@
2Fm

@y2
¼
Xþ1

m¼0

emFm: ð42bÞ

The total elastic wave field of the generalized potential function F around the cavity should
be the sum of the incident wave and the scattered wave, namely

*F ¼ *F
ðiÞ þ *F

ðsÞ
: ð43Þ

Accordingly, the total elastic wave fields of the normal displacement and the stress
function around the cutout are written as

*W ¼ *W
ðiÞ þ *W

ðsÞ
; *FF ¼ *FF

ðiÞ þ *FF
ðsÞ
: ð44a; bÞ

6. DYNAMIC STRESS CONCENTRATIONS

To determine the dynamic stress concentration factors on the contour of the cavity is the
main purpose of the present investigation. Suppose that the boundary conditions on the
boundary of the cutout are free of tractions. So only the hoop dynamic moment and shear
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force exist along the boundary curve. The dynamic stress concentration factor is defined as

DSCF ¼ sNy

sM0

����
����þ sMy

sM0

����
����; ð45Þ

where sNy and sMy are the stresses caused, respectively, by the hoop membrane force *Ny

and the hoop bending moment *My; and sM0 is the stress amplitude value caused by the
incident elastic wave. sNy; sMy and sM0 can be, respectively, given by

sNy ¼
*Ny

h
; sMy ¼

6 *My

h2
; sM0 ¼

6 *M0

h2
; ð46a2cÞ

where h is the thickness of the shell, and *M0 ¼ �Da2 *W0 is the amplitude of the bending
moment caused by the incident elastic wave. Substituting equations (46a)–(46c) into
equation (45), one can get

DSCF ¼
*My

*M0

����
���� 1þ h

6

*Ny

*My

����
����

� �
: ð47Þ

For the free boundary conditions of the circular cutout, the hoop membrane force *Ny and
the hoop bending moment *My are expressed as

*Ny ¼ *Ny þ *Nr ¼ r2 *FF ¼ Eh

R
r2 @2 *F

@y2

� �
; ð48Þ

*My ¼ *My þ *Mr ¼ �Dð1þ nÞr2 *W; ð49Þ
where *Nr and *Mr are the radial membrane force and bending moment. For the case of free
boundary, *Nr and *Mr are all equal to zero. By substituting equations (48) and (49) into
equation (47), the following formulation for calculating the dynamic stress concentration
factors can be derived:

DSCF ¼
*My

*M0

����
���� 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eð1� vÞ
3ð1þ vÞ

s
1

r2 *W

@2ðr2 *FÞ
@y2

����
����

 !

¼ ð1þ nÞr2 *W

a2 *W0

����
���� 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eð1� vÞ
3ð1þ vÞ

s
1

r2 *W

@2ðr2 *FÞ
@y2

����
����

 !
; ð50Þ

where v is the Poisson ratio of the shell, and e the small perturbation parameter as defined
in equation (6).

7. EXAMPLE AND DISCUSSION

A steady flexural wave propagating in the positive x direction is studied. Assume that
the boundary curve of the cavity is free of traction. In practical engineering, this kind of
boundary condition is more common and more investigated. For different small
perturbation parameters, Figure 3 shows the dynamic stress concentration factors as a
function of non–dimensional wavenumber of the incident flexural wave around a circular
cutout. For three cases of non-dimensional wavenumber, Figure 4 depicts the dynamic
stress concentration factors varying with the structural parameter a=

ffiffiffiffiffiffi
Rh

p
:

For cylindrical shells with a cutout, it can be seen in Figure 3 that the dynamic stress
concentration factors decrease as the non–dimensional wavenumber a increases for the
case of a being between 0
1 and 1
0. But the dynamic stress concentration factors sharply
decrease as a increases when it is less than 0
25 for the cases of e being equal to 0
2 and 0
5.
For different small perturbation parameters, it shows that the dynamic stress



Figure 3. Dynamic stress concentration factors as a function of non-dimensional wavenumber a for open
cylindrical shells with a circular cutout, y ¼ p=2; n ¼ 0
3: For the five curves, No. 1 denotes thin plates, No. 2 the
case of e ¼ 0 for cylindrical shells, No. 3 the case of e ¼ 0
1 for cylindrical shells, No. 4, e ¼ 0
2 and No. 5, e ¼ 0
5:

Figure 4. Dynamic stress concentration factors versus parameter a=
ffiffiffiffiffiffi
Rh

p
ðy ¼ p=2Þ:
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concentration factors of cylindrical shells with a circular cavity are bigger than those of
thin plates with a circular hole in the whole scope of a. In general, the dynamic stress
concentration factor increases as the small perturbation parameter e increases for every
non–dimensional wavenumber a. Especially due to the effect of the membrane force, the
dynamic stress concentration factor is larger than that of thin plate for the case of the
small perturbation parameter e being equal to zero.

It can be seen from Figure 4 that the dynamic stress concentration factors increase as
the structural parameter a=

ffiffiffiffiffiffi
Rh

p
increases for three cases of non-dimensional wavenumber.

However, the dynamic stress concentration factor increases more quickly for smaller non-
dimensional wavenumber than it does for bigger non-dimensional wavenumber. For a
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given structural parameter a=
ffiffiffiffiffiffi
Rh

p
; the dynamic stress concentration factors decrease with

the non–dimensional wavenumber a increasing in the interval of a 2 ½0
1; 1
0�:

8. SUMMARY AND CONCLUSIONS

In the present work, based on the theory of the bending wave motion of open circular
cylindrical shell, elastic wave scattering and dynamic stress concentrations in infinite open
cylindrical shells with a circular cutout have been investigated by making use of small
parameter perturbation methods and boundary element techniques. A boundary-integral
equation method for solving this problem has been established. The boundary-integral
equations and iterative imminent series of scattered waves around the cavity of a
cylindrical shell have been given. The computational formula of dynamic stress
concentration factors around the cutout has been developed. The main findings of this
work are as follows:

(1) It is much effective to use small parameter perturbation methods and boundary–
integral equation techniques to solve the problem of elastic wave scattering and
dynamic stress concentrations on the contour of circular hole in cylindrical shells.
Because the wave equations for cylindrical shell are more complex, one cannot use the
method of wave functions expansion to solve this problem. But, with the method
employed in this paper, one can finally get the approximately analytical solutions.

(2) For cylindrical shells with a circular cutout, it can be seen that the dynamic stress
concentration factors are bigger than those of thin plates with a circular hole at a given
non-dimensional wavenumber a.

(3) For a given non-dimensional wavenumber a, the dynamic stress concentration factor
increases as the small perturbation parameter e increases.

(4) Due to the influence of the membrane force, for the case of the small perturbation
parameter e being equal to zero, the dynamic stress concentration factors are larger
than those of thin plates.

(5) The dynamic stress concentration factors increase as the structural parameter a=
ffiffiffiffiffiffi
Rh

p

increases for different non-dimensional wavenumbers.
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