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1. INTRODUCTION

The problem of vibration in rotating machinery has attracted the attention and the efforts
of many researchers and maintenance engineers due to economical, strategical and safety
consideration. In this regard many accomplishments have been achieved in the
understanding of the dynamics and control of the vibration of rotor-bearing system.
However, the dynamics of basic rotating components such as rotating blades still need
more theoretical and experimental studies. Moreover, the dynamic interaction between the
rotating blades and the rotor system dynamics is not yet understood and more theoretical
studies are required. One of these studies should address the interaction between blade
bending vibration and supporting shaft torsional vibrations.

Srinivasan [1] reported a survey on the vibrations of bladed-disk assemblies. In this
survey, he highlighted the importance of modelling the disk–blade vibrations and classified
these vibrations into two main categories; namely, structure-induced vibrations and
aeroelastic-induced vibrations. The survey was mainly concerned with the structural-
induced vibrations and their modeling. Lowely and Khader [2] studied the effect of
flexural shaft flexibility on the dynamics of bladed-disk assemblies. Crawely and
Mokadam [3] reported analytical and experimental results on the coupled blade–disk–
shaft whirl of a cantilevered turbofan. The effect of shaft torsional flexibility on the
vibrations of rotating blades has not been considered in the previous studies. Okabe et al.
[4] highlighted the necessity for modelling both blade bending and shaft torsional
deformations in turbo-machinery. Al-Bedoor [5], based on multi-body dynamic approach,
developed a coupled model for shaft-torsional and blade-bending vibrations in rotors. The
model employed the finite element method to discretize the blade deformations. The study
identified the non-linear interaction and the destabilizing effect that the blade and shaft
could introduce to excite each other. Due to the difficulty encountered in quantifying the
nature of non-linear coupling when the finite element method is used, a reduced order non-
linear dynamic model for shaft-torsional and blade-bending vibrations which adopted the
assumed modes method (AMM) for approximating blade deformations was reported by
Al-Bedoor [6]. The simulation results showed that the torsional vibration of the rotor
system works as an excitation to the blade.

The purpose of the present letter is to extract an equation from the general model
developed in reference [6]. This equation describes the rotating blade vibration under the
effect of shaft-torsional vibration. A transformation is employed that converts the
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differential equation into a form similar to the Mathieu equation which is simulated to
show the dynamic behavior of the blade under the effect of torsional vibration excitation.

2. THE DYNAMIC MODEL

A schematic diagram of a disk–shaft–blade system driven by an electrical motor is
shown in Figure 1. The disk is assumed to be rigid and the flexible blades are attached
radially to the disk as shown. The beam is assumed to be inextensible and the Euler–
Bernoulli beam theory was adopted. The model adopted the small deformation theory for
both blade-bending and shaft-torsional deformations. The co-ordinate systems used in
developing the model are shown in Figure 2. Wherein, XY is the inertial reference frame,
xmym is a body co-ordinate system of the motor shaft, xdyd is a body co-ordinate system of
the disk and xbyb is the blade co-ordinate system that is attached to the root of the blade
such that xbis always directed along the undeformed blade centerline.

The degrees of freedom are the rigid body rotation y, the torsional deflection c and the
blade modal deflection fqg: By considering only the blade modal degree of freedom and
under the assumptions of constant rotating speed ’yy ¼ O; and the square of the torsional
deflection is small c2 � 0; the following equation can be obtained:

ðh þ cqÞ .ccþ .qq þ 2c ’ccOþ ð2c ’ccþ 2ZoBÞ ’qq

þ ðo2
B þ C1ð’yyþ ’ccÞ2 þ ’cc

2Þq ¼ 0; ð1Þ
Figure 1. Schematic diagram of blade-disk-shaft system.
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Figure 2. System deformed configuration and the coordinate systems.
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where h and C1 are constants related to the considered blade bending mode and oB is the
blade natural frequency, [6]. The constant C1 can be taken as unity as can be inferred from
the numerical values of reference [6], with out loss of generality. The first term in
equation (1) represents part of the dynamic coupling between the shaft torsional degree of
freedom and the blade bending modes, which will work as forcing input to the system and
will be taken to the right-hand side of equation (1). The second term is the blade modal
acceleration with the coefficient of unity due to normalization process. The third is
another term, which is a function of the torsional degree of freedom parameters and will
be taken to the right-hand side of equation (1) as a forcing term. The blade damping terms
are shown in the fourth term of equation (1), wherein, the structural damping is
represented by Z and the term 2c ’cc is the effect of torsional vibration. Finally, the fifth
term of equation (1) is the generalized modal stiffness in which the effect of stiffening due
to rotation and torsional vibration is apparent.

Now, assuming that the rotor torsional deflection can be represented by c ¼ e sinot;
where e is a small parameter that indicates the small order of torsional vibration and o is
the torsional excitation frequency. Substituting for c and ’cc into equation (1) and
arranging, one can find that the equation of motion takes the following form

.qq þ P1ðtÞ ’qq þ P2ðtÞq ¼ f ðtÞ; ð2Þ
where

P1ðtÞ ¼ e2o sinð2otÞ þ 2ZoB;

P2ðtÞ ¼ o2
B þ O2 þ 1

2
e2o2 þ 2eoO cosot þ 3

2
e2o2 cos 2ot;

f ðtÞ ¼ eho2 sin 2ot � e2oO sin 2ot:

Now, using the transformation given by Nayfeh [7],

q ¼ x exp �1
2

Z
P1ðtÞ dt

� �

and considering the homogenous part of equation (2) (i.e., droping the forcing term f ðtÞÞ,
the system can be expressed in the following form:

’xx þ PðtÞx ¼ 0; ð3Þ
where

PðtÞ ¼ P2 � 1
4
P2

1 � 1
2
’PP1:

Upon substituting the full expression of PðtÞ into equation (3), collectting the terms and
defining a set of coefficients, the governing equation becomes

.xx þ ða1 þ b1cosðotÞ þ b2cosð2otÞ
þ b3cosð4otÞ þ l1sinð2otÞx ¼ 0; ð4Þ

where the coefficients are

a1 ¼ o2
B þ O2 þ 3

8
e2o2 � Z2o2

B; ð5Þ

b1 ¼ 2eOo; ð6Þ

b2 ¼ 1
2
e2o2; ð7Þ

b3 ¼ 1
8
e4o2; ð8Þ

l1 ¼ �e2ooBZ: ð9Þ
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Equation (4) is a second order differential equation with harmonic coefficients.
The frequency of the coefficients terms is the torsional vibration frequency with even
multiples. The obtained equation (4) is a standard Mathieu–Hill equation with multiple
harmonic coefficients that can be helpful for more studies on the stability of rotating
blades under the effect of shaft torsional vibration excitations. It is worth mentioning that
one can think of dropping the terms multiplied by higher orders of E; to have similar
treatment as dropping c2: However, when the coefficients the E and its higher orders are
multiplied mainly by o2 which renders the total contribution not small and thus cannot be
dropped.
Figure 3. Blade vibration for t torsional excitation frequencies (o ¼ 1�10 Rad/s).
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3. NUMERICAL SIMULATION AND DISCUSSION

Equation (4) is integrated in time using the MATLAB package. The blade first mode
natural frequency is chosen as oB¼ 10 rad=s and the torsional vibration excitation
frequency is assumed to be equal to the running speed (o ¼ O); the well-known 1X
excitation. The small parameter E is taken as 0	1 for all simulations, however, other values
were tried. In order to show the system basic response, no damping is added and only the
undamped system is considered. The simulation results are shown in Figures 3 and 4 for
the range of torsional excitation frequency of o¼ 1220 rad=s in steps of 1 rad/s. The
simulation output is given as modal deflection, modal velocity and the phase plane plots.
Figure 4. Blade vibration for t torsional excitation frequencies (o ¼ 11 � 20 Rad/s).



LETTERS TO THE EDITOR1242
For torsional vibration excitation frequency range o¼ 123 rad=s; the blade vibration
shows growing amplitude, which can be considered as an unstable behavior. For torsional
excitation frequencies o ¼ 3 and 4 rad/s, the blade modal vibration amplitude is
decreasing and constant respectively. For frequencies o ¼ 5; 6; 7 and 8 rad/s, the blade
modal vibration amplitude is increasing, but at a reduced rate when going from 5 to 6 to 7
and to 8, as shown, until it becomes constant sustained for o¼ 9220 rad=s: This shows
that the critical regions of torsional excitation frequencies exist and can lead to unstable
blade (growing) vibration. The critical regions occur in torsional excitation frequencies
that are lower than the blade bending natural frequency. This preliminary result means
that the danger of unstable blade bending vibration due to shaft torsional excitation exists
when exposing the system to torsional vibration excitation frequencies that are lower than
the blade natural frequency.

4. CONCLUSIONS

A non-linear dynamic model for blade bending vibration under the effect of shaft
torsional flexibility is considered in this paper. The model is reduced to an ordinary
differential equation, which is transformed to an equation similar to Mathieu equation
with multiples of harmonic coefficients. The coefficients of the obtained equation contain
the system parameters such as the rotating speed, the shaft torsional vibration excitation
frequency and the blade bending natural frequency. The differential equation is simulated
and the results showed regions of unstable blade vibrations when the torsional excitation
frequency is lower than the blade bending natural frequency. Further analytical and
experimental studies in this direction are recommended in order to extract rigid
conclusions.
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