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Abstract

A reduced basis formulation is presented for the efficient solution of large-scale algebraic random
eigenvalue problems. This formulation aims to improve the accuracy of the first order perturbation method,
and also allow the efficient computation of higher order statistical moments of the eigenparameters. In the
present method, the two terms of the first order perturbation approximation for the eigenvector are used as
basis vectors for Ritz analysis of the governing random eigenvalue problem. This leads to a sequence of
reduced order random eigenvalue problems to be solved for each eigenmode of interest. Since, only two
basis vectors are used to represent each eigenvector, explicit expressions for the random eigenvalues and
eigenvectors can readily be derived. This enables the statistics of the random eigenparameters and the
forced response to be efficiently computed. Numerical studies are presented for free and forced vibration
analysis of a linear stochastic structural system. It is demonstrated that the reduced basis method gives
better results as compared to the first order perturbation method.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Linear stochastic differential eigenvalue problems (SDEPs) are frequently encountered in the
entire spectrum of science and engineering; for example, structural dynamics, stability analysis,
quantum chemistry, and electrical networks. It is known that spatial discretization techniques can
be used in conjunction with random field discretization schemes (or random variable models of
uncertainty) to represent a linear SDEP in a finite-dimensional setting as an algebraic random
eigenvalue problem. These representation schemes have been widely used in the stochastic finite
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element method, wherein randomness is treated as an additional dimension of the problem; see,
for example, Ref. [1].
In many problems of practical interest, the size of the discretized equations poses a formidable

obstacle to the application of Monte Carlo simulation (MCS) schemes for accurately estimating
the statistics of the eigenvalues and eigenvectors. Hence, in order to compute the eigenparameter
statistics in a computationally efficient fashion, the development of approximate solution schemes
has been pursued with particular vigor in the computational stochastic mechanics literature. The
application areas of solution techniques for random eigenvalue problems include stochastic
structural dynamics [2,3], robustness analysis of structural and control systems [4], structural
model updating and damage identification [5], and parameter-based statistical energy analysis [6].
The approaches in the literature for tackling algebraic random eigenvalue problems can be

broadly categorized into non-parametric and parametric techniques. The term non-parametric is
used here to refer to techniques which directly model the terms of the coefficient matrices as
random variables; see, for example, Ref. [7]. In the domain of structural dynamics, non-
parametric approaches which directly postulate a probabilistic model for the natural frequencies
and mode shapes have also been considered; see Ref. [8] and the references therein. Based on some
assumptions on the statistics of the natural frequencies, Langley showed that a compact
expression can be derived for the variance of the frequency response. This class of approaches do
not directly take into account the primary sources of the uncertainties, such as the random system
parameters. As a consequence, one has to prove by example that the assumed statistical model for
the eigenparameters leads to reasonable approximations for the forced response statistics.
The present paper is concerned with parametric approaches for solving the algebraic random

eigenvalue problem, where the coefficient matrices can be represented as a linear combination of
the random system parameters. The underlying assumption made here is that the system
uncertainty has an underlying structure. This representation of uncertainty is not limiting. As
discussed earlier, the advances made in the area of stochastic finite element analysis make this
representation of uncertainty possible for many systems of practical interest. Note that parametric
approaches may also be generalized to problems where the terms of the coefficient matrices can be
represented as polynomials in the random system parameters. Further, parametric techniques can
be employed to validate the assumptions used in non-parametric approaches to stochastic
structural dynamic analysis.
In 1969, Collins and Thompson [9] presented a first order perturbation method for dynamic

analysis of structures with parameter uncertainties. A detailed overview of the perturbation
method for algebraic random eigenvalue problems can be found in the monograph of Kleiber and
Hien [10]. A recent review of the state of the art in stochastic structural dynamics [2] suggests that
the first order perturbation method appears to be the most widely used approach for
approximating the statistics of the eigenparameters. The popular use of this method can be
primarily attributed to ease of implementation and computational efficiency. However, the
perturbation method only gives reasonable quality results for the statistical moments when the
coefficients of variation of the random system parameters are small. Further, since the higher
order perturbation terms are computationally intensive to compute, it is often difficult to improve
the accuracy of first order approximations in practice.
Lee and Singh [11] presented an approximate method based on direct matrix products for

approximating the first two statistical moments of the eigenvalues and eigenvectors. This method
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can be interpreted as a zero order Rayleigh quotient approximation procedure. As a result, for the
case when only the stiffness matrix is random, this method reduces to the first order perturbation
method for the eigenvalues. It was demonstrated for some simple example problems that
improvements over the first order perturbation method can be achieved. Approaches which focus
only on approximating the statistics of the eigenvalues have also been proposed in the literature;
see, for example, Ref. [12].
More recently, a response surface method combining the polynomial chaos expansion and the

MCS was proposed by Red-Horse and Ghanem [13]. In this method, the eigenvalues and
eigenvectors are represented by a polynomial chaos expansion scheme. The coefficients in the
expansion are then evaluated as generalized Fourier coefficients via the MCS procedure. This
representation allows the computation of additional statistics of the eigensolution in an efficient
fashion. The main drawback of this approach is the requirement of MCS, which is
computationally expensive for large-scale eigenvalue problems.
In order to reduce the computational cost of MCS for large-scale problems, the application of

model reduction schemes has been investigated; see, for example, Ref. [14]. However, the
computational cost savings using this approach may not be significant for problems where the
statistics of a large number of eigenmodes are to be computed. In contrast, the present
formulation involves the construction of a sequence of reduced order problems for each
eigenmode of interest. This is expected to lead to better efficiency when the statistics of a large
number of eigenmodes are to be computed.
Stochastic reduced basis methods (SRBMs) for numerical solution of systems governed by

stochastic partial differential equations have been proposed by the authors; see, for example, Refs.
[15–17]. This class of algorithms is intended for problems where discretization of the governing
equations in space together with the random dimension ultimately leads to a linear random
algebraic system of equations. The formulation developed in the present paper is similar in spirit
to SRBMs. However, the choice of stochastic basis vectors and the details of the formulation are
different. The choice of basis vectors used in the present formulation is motivated by a method
proposed earlier in Ref. [18,19] for structural dynamic reanalysis.
So, to summarize, the focus of the present research is on developing a computationally efficient

numerical scheme for solving large-scale algebraic random eigenvalue problems. Procedures
for discretizing linear SDEPs in space and the random dimension to arrive at an algebraic random
eigenvalue problem are outlined. The two terms of the first order perturbation approximation
for the eigenvector are chosen as basis vectors in conjunction with undetermined random
functions for representing the random eigenvector of the discretized SDEP. The undetermined
random functions in the reduced basis representation are computed via Ritz analysis of the
random eigenvalue problem. This leads to a sequence of (2� 2) reduced order random eigen-
value problems for each eigenmode of interest. Explicit expressions for the random eigen-
values and eigenvectors are derived in terms of the random variables arising from discretization
of the underlying random fields or the random system parameters. This enables a complete
statistical description of the eigenvalues and eigenvectors in a computationally efficient
fashion.
Numerical studies are presented for free and forced vibration analysis of a network of Euler–

Bernoulli beams with random Young’s modulus. It is shown that the present method gives better
results compared to the first order perturbation method.
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2. Problem statement

Consider a linear stochastic differential eigenvalue problem of the form

Kðaðx; hÞÞ½uðx; hÞ� ¼ lðhÞMðbðx; hÞÞ½uðx; hÞ�;

where Kðaðx; hÞÞ and Mðaðx; hÞÞ are stochastic differential operators defined on the domain D;
xAD denotes a point on the domain; hAO belongs to the Hilbert space of second order random
variables; aðx; hÞ and bðx; hÞ are second order random fields describing the coefficients of the
stochastic differential operators; lðhÞ and uðx; hÞ are the random eigenvalues and eigenfunctions,
respectively.
To illustrate the notation used here, consider the SDEP governing the flexural free-vibrations of

a stochastic Euler–Bernoulli beam. Here, the stochastic differential operators K and M can be
defined as

K ¼
@2

@x2
EIðx; hÞ

@2

@x2
and M ¼ mðx; hÞ; ð1Þ

where EIðx; hÞ and mðx; hÞ are random fields describing the flexural rigidity and mass density,
respectively.
The random fields describing the coefficients of the differential operators can be discretized

using techniques available in the literature, such as Karhunen–Lo!eve (KL) expansion, polynomial
chaos expansion, and optimal linear estimation; see, for example, Ref. [20]. Random field
discretization involves the representation of the field in terms of a finite number of random
variables, which are amenable to a numerical treatment. Consider the case when the random field
aðx; hÞ is discretized using the mean-square convergent KL expansion scheme [1] as shown below:

aðx; hÞ ¼ /aðx; hÞSþ
XN
i¼0

Zai
ffiffiffiffiffi
mai

p
aiðxÞ; ð2Þ

where mai and aiðxÞ are the characteristic functions (eigenvalues and eigenvectors, respectively) of
the following deterministic integral eigenvalue problem:

mai aiðxÞ ¼
Z
O

Raaðx;x1Þaiðx1Þ dx1; ð3Þ

where Raa is the correlation function of the random field. The vector of zero-mean random
variables fZai g are uncorrelated, i.e., /Zai Z

a
j S ¼ mai dij ; where dij denotes the Kronecker delta

function. Analytical solutions for the characteristic functions of Eq. (3) can be readily computed
for a class of correlation functions defined on simple domains. Further details including
approximate schemes for numerical solution of Eq. (3) for complex domains can be found in the
literature; see, for example, Ref. [1,21]. The KL expansion of the random field bðx; hÞ can be
carried out similarly.
In practice, depending on the correlation length of the random fields, a small number of terms

from the KL expansion can be used to represent the underlying random fields without significant
loss of accuracy. Using the KL expansions of the random fields, the stochastic differential
operators in Eq (1) can be written as the sum of a deterministic and stochastic operator as

Ko þKyð Þ½uðx; hÞ� ¼ lðhÞ Mo þMyð Þ½uðx; hÞ�; ð4Þ
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where Ko and Mo are deterministic differential operators, and Ky and My are stochastic
differential operators.
For the simplicity of presentation, consider the case when the random coefficients of the

stochastic differential operators appear as multiplicative terms.1 Further, let the random variables
arising from discretization of the random fields be denoted by the vector h ¼ fyig; i ¼ 1; 2; y; p:
Hence, without any loss of generality, Eq. (4) can be rewritten as

Ko þ
Xp

i¼1

yiKi

 !
½uðx; hÞ� ¼ lðhÞ Mo þ

Xp

i¼1

yiMi

 !
½uðx; hÞ�; ð5Þ

where Ki and Mi are deterministic differential operators.
A spatial discretization technique such as the finite element method (FEM) can be used to

represent Eq. (5) as an algebraic random eigenvalue problem of the form

Ao þ
Xp

i¼1

yiAi

" #
xðhÞ ¼ lðhÞ Bo þ

Xp

i¼1

yiBi

" #
xðhÞ; ð6Þ

where Ao; Bo; Ai; Bi ARn�n are deterministic matrices while lðhÞ and xðhÞARn denote the random
eigenvalue and eigenvector, respectively.
For problems where the coefficients a and b appear non-linearly in the differential operators,

either the Taylor series expansion or the polynomial chaos decomposition scheme [1] can be
employed to arrive at a form similar to Eq. (6). A form similar to Eq. (6) can be also be readily
arrived at for cases where the stochastic system properties are modelled as random variables.
Here, the matrices Ai and Bi denote the sensitivities of the system matrices with respect to the
random system parameters.

3. First order perturbation method

Consider the case when the differential operators in Eq. (1) are self-adjoint, and the matrices in
Eq. (6) are symmetric positive definite. Further, let lo and xo denote the eigenvalue and
eigenvector, respectively, of the following deterministic eigenvalue problem

Aoxo ¼ loBoxo: ð7Þ

The eigenvector of Eq. (7) can be normalized with respect to the matrix Bo; i.e., xT
o Boxo ¼ 1:

Note that for simplicity of presentation, the eigenmode numbers are not explicitly shown in the
equations that follow. First order approximations for the random eigenvalue and eigenvector
based on the deterministic eigenparameters of Eq. (7) can be written as

*lðhÞ ¼ lo þ
Xp

j¼1

yj

@l
@yj

; ð8Þ

*xðhÞ ¼ xo þ
Xp

j¼1

yj
@x

@yj

; ð9Þ

1For example, when Young’s modulus of a structural member is modelled probabilistically.
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where @l=@yj and @x=@yj are the sensitivities of the eigenvalues and eigenvectors with respect to
the random variables, respectively. The eigenvalue and eigenvector derivatives can be computed
using the equations

@l
@yj

¼ xT
o ðAj 
 loBjÞxo ð10Þ

and

ðAo 
 loBoÞ
@x

@yj

¼ loBj þ
@l
@yj

Bo 
 Aj

	 

xo: ð11Þ

There exists a wealth of methods in the literature for solving Eq. (11); see, for example, Refs.
[22,23]. In the present study, Akg .un’s first order method [24] is employed to approximately solve
Eq. (11) and compute the eigenvector derivatives. Note that this formulation considers the
eigenvalues of Eq. (7) to be distinct.

4. Stochastic reduced basis approximations

The fundamental idea of the present formulation is to use the two terms of the first order
perturbation approximation (see Eq. (9)) as basis vectors for representing the eigenvector of the
random eigenvalue problem. Note that this idea has been applied earlier with a degree of success
in structural dynamic reanalysis [18,19]. The assumption made here is that the random eigenvector
xðhÞ can be well approximated in the subspace spanned by xo and

Pp
i¼1 yi@x=@yi; i.e., an

approximation for xðhÞ can be written as

#xðhÞ ¼ z1ðhÞxo þ z2ðhÞ
Xp

i¼1

yi
@x

@yj

; ð12Þ

where z1ðhÞ and z2ðhÞ are undetermined random functions.
To compute the undetermined functions z1ðhÞ and z2ðhÞ; Eq. (12) is used for Ritz analysis of

Eq. (6), which leads to a (2� 2) random eigenvalue problem for each eigenmode of interest. The

Table 1

Elements of problem specific tensors

ai ¼ xT
o Aixo bi ¼ xT

o Bix
o

ci ¼ xT
o Ao

@x

@yi

di ¼ xT
o Bo

@x

@yi

Eij ¼ xT
o Ai

@x

@yj

Fij ¼ xT
o Bi

@x

@yj

Gij ¼
@xT

@yi

Ao
@x

@yj

Hij ¼
@xT

@yi

Bo
@x

@yj

Qijk ¼
@xT

@yj

Ai
@x

@yk

Rijk ¼
@xT

@yj

Bi
@x

@yk
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reduced order random eigenvalue problem can be written as

ARðhÞZðhÞ ¼ lðhÞBRðhÞZðhÞ; ð13Þ

where

ARðhÞ ¼ WTðhÞ Ao þ
Xp

i¼1

yiAi

" #
WðhÞAR2�2; ð14Þ

Fig. 1. Network of 20 Euler–Bernoulli beams.
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Fig. 2. Trends of the sof when the standard deviation of the random system parameters is increased from 0.05 to 0.15.
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BRðhÞ ¼ WTðhÞ Bo þ
Xp

i¼1

yiBi

" #
WðhÞAR2�2; ð15Þ

WðhÞ ¼ xo;
Xp

i¼1

yi
@x

@yi

" #
ARn�2; ð16Þ

and Z ¼ fz1ðhÞ; z2ðhÞg
TAR2: After some algebra, the elements of the reduced order random

matrices ARðhÞ and BRðhÞ can be written using tensor notation as

ARðhÞ ¼
ðlo þ yiaiÞ ðyici þ yiyjEijÞ

sym ðyiyjGij þ yiyjykQijkÞ

" #
ð17Þ

and

BRðhÞ ¼
ð1þ yibiÞ ðyidi þ yiyjFijÞ

sym ðyiyjHij þ yiyjykRijkÞ

" #
: ð18Þ

Expressions for the deterministic terms a; b; c; d; E; F ; G; H; Q; and R are given in Table 1. In
the notation used here, repeated indices imply summation with respect to that index over the
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Fig. 3. Comparison of errors in mean of natural frequencies for case 1, sy ¼ 0:05: The circles and stars represents

precentage errors computed using PM1 and RBA, respectively. -o-, PM1; -*-, RBA.
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range of 1 to p: It can readily be seen from Table 1 that when the system matrices are symmetric,
the second and third order tensors in Table 1 will also be symmetric.
Using this formulation, the eigenvalues of the reduced order random eigenvalue problem can be

computed by solving for the roots of the quadratic

ða11a22 
 b2
12Þl

2 þ ð2a12b12 
 a11b22 
 a22b11Þl ¼ a11a22 
 a2
12; ð19Þ

where aij and bij denote the elements of the reduced random matrices ARðhÞ and BRðhÞ;
respectively. For the sake of notational convenience, the dependence of these elements on the
random variables is not explicitly shown. Note that the quadratic in Eq. (19) will give two possible
values for the approximate eigenvalue. Clearly, for the fundamental eigenmode, the root with the
minimum value gives the best approximation. For the higher modes the best approximation is
chosen by selecting the root which is closest to the higher order eigenvalue approximation
proposed in Ref. [25], which can be written using tensor notation as

#l ¼ lo þ
½yiai þ yiyjEij 
 loðyibi þ yiyjFijÞ�

½1þ yidi þ yibi þ yiyjFij�
: ð20Þ

The selection of the appropriate root based on this criteria can be carried out by
transforming Eq. (19) using the substitution l ¼ gþ #l; which gives the modified quadratic
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Fig. 4. Comparison of errors in standard deviation of the natural frequencies for case 1, sy ¼ 0:05: -o-, PM1; -*-, RBA.

P.B. Nair, A.J. Keane / Journal of Sound and Vibration 260 (2003) 45–65 53



equation

ða11a22 
 b2
12Þðgþ #lÞ2 þ ð2a12b12 
 a11b22 
 a22b11Þðgþ #lÞ ¼ a11a22 
 a2

12: ð21Þ

The best approximation is hence that root of Eq. (21) which has smallest absolute value, i.e.,
minðgÞ: The random eigenvalue can hence be evaluated as lðhÞ ¼ minðgÞ þ #l: Using this
approximation for the eigenvalue, the random eigenvector is approximated such that it satisfies
the normalization condition with respect to ½Bo þ

Pp
i¼1 yiBi� with probability one. After some

further algebra, an approximation for the normalized random eigenvector can be written as

#xðhÞ ¼
1ffiffiffi
b

p xo þ
a11 
 lðhÞb11

a12 
 lðhÞb12

	 
Xp

i¼1

yi
@x

@yi

" #
; ð22Þ

where

b ¼ b11 þ
a11 
 lðhÞb11

a12 
 lðhÞb12

	 

b12 þ

a11 
 lðhÞb11

a12 
 lðhÞb12

	 
2

b22: ð23Þ

Conceptually, the statistics of the eigenvalues and eigenvectors can be computed using
Eqs. (20)–(23). However, since the resulting expressions for the eigenvalues and eigenvectors are
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Fig. 5. Comparison of pdf of the first two natural frequencies for case 1, sy ¼ 0:05: —-, MCS; - - -, RBA; ?; PM1.
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highly non-linear functions of the random variables, analytical solutions for the statistical
moments are not readily possible. Fortunately, the solution of Eqs. (20)–(23) requires only Oðp3Þ
operations for a given realization of h: Hence, a complete probabilistic description of the
eigenvalues and eigenvectors is within reach using simulation techniques. The formulation
presented in this section is henceforth referred to as RBA.

4.1. Remarks

Note that two different lines of approach can be employed to set up the reduced order random
eigenvalue problem. For example, one could use a global set of stochastic basis vectors to
simultaneously approximate all the desired eigenvalues and eigenvectors. This approach would
entail the use of the appropriate inner product defined in the Hilbert space of random variables.
Clearly, this approach would be desirable for systems with high modal density. However, the
formulation presented here uses independent sets of two basis vectors to approximate each
eigenmode of interest. The implicit assumption made here is that the effects of mode-switching
will not lead to significant approximation errors. This suggests that the present method may run
into difficulties when the statistical overlap factor (sof) is high. The sof defined earlier by Manohar
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Fig. 6. Comparison of pdf’s of natural frequencies corresponding to modes 3–40 for case 1, sy ¼ 0:05: —-, MCS; - - -,
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P.B. Nair, A.J. Keane / Journal of Sound and Vibration 260 (2003) 45–65 55



and Keane [26] is given by.

sofi ¼ 2
si

mi

;

where si is the standard deviation of the ith natural frequency, and mi denotes the mean spacing
between the ith and (i þ 1)th natural frequency.
However, as shown later via numerical studies, if the approximate eigenvalues are appropriately

reordered, reasonable approximations for the eigenmodes with high sof values can be computed.

4.2. Simplification of the formulation

This section examines some approximations to simplify the reduced basis method and to
improve the computational efficiency. As mentioned earlier, Oðp3Þ operations are required to
approximate the eigenvalue and eigenvector of each mode for a given realization of the random
variables. Further, it can also be observed from Table 1 that Oðp3Þ scalars are required to be stored
in memory for each eigenmode. This may become rather high for systems with large number of
uncertain parameters. In order to reduce the computational cost and memory requirements, the
third order tensors which appear in the expressions for ARðhÞ and BRðhÞ can be simplified.
Consider, for example, a typical term involving third order terms

a22 ¼ yiyjGij þ yiyjykQijk: ð24Þ
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This term can be simplified by replacing the third order term with its ensemble average, i.e.,

%a22 ¼ yiyjGij þ/yiyjykSQijk: ð25Þ

Similarly, the third order term appearing in b22 can also be replaced by its ensemble average.
The expectation operation in Eq. (25) can be readily computed using the probability density
function (pdf) of the vector h: This simplification allows for the solution of the reduced order
random eigenvalue problem using only Oðp2Þ operations for a given realization of the random
system parameters.

4.3. A note on computational aspects

The steps involved in the present formulation are summarized below:
Step 1: The first step involves representing the random eigenvalue in the form of Eq. (6). This

can readily be done either by discretizing the underlying random fields of the governing SDEP, or
by computing the sensitivities of the system matrices with respect to the random physical
parameters.

Step 2: The deterministic eigenvalue problem in Eq. (7) is solved for the eigenmodes of interest,
and the eigenvector derivatives are computed with respect to the random variables.
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Step 3: The problem specific deterministic tensors given in Table 1 are computed for each
eigenmode of interest. The computational complexity of this step is Oðn2Þ; since only matrix vector
multiplications are involved.

Step 4: The constants computed in Step 3 are then used to expedite the statistical analysis of the
eigenvalues and eigenvectors via MCS using Eq. (20)–(23). Note that the eigenvalues have to be
appropriately reordered at this stage to ensure that the eigenvalue statistics are of reasonable
accuracy.
It is of interest to note that the statistics of the eigenvalues and eigenvectors of each eigenmode

can be computed independently of each other. This enables the possibility of leveraging parallel
computing systems for solving large-scale random eigenvalue problems. Once the eigenvalues and
eigenvectors are approximated for a given realization of h; the forced response can be readily
computed. This enables the efficient computation of the forced response statistics.

5. Demonstration examples, results, and discussion

Numerical studies are presented for free and forced vibration analysis of the network of
stochastic Euler–Bernoulli beams with random Young’s modulus shown in Fig. 1. The structure is
modelled using 3 elements for each beam member, which leads to a finite element model with a
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total of 150 degrees of freedom. The axial and flexural rigidity of each structural member are
modelled as E0Að1þ yiÞ and E0Ið1þ yiÞ; i ¼ 1; 2; y; 20: yi are considered as uncorrelated zero-
mean Gaussian random variables with standard deviation sy; while E0A ¼ 6:987� 106 N; E0I ¼
1:286� 103 Nm2; and the mass density r ¼ 2:74 kg=m: This leads to a total of 20 random system
parameters for this problem.
Two cases are considered to compare the accuracy of the methods when sy is increased. The

value of sy is set at 0.05, and 0.15 for cases 1 and 2, respectively. Numerical studies were
conducted to compute the statistics of the first 40 eigenmodes, and the transverse component of
the displacement response at node 9 in the frequency range of 0–500Hz, when the structure is
subjected to transverse harmonic excitation at node 1.
MCS using exact eigensolution with a sample size of 10,000 is used to generate benchmark

results against which the reduced basis formulation and the first order perturbation method
are compared. The benchmark results are referred to as exact results throughout the discussion.
For the reduced basis approximation (RBA) method, the response statistics were computed
using the same sample size. Note that for the first order perturbation method (PM1), the
eigenvalue statistics can be computed analytically, since a linear approximation is involved.
Similarly, it is also possible to compute the forced response statistics analytically using a first
order sensitivity analysis. However, a simulation scheme with a sample size of 10,000 was used
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Fig. 10. Comparison of errors in standard deviation of the natural frequencies for case 2, sy ¼ 0:15: -o-, PM1; -*-,

RBA.

P.B. Nair, A.J. Keane / Journal of Sound and Vibration 260 (2003) 45–65 59



here to compute the forced response statistics, using the eigenvalues and eigenvectors
approximated using PM1.
Fig. 2 shows the trends of the sof of all the natural frequencies when sy is kept at 0.05, 0.10, and

0.15. It can be observed that the sof of all the modes increase appreciably when sy is changed from
0.05 to 0.15. This suggests that the example problem considered is fairly challenging since the
modes are highly likely to switch in the presence of parametric uncertainties.
A comparison of the percentage errors in the mean and standard deviation of the natural

frequencies for case 1 using RBA and PM1 are shown in Figs. 3 and 4. It can be seen that with the
standard deviation of 0.05, reasonably accurate results can be obtained for the first two statistical
moments of most of the eigenvalues using the approximate methods. The accuracy of RBA is seen
to be better than PM1 for most of the eigenmodes of interest. A comparison of Fig. 2 with Figs. 3
and 4 shows that the errors in the statistical moments tend to be higher for the natural frequencies
with high sof.
The pdf’s of the first two natural frequencies computed using all the methods are shown in

Fig. 5. The pdfs of the natural frequencies corresponding to modes 3–40 are shown in Fig. 6. The
pdf plots clearly show the degree of overlap due to parameter uncertainties. It also appears from
the figures that the pdf’s can be well approximated by a Gaussian distribution. The mean and
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standard deviation of the frequency response computed using RBA and PM1 are compared with
the exact results in Figs. 7 and 8. It can be observed that RBA shows good correlation with the
exact results for both statistical moments of the frequency response. In comparison, the errors in
PM1 are higher at some frequency points. These trends indicate that the eigenvector statistics
computed using RBA are more accurate than PM1.
A comparison of the percentage errors in the mean and standard deviation of the natural

frequencies computed using RBA and PM1 for case 2 are shown in Figs. 9 and 10. As observed
earlier for case 1, RBA gives better results as compared to PM1 for the statistical moments of
most of the eigenvalues. However, for some eigenmodes, the mean and standard deviation
predicted by PM1 can be seen to be marginally more accurate than RBA.
The pdf’s of the first two natural frequencies computed using various methods are compared in

Fig. 11. It can be seen that RBA shows good agreement with MCS for the fundamental natural
frequency. The pdf’s of the natural frequencies corresponding to modes 3–40 are shown in Fig. 12.
As compared to case 1, it can be observed that the pdfs corresponding to almost all the natural
frequencies show a greater degree of overlap.
The mean and standard deviation of the frequency response computed using RBA and PM1 are

compared with the exact results in Figs. 13 and 14. It can be seen that RBA shows better
agreement with the exact results for both the mean and the standard deviation of the response.
This suggests that RBA gives better approximations for the eigenvector statistics as compared to
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PM1. It is of interest to note that, in spite of the high magnitude of errors in the eigenvalue
statistics, the first two statistical moments of the frequency response are of reasonable accuracy.
Finally, it is worth noting that computation of the first 40 modes of this structural system using

the Lanczos method requires around 1.7 s on one node of an SGI Origin2000 with R10,000
processors. Hence, the MCS procedure using a sample size of 10,000 involved nearly 5 h of
processor time. In contrast, the reduced basis formulation required only around 2.3min, with the
first order perturbation method taking around 1.7min. Note that the routines implementing the
approximate methods have not been fully optimized. It is expected that the difference between the
computational cost of the methods will become even more significant with increase in the problem
size, i.e., both RBA and PM1 will require only a very small fraction of the computation cost
required for MCS using exact eigensolution.

6. Concluding remarks

A stochastic reduced basis formulation is presented for efficiently solving large-scale algebraic
random eigenvalue problems. In this formulation, the original eigenvalue problem is reduced into
a sequence of (2� 2) reduced order random eigenvalue problems for each mode of interest. The
terms of the reduced order eigenvalue problem can be efficiently computed by solving a
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deterministic eigenvalue problem and computing its sensitivities. Further, the present formulation
allows explicit expressions for the random eigenvalues and eigenvectors to be derived in terms of
the random system properties. This enables the statistics of the random eigenparameters and the
forced response to be efficiently computed.
Numerical studies have been presented for free and forced vibration analysis of a linear

stochastic structural system to demonstrate that improvements over the first order perturbation
method can be achieved, particularly for moderate stochastic variations in the system properties.
In particular, reasonably accurate results can be obtained for the eigenvalue statistics when the
statistical overlap factor is low. As compared to the first order perturbation method, the reduced
basis method gives better approximations for the first two statistical moments of the frequency
response. In fact, the statistics of the frequency response are observed to be reasonably accurate
even when the errors in the statistical moments of the eigenvalues are rather high. It is also
demonstrated that the improvement in accuracy over the first order perturbation method is
achieved with only a small increment in the computational effort.
Preliminary investigations suggest that formulations which use a global set of stochastic basis

vectors to simultaneously approximate all the desired eigenvalues and eigenvectors [27] may lead
to more accurate results. Such general stochastic subspace projection schemes are also expected to
allow for the possibility of analytically approximating the forced response statistics without using
simulation techniques. It is also of interest to note that the present method can be extended to
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linear algebraic random eigenvalue problems with general non-Hermitian matrices, and quadratic
random eigenvalue problems.

Acknowledgements

This research was supported by a grant from the Faculty of Engineering and Applied Sciences
at the University of Southampton. P.B. Nair thanks Professor R.S. Langley for many useful
discussions during the early stages of this research.

References

[1] R. Ghanem, P. Spanos, Stochastic Finite Elements: A Spectral Approach, Springer, Berlin, 1991.

[2] C.S. Manohar, R.A. Ibrahim, Progress in structural dynamics with stochastic parameter variations, Applied

Mechanics Reviews 52 (5) (1999) 177–197.

[3] R.S. Langley, The dynamic analysis of uncertain structures. Proceeding of the Seventh International Conference

on Recent Advances in Structural Dynamics, Vol. 1, 2000, pp. 1–20.

[4] B.F. Spencer Jr, M.K. Sain, J.C. Kantor, C. Montemagno, Probabilistic stability measures for controlled

structures subject to real parameter uncertainties, Smart Materials and Structures 1 (1999) 294–305.

[5] L. Papadopoulos, E. Garcia, Structural damage identification: a probabilistic approach, American Institute of

Aeronautics and Astronautics Journal 36 (11) (1998) 2137–2145.

[6] C. Pierre, M.P. Castanier, S.B. Choi, On developing new statistical energy methods for the analysis of vibration

transmission in complex vehicle structures, Mechanics of Structures and Machines 25 (1) (1997) 87–101.

[7] A. Edelman, Eigenvalues and Condition Numbers of Random Matrices, Ph.D. Dissertation, Massachusetts

Institute of Technology.

[8] R.S. Langley, A non-Poisson model for the vibration analysis of uncertain dynamic systems, Proceedings of the

Royal Society of London, Series A Mathematical, Physical, and Engineering Sciences 455 (1989) 3325–3349.

[9] J.D. Collins, W.T. Thompson, The eigenvalue problem for structures with statistical properties, American Institute

of Aeronautics and Astronautics Journal 7 (4) (1969) 642–648.

[10] M. Kleiber, T.D. Hien, The Stochastic Finite Element Method: Basic Perturbation Technique and Computer

Implementation, Wiley, Chichester, 1992.

[11] C. Lee, R. Singh, Analysis of discrete vibratory systems with parameter uncertainties, Part I: eigensolution,

Journal of Sound and Vibration 174 (3) (1999) 379–394.

[12] M. Grigoriu, A solution of the random eigenvalue problem by crossing theory, Journal of Sound and Vibration

158 (1) (1992) 69–80.

[13] J.R. Red-Horse, R. Ghanem, Polynomial chaos representation of the random eigenvalue problem, Proceedings of

the 40th American Institute of Aeronautics and Astronautics/ASME/ASCE/AHS/ ASC Structures, Structural

Dynamics, and Materials Conference, St. Louis, MO, 1999.

[14] G. Ottarson, Dynamic Modeling and Vibration Analysis of Mistuned Bladed Disks, Ph.D. Dissertation,

University of Michigan, 1999.

[15] P.B. Nair, A.J. Keane, New developments in computational stochastic mechanics, part I: theory. Proceedings of

the 41st American Institute of Aeronautics and Astronautics/ASME/ASCE/AHS/ASC Structures, Structural

Dynamics, and Materials Conference, Atlanta, GA, American Institute of Aeronautics and Astronautics Paper

2000-1827, 2000.

[16] P.B. Nair, A.J. Keane, New developments in computational stochastic mechanics, part II: applications.

Proceedings of the 41st American Institute of Aeronautics and Astronautics/ASME/ASCE/AHS/ASC Structures,

Structural Dynamics, and Materials Conference, Atlanta, GA, American Institute of Aeronautics and

Astronautics Paper 2000-1441, 2000.

P.B. Nair, A.J. Keane / Journal of Sound and Vibration 260 (2003) 45–6564



[17] P.B. Nair, A.J. Keane, Stochastic reduced basis methods, American Institute of Aeronautics and Astronautics

Journal 40 (8) (2002) 1653–1664.

[18] P.B. Nair, A.J. Keane, R.S. Langley, Improved first order approximation of eigenvalues and eigenvectors,

American Institute of Aeronautics and Astronautics Journal 36 (9) (1721–1727).

[19] D.V. Murthy, R.T. Haftka, Approximations to eigenvalues of modified general matrices, Computers and

Structures 29 (5) (1988) 903–917.

[20] C.-C. Li, A. Der Kiureghian, Optimal discretization of random fields, ASCE Journal of Engineering Mechanics

119 (6) (1993) 1136–1154.

[21] H. Mei, O.P. Agarwal, S.S. Pai, Wavelet-based model for stochastic analysis of beam structures, American

Institute of Aeronautics and Astronautics Journal 36 (3) (1998) 465–470.

[22] O. Zhang, A. Zerva, Accelerated iterative procedure for calculating eigenvector derivatives, American Institute of

Aeronautics and Astronautics Journal 35 (2) (1997) 340–348.

[23] D.W. Zhang, F.S. Wei, Structural eigenderivative analysis using practical and simplified dynamic flexibility

method, American Institute of Aeronautics and Astronautics Journal 37 (7) (1999) 865–873.

[24] M. Akg .un, New family of modal methods for computing eigenvector derivatives, American Institute of

Aeronautics and Astronautics Journal 32 (2) (1994) 379–386.

[25] M.S. Eldred, P.B. Lerner, W.J. Anderson, Higher order eigenpair perturbations, American Institute of

Aeronautics and Astronautics Journal 30 (7) (1992) 1870–1876.

[26] C.S. Manohar, A.J. Keane, Statistics of energy flows in spring-coupled one-dimensional sub-systems,

Philosophical Transactions of the Royal Society of London 346 (A) (1994) 525–542.

[27] P.B. Nair, On the theoretical foundations of stochastic reduced basis methods. Proceedings of the 42nd American

Institute of Aeronautics and Astronautics/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and

Materials Conference, Seattle, WA, American Institute of Aeronautics and Astronautics Paper No. 2001-1677,

2001.

P.B. Nair, A.J. Keane / Journal of Sound and Vibration 260 (2003) 45–65 65


	An approximate solution scheme for the algebraic random eigenvalue problem
	Introduction
	Problem statement
	First order perturbation method
	Stochastic reduced basis approximations
	Remarks
	Simplification of the formulation
	A note on computational aspects

	Demonstration examples, results, and discussion
	Concluding remarks
	Acknowledgements
	References


